// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ecdsa import ( "crypto/elliptic" "errors" "io" "math/big" "golang.org/x/crypto/cryptobyte" "golang.org/x/crypto/cryptobyte/asn1" ) // This file contains a math/big implementation of ECDSA that is only used for // deprecated custom curves. func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { k, err := randFieldElement(c, rand) if err != nil { return nil, err } priv := new(PrivateKey) priv.PublicKey.Curve = c priv.D = k priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) return priv, nil } // hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, // we use the left-most bits of the hash to match the bit-length of the order of // the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. func hashToInt(hash []byte, c elliptic.Curve) *big.Int { orderBits := c.Params().N.BitLen() orderBytes := (orderBits + 7) / 8 if len(hash) > orderBytes { hash = hash[:orderBytes] } ret := new(big.Int).SetBytes(hash) excess := len(hash)*8 - orderBits if excess > 0 { ret.Rsh(ret, uint(excess)) } return ret } var errZeroParam = errors.New("zero parameter") // Sign signs a hash (which should be the result of hashing a larger message) // using the private key, priv. If the hash is longer than the bit-length of the // private key's curve order, the hash will be truncated to that length. It // returns the signature as a pair of integers. Most applications should use // [SignASN1] instead of dealing directly with r, s. func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { sig, err := SignASN1(rand, priv, hash) if err != nil { return nil, nil, err } r, s = new(big.Int), new(big.Int) var inner cryptobyte.String input := cryptobyte.String(sig) if !input.ReadASN1(&inner, asn1.SEQUENCE) || !input.Empty() || !inner.ReadASN1Integer(r) || !inner.ReadASN1Integer(s) || !inner.Empty() { return nil, nil, errors.New("invalid ASN.1 from SignASN1") } return r, s, nil } func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { c := priv.Curve // SEC 1, Version 2.0, Section 4.1.3 N := c.Params().N if N.Sign() == 0 { return nil, errZeroParam } var k, kInv, r, s *big.Int for { for { k, err = randFieldElement(c, csprng) if err != nil { return nil, err } kInv = new(big.Int).ModInverse(k, N) r, _ = c.ScalarBaseMult(k.Bytes()) r.Mod(r, N) if r.Sign() != 0 { break } } e := hashToInt(hash, c) s = new(big.Int).Mul(priv.D, r) s.Add(s, e) s.Mul(s, kInv) s.Mod(s, N) // N != 0 if s.Sign() != 0 { break } } return encodeSignature(r.Bytes(), s.Bytes()) } // Verify verifies the signature in r, s of hash using the public key, pub. Its // return value records whether the signature is valid. Most applications should // use VerifyASN1 instead of dealing directly with r, s. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { if r.Sign() <= 0 || s.Sign() <= 0 { return false } sig, err := encodeSignature(r.Bytes(), s.Bytes()) if err != nil { return false } return VerifyASN1(pub, hash, sig) } func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool { rBytes, sBytes, err := parseSignature(sig) if err != nil { return false } r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes) c := pub.Curve N := c.Params().N if r.Sign() <= 0 || s.Sign() <= 0 { return false } if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { return false } // SEC 1, Version 2.0, Section 4.1.4 e := hashToInt(hash, c) w := new(big.Int).ModInverse(s, N) u1 := e.Mul(e, w) u1.Mod(u1, N) u2 := w.Mul(r, w) u2.Mod(u2, N) x1, y1 := c.ScalarBaseMult(u1.Bytes()) x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) x, y := c.Add(x1, y1, x2, y2) if x.Sign() == 0 && y.Sign() == 0 { return false } x.Mod(x, N) return x.Cmp(r) == 0 } var one = new(big.Int).SetInt64(1) // randFieldElement returns a random element of the order of the given // curve using the procedure given in FIPS 186-4, Appendix B.5.2. func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { // See randomPoint for notes on the algorithm. This has to match, or s390x // signatures will come out different from other architectures, which will // break TLS recorded tests. for { N := c.Params().N b := make([]byte, (N.BitLen()+7)/8) if _, err = io.ReadFull(rand, b); err != nil { return } if excess := len(b)*8 - N.BitLen(); excess > 0 { b[0] >>= excess } k = new(big.Int).SetBytes(b) if k.Sign() != 0 && k.Cmp(N) < 0 { return } } }