// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains rules used by the laterLower pass. // Simplify ISEL x $0 z into ISELZ (ISEL [a] x (MOVDconst [0]) z) => (ISELZ [a] x z) // Simplify ISEL $0 y z into ISELZ by inverting comparison and reversing arguments. (ISEL [a] (MOVDconst [0]) y z) => (ISELZ [a^0x4] y z) // SETBC, SETBCR is supported on ISA 3.1(Power10) and newer, use ISELZ for // older targets (SETBC [2] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [2] (MOVDconst [1]) cmp) (SETBCR [2] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [6] (MOVDconst [1]) cmp) (SETBC [0] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [0] (MOVDconst [1]) cmp) (SETBCR [0] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [4] (MOVDconst [1]) cmp) (SETBC [1] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [1] (MOVDconst [1]) cmp) (SETBCR [1] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [5] (MOVDconst [1]) cmp) // The upper bits of the smaller than register values is undefined. Take advantage of that. (AND x:(MOVDconst [m]) n) && t.Size() <= 2 => (ANDconst [int64(int16(m))] n) // Convert simple bit masks to an equivalent rldic[lr] if possible. (AND x:(MOVDconst [m]) n) && isPPC64ValidShiftMask(m) => (RLDICL [encodePPC64RotateMask(0,m,64)] n) (AND x:(MOVDconst [m]) n) && m != 0 && isPPC64ValidShiftMask(^m) => (RLDICR [encodePPC64RotateMask(0,m,64)] n) // If the RLDICL does not rotate its value, a shifted value can be merged. (RLDICL [em] x:(SRDconst [s] a)) && (em&0xFF0000) == 0 => (RLDICL [mergePPC64RLDICLandSRDconst(em, s)] a) // Convert rotated 32 bit masks on 32 bit values into rlwinm. In general, this leaves the upper 32 bits in an undefined state. (AND x:(MOVDconst [m]) n) && t.Size() == 4 && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(0,m,32)] n) // When PCRel is supported, paddi can add a 34b signed constant in one instruction. (ADD (MOVDconst [m]) x) && supportsPPC64PCRel() && (m<<30)>>30 == m => (ADDconst [m] x) // Where possible and practical, generate CC opcodes. Due to the structure of the rules, there are limits to how // a Value can be rewritten which make it impossible to correctly rewrite sibling Value users. To workaround this // case, candidates for CC opcodes are converted in two steps: // 1. Convert all (x (Op ...) ...) into (x (Select0 (OpCC ...) ...). See convertPPC64OpToOpCC for more // detail on how and why this is done there. // 2. Rewrite (CMPconst [0] (Select0 (OpCC ...))) into (Select1 (OpCC...)) // Note: to minimize potentially expensive regeneration of CC opcodes during the flagalloc pass, only rewrite if // both ops are in the same block. (CMPconst [0] z:((ADD|AND|ANDN|OR|SUB|NOR|XOR) x y)) && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z)) (CMPconst [0] z:((NEG|CNTLZD|RLDICL) x)) && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z)) // Note: ADDCCconst only assembles to 1 instruction for int16 constants. (CMPconst [0] z:(ADDconst [c] x)) && int64(int16(c)) == c && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z)) (CMPconst [0] z:(ANDconst [c] x)) && int64(uint16(c)) == c && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z)) // And finally, fixup the flag user. (CMPconst [0] (Select0 z:((ADD|AND|ANDN|OR|SUB|NOR|XOR)CC x y))) => (Select1 z) (CMPconst [0] (Select0 z:((ADDCCconst|ANDCCconst|NEGCC|CNTLZDCC|RLDICLCC) y))) => (Select1 z) // After trying to convert ANDconst to ANDCCconst above, if the CC result is not needed, try to avoid using // ANDconst which clobbers CC. (ANDconst [m] x) && isPPC64ValidShiftMask(m) => (RLDICL [encodePPC64RotateMask(0,m,64)] x) // Likewise, trying converting RLDICLCC back to ANDCCconst as it is faster. (RLDICLCC [a] x) && convertPPC64RldiclAndccconst(a) != 0 => (ANDCCconst [convertPPC64RldiclAndccconst(a)] x)