// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package rsa // This file implements the RSASSA-PSS signature scheme according to RFC 8017. import ( "bytes" "crypto" "crypto/internal/boring" "errors" "hash" "io" ) // Per RFC 8017, Section 9.1 // // EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc // // where // // DB = PS || 0x01 || salt // // and PS can be empty so // // emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2 // func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) { // See RFC 8017, Section 9.1.1. hLen := hash.Size() sLen := len(salt) emLen := (emBits + 7) / 8 // 1. If the length of M is greater than the input limitation for the // hash function (2^61 - 1 octets for SHA-1), output "message too // long" and stop. // // 2. Let mHash = Hash(M), an octet string of length hLen. if len(mHash) != hLen { return nil, errors.New("crypto/rsa: input must be hashed with given hash") } // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop. if emLen < hLen+sLen+2 { return nil, ErrMessageTooLong } em := make([]byte, emLen) psLen := emLen - sLen - hLen - 2 db := em[:psLen+1+sLen] h := em[psLen+1+sLen : emLen-1] // 4. Generate a random octet string salt of length sLen; if sLen = 0, // then salt is the empty string. // // 5. Let // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt; // // M' is an octet string of length 8 + hLen + sLen with eight // initial zero octets. // // 6. Let H = Hash(M'), an octet string of length hLen. var prefix [8]byte hash.Write(prefix[:]) hash.Write(mHash) hash.Write(salt) h = hash.Sum(h[:0]) hash.Reset() // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2 // zero octets. The length of PS may be 0. // // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length // emLen - hLen - 1. db[psLen] = 0x01 copy(db[psLen+1:], salt) // 9. Let dbMask = MGF(H, emLen - hLen - 1). // // 10. Let maskedDB = DB \xor dbMask. mgf1XOR(db, hash, h) // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in // maskedDB to zero. db[0] &= 0xff >> (8*emLen - emBits) // 12. Let EM = maskedDB || H || 0xbc. em[emLen-1] = 0xbc // 13. Output EM. return em, nil } func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error { // See RFC 8017, Section 9.1.2. hLen := hash.Size() if sLen == PSSSaltLengthEqualsHash { sLen = hLen } emLen := (emBits + 7) / 8 if emLen != len(em) { return errors.New("rsa: internal error: inconsistent length") } // 1. If the length of M is greater than the input limitation for the // hash function (2^61 - 1 octets for SHA-1), output "inconsistent" // and stop. // // 2. Let mHash = Hash(M), an octet string of length hLen. if hLen != len(mHash) { return ErrVerification } // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop. if emLen < hLen+sLen+2 { return ErrVerification } // 4. If the rightmost octet of EM does not have hexadecimal value // 0xbc, output "inconsistent" and stop. if em[emLen-1] != 0xbc { return ErrVerification } // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and // let H be the next hLen octets. db := em[:emLen-hLen-1] h := em[emLen-hLen-1 : emLen-1] // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in // maskedDB are not all equal to zero, output "inconsistent" and // stop. var bitMask byte = 0xff >> (8*emLen - emBits) if em[0] & ^bitMask != 0 { return ErrVerification } // 7. Let dbMask = MGF(H, emLen - hLen - 1). // // 8. Let DB = maskedDB \xor dbMask. mgf1XOR(db, hash, h) // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB // to zero. db[0] &= bitMask // If we don't know the salt length, look for the 0x01 delimiter. if sLen == PSSSaltLengthAuto { psLen := bytes.IndexByte(db, 0x01) if psLen < 0 { return ErrVerification } sLen = len(db) - psLen - 1 } // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero // or if the octet at position emLen - hLen - sLen - 1 (the leftmost // position is "position 1") does not have hexadecimal value 0x01, // output "inconsistent" and stop. psLen := emLen - hLen - sLen - 2 for _, e := range db[:psLen] { if e != 0x00 { return ErrVerification } } if db[psLen] != 0x01 { return ErrVerification } // 11. Let salt be the last sLen octets of DB. salt := db[len(db)-sLen:] // 12. Let // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ; // M' is an octet string of length 8 + hLen + sLen with eight // initial zero octets. // // 13. Let H' = Hash(M'), an octet string of length hLen. var prefix [8]byte hash.Write(prefix[:]) hash.Write(mHash) hash.Write(salt) h0 := hash.Sum(nil) // 14. If H = H', output "consistent." Otherwise, output "inconsistent." if !bytes.Equal(h0, h) { // TODO: constant time? return ErrVerification } return nil } // signPSSWithSalt calculates the signature of hashed using PSS with specified salt. // Note that hashed must be the result of hashing the input message using the // given hash function. salt is a random sequence of bytes whose length will be // later used to verify the signature. func signPSSWithSalt(priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) { emBits := priv.N.BitLen() - 1 em, err := emsaPSSEncode(hashed, emBits, salt, hash.New()) if err != nil { return nil, err } if boring.Enabled { bkey, err := boringPrivateKey(priv) if err != nil { return nil, err } // Note: BoringCrypto always does decrypt "withCheck". // (It's not just decrypt.) s, err := boring.DecryptRSANoPadding(bkey, em) if err != nil { return nil, err } return s, nil } // RFC 8017: "Note that the octet length of EM will be one less than k if // modBits - 1 is divisible by 8 and equal to k otherwise, where k is the // length in octets of the RSA modulus n." 🙄 // // This is extremely annoying, as all other encrypt and decrypt inputs are // always the exact same size as the modulus. Since it only happens for // weird modulus sizes, fix it by padding inefficiently. if emLen, k := len(em), priv.Size(); emLen < k { emNew := make([]byte, k) copy(emNew[k-emLen:], em) em = emNew } return decrypt(priv, em, withCheck) } const ( // PSSSaltLengthAuto causes the salt in a PSS signature to be as large // as possible when signing, and to be auto-detected when verifying. PSSSaltLengthAuto = 0 // PSSSaltLengthEqualsHash causes the salt length to equal the length // of the hash used in the signature. PSSSaltLengthEqualsHash = -1 ) // PSSOptions contains options for creating and verifying PSS signatures. type PSSOptions struct { // SaltLength controls the length of the salt used in the PSS signature. It // can either be a positive number of bytes, or one of the special // PSSSaltLength constants. SaltLength int // Hash is the hash function used to generate the message digest. If not // zero, it overrides the hash function passed to SignPSS. It's required // when using PrivateKey.Sign. Hash crypto.Hash } // HashFunc returns opts.Hash so that [PSSOptions] implements [crypto.SignerOpts]. func (opts *PSSOptions) HashFunc() crypto.Hash { return opts.Hash } func (opts *PSSOptions) saltLength() int { if opts == nil { return PSSSaltLengthAuto } return opts.SaltLength } var invalidSaltLenErr = errors.New("crypto/rsa: PSSOptions.SaltLength cannot be negative") // SignPSS calculates the signature of digest using PSS. // // digest must be the result of hashing the input message using the given hash // function. The opts argument may be nil, in which case sensible defaults are // used. If opts.Hash is set, it overrides hash. // // The signature is randomized depending on the message, key, and salt size, // using bytes from rand. Most applications should use [crypto/rand.Reader] as // rand. func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) { // Note that while we don't commit to deterministic execution with respect // to the rand stream, we also don't apply MaybeReadByte, so per Hyrum's Law // it's probably relied upon by some. It's a tolerable promise because a // well-specified number of random bytes is included in the signature, in a // well-specified way. if boring.Enabled && rand == boring.RandReader { bkey, err := boringPrivateKey(priv) if err != nil { return nil, err } return boring.SignRSAPSS(bkey, hash, digest, opts.saltLength()) } boring.UnreachableExceptTests() if opts != nil && opts.Hash != 0 { hash = opts.Hash } saltLength := opts.saltLength() switch saltLength { case PSSSaltLengthAuto: saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size() if saltLength < 0 { return nil, ErrMessageTooLong } case PSSSaltLengthEqualsHash: saltLength = hash.Size() default: // If we get here saltLength is either > 0 or < -1, in the // latter case we fail out. if saltLength <= 0 { return nil, invalidSaltLenErr } } salt := make([]byte, saltLength) if _, err := io.ReadFull(rand, salt); err != nil { return nil, err } return signPSSWithSalt(priv, hash, digest, salt) } // VerifyPSS verifies a PSS signature. // // A valid signature is indicated by returning a nil error. digest must be the // result of hashing the input message using the given hash function. The opts // argument may be nil, in which case sensible defaults are used. opts.Hash is // ignored. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error { if boring.Enabled { bkey, err := boringPublicKey(pub) if err != nil { return err } if err := boring.VerifyRSAPSS(bkey, hash, digest, sig, opts.saltLength()); err != nil { return ErrVerification } return nil } if len(sig) != pub.Size() { return ErrVerification } // Salt length must be either one of the special constants (-1 or 0) // or otherwise positive. If it is < PSSSaltLengthEqualsHash (-1) // we return an error. if opts.saltLength() < PSSSaltLengthEqualsHash { return invalidSaltLenErr } emBits := pub.N.BitLen() - 1 emLen := (emBits + 7) / 8 em, err := encrypt(pub, sig) if err != nil { return ErrVerification } // Like in signPSSWithSalt, deal with mismatches between emLen and the size // of the modulus. The spec would have us wire emLen into the encoding // function, but we'd rather always encode to the size of the modulus and // then strip leading zeroes if necessary. This only happens for weird // modulus sizes anyway. for len(em) > emLen && len(em) > 0 { if em[0] != 0 { return ErrVerification } em = em[1:] } return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New()) }