// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT. // Source: ../../cmd/compile/internal/types2/operand.go // Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file defines operands and associated operations. package types import ( "bytes" "fmt" "go/ast" "go/constant" "go/token" . "internal/types/errors" ) // An operandMode specifies the (addressing) mode of an operand. type operandMode byte const ( invalid operandMode = iota // operand is invalid novalue // operand represents no value (result of a function call w/o result) builtin // operand is a built-in function typexpr // operand is a type constant_ // operand is a constant; the operand's typ is a Basic type variable // operand is an addressable variable mapindex // operand is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment) value // operand is a computed value nilvalue // operand is the nil value - only used by types2 commaok // like value, but operand may be used in a comma,ok expression commaerr // like commaok, but second value is error, not boolean cgofunc // operand is a cgo function ) var operandModeString = [...]string{ invalid: "invalid operand", novalue: "no value", builtin: "built-in", typexpr: "type", constant_: "constant", variable: "variable", mapindex: "map index expression", value: "value", nilvalue: "nil", // only used by types2 commaok: "comma, ok expression", commaerr: "comma, error expression", cgofunc: "cgo function", } // An operand represents an intermediate value during type checking. // Operands have an (addressing) mode, the expression evaluating to // the operand, the operand's type, a value for constants, and an id // for built-in functions. // The zero value of operand is a ready to use invalid operand. type operand struct { mode operandMode expr ast.Expr typ Type val constant.Value id builtinId } // Pos returns the position of the expression corresponding to x. // If x is invalid the position is nopos. func (x *operand) Pos() token.Pos { // x.expr may not be set if x is invalid if x.expr == nil { return nopos } return x.expr.Pos() } // Operand string formats // (not all "untyped" cases can appear due to the type system, // but they fall out naturally here) // // mode format // // invalid ( ) // novalue ( ) // builtin ( ) // typexpr ( ) // // constant ( ) // constant ( of type ) // constant ( ) // constant ( of type ) // // variable ( ) // variable ( of type ) // // mapindex ( ) // mapindex ( of type ) // // value ( ) // value ( of type ) // // nilvalue untyped nil // nilvalue nil ( of type ) // // commaok ( ) // commaok ( of type ) // // commaerr ( ) // commaerr ( of type ) // // cgofunc ( ) // cgofunc ( of type ) func operandString(x *operand, qf Qualifier) string { // special-case nil if isTypes2 { if x.mode == nilvalue { switch x.typ { case nil, Typ[Invalid]: return "nil (with invalid type)" case Typ[UntypedNil]: return "nil" default: return fmt.Sprintf("nil (of type %s)", TypeString(x.typ, qf)) } } } else { // go/types if x.mode == value && x.typ == Typ[UntypedNil] { return "nil" } } var buf bytes.Buffer var expr string if x.expr != nil { expr = ExprString(x.expr) } else { switch x.mode { case builtin: expr = predeclaredFuncs[x.id].name case typexpr: expr = TypeString(x.typ, qf) case constant_: expr = x.val.String() } } // ( if expr != "" { buf.WriteString(expr) buf.WriteString(" (") } // hasType := false switch x.mode { case invalid, novalue, builtin, typexpr: // no type default: // should have a type, but be cautious (don't crash during printing) if x.typ != nil { if isUntyped(x.typ) { buf.WriteString(x.typ.(*Basic).name) buf.WriteByte(' ') break } hasType = true } } // buf.WriteString(operandModeString[x.mode]) // if x.mode == constant_ { if s := x.val.String(); s != expr { buf.WriteByte(' ') buf.WriteString(s) } } // if hasType { if isValid(x.typ) { var intro string if isGeneric(x.typ) { intro = " of generic type " } else { intro = " of type " } buf.WriteString(intro) WriteType(&buf, x.typ, qf) if tpar, _ := Unalias(x.typ).(*TypeParam); tpar != nil { buf.WriteString(" constrained by ") WriteType(&buf, tpar.bound, qf) // do not compute interface type sets here // If we have the type set and it's empty, say so for better error messages. if hasEmptyTypeset(tpar) { buf.WriteString(" with empty type set") } } } else { buf.WriteString(" with invalid type") } } // ) if expr != "" { buf.WriteByte(')') } return buf.String() } func (x *operand) String() string { return operandString(x, nil) } // setConst sets x to the untyped constant for literal lit. func (x *operand) setConst(k token.Token, lit string) { var kind BasicKind switch k { case token.INT: kind = UntypedInt case token.FLOAT: kind = UntypedFloat case token.IMAG: kind = UntypedComplex case token.CHAR: kind = UntypedRune case token.STRING: kind = UntypedString default: panic("unreachable") } val := makeFromLiteral(lit, k) if val.Kind() == constant.Unknown { x.mode = invalid x.typ = Typ[Invalid] return } x.mode = constant_ x.typ = Typ[kind] x.val = val } // isNil reports whether x is the (untyped) nil value. func (x *operand) isNil() bool { if isTypes2 { return x.mode == nilvalue } else { // go/types return x.mode == value && x.typ == Typ[UntypedNil] } } // assignableTo reports whether x is assignable to a variable of type T. If the // result is false and a non-nil cause is provided, it may be set to a more // detailed explanation of the failure (result != ""). The returned error code // is only valid if the (first) result is false. The check parameter may be nil // if assignableTo is invoked through an exported API call, i.e., when all // methods have been type-checked. func (x *operand) assignableTo(check *Checker, T Type, cause *string) (bool, Code) { if x.mode == invalid || !isValid(T) { return true, 0 // avoid spurious errors } origT := T V := Unalias(x.typ) T = Unalias(T) // x's type is identical to T if Identical(V, T) { return true, 0 } Vu := under(V) Tu := under(T) Vp, _ := V.(*TypeParam) Tp, _ := T.(*TypeParam) // x is an untyped value representable by a value of type T. if isUntyped(Vu) { assert(Vp == nil) if Tp != nil { // T is a type parameter: x is assignable to T if it is // representable by each specific type in the type set of T. return Tp.is(func(t *term) bool { if t == nil { return false } // A term may be a tilde term but the underlying // type of an untyped value doesn't change so we // don't need to do anything special. newType, _, _ := check.implicitTypeAndValue(x, t.typ) return newType != nil }), IncompatibleAssign } newType, _, _ := check.implicitTypeAndValue(x, T) return newType != nil, IncompatibleAssign } // Vu is typed // x's type V and T have identical underlying types // and at least one of V or T is not a named type // and neither V nor T is a type parameter. if Identical(Vu, Tu) && (!hasName(V) || !hasName(T)) && Vp == nil && Tp == nil { return true, 0 } // T is an interface type, but not a type parameter, and V implements T. // Also handle the case where T is a pointer to an interface so that we get // the Checker.implements error cause. if _, ok := Tu.(*Interface); ok && Tp == nil || isInterfacePtr(Tu) { if check.implements(x.Pos(), V, T, false, cause) { return true, 0 } // V doesn't implement T but V may still be assignable to T if V // is a type parameter; do not report an error in that case yet. if Vp == nil { return false, InvalidIfaceAssign } if cause != nil { *cause = "" } } // If V is an interface, check if a missing type assertion is the problem. if Vi, _ := Vu.(*Interface); Vi != nil && Vp == nil { if check.implements(x.Pos(), T, V, false, nil) { // T implements V, so give hint about type assertion. if cause != nil { *cause = "need type assertion" } return false, IncompatibleAssign } } // x is a bidirectional channel value, T is a channel // type, x's type V and T have identical element types, // and at least one of V or T is not a named type. if Vc, ok := Vu.(*Chan); ok && Vc.dir == SendRecv { if Tc, ok := Tu.(*Chan); ok && Identical(Vc.elem, Tc.elem) { return !hasName(V) || !hasName(T), InvalidChanAssign } } // optimization: if we don't have type parameters, we're done if Vp == nil && Tp == nil { return false, IncompatibleAssign } errorf := func(format string, args ...any) { if check != nil && cause != nil { msg := check.sprintf(format, args...) if *cause != "" { msg += "\n\t" + *cause } *cause = msg } } // x's type V is not a named type and T is a type parameter, and // x is assignable to each specific type in T's type set. if !hasName(V) && Tp != nil { ok := false code := IncompatibleAssign Tp.is(func(T *term) bool { if T == nil { return false // no specific types } ok, code = x.assignableTo(check, T.typ, cause) if !ok { errorf("cannot assign %s to %s (in %s)", x.typ, T.typ, Tp) return false } return true }) return ok, code } // x's type V is a type parameter and T is not a named type, // and values x' of each specific type in V's type set are // assignable to T. if Vp != nil && !hasName(T) { x := *x // don't clobber outer x ok := false code := IncompatibleAssign Vp.is(func(V *term) bool { if V == nil { return false // no specific types } x.typ = V.typ ok, code = x.assignableTo(check, T, cause) if !ok { errorf("cannot assign %s (in %s) to %s", V.typ, Vp, origT) return false } return true }) return ok, code } return false, IncompatibleAssign }