// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build unix || (js && wasm) || wasip1 package os import ( "errors" "runtime" "syscall" "time" ) const ( // Special values for Process.Pid. pidUnset = 0 pidReleased = -1 ) func (p *Process) wait() (ps *ProcessState, err error) { // Which type of Process do we have? switch p.mode { case modeHandle: // pidfd return p.pidfdWait() case modePID: // Regular PID return p.pidWait() default: panic("unreachable") } } func (p *Process) pidWait() (*ProcessState, error) { // TODO(go.dev/issue/67642): When there are concurrent Wait calls, one // may wait on the wrong process if the PID is reused after the // completes its wait. // // Checking for statusDone here would not be a complete fix, as the PID // could still be waited on and reused prior to blockUntilWaitable. switch p.pidStatus() { case statusReleased: return nil, syscall.EINVAL } // If we can block until Wait4 will succeed immediately, do so. ready, err := p.blockUntilWaitable() if err != nil { return nil, err } if ready { // Mark the process done now, before the call to Wait4, // so that Process.pidSignal will not send a signal. p.pidDeactivate(statusDone) // Acquire a write lock on sigMu to wait for any // active call to the signal method to complete. p.sigMu.Lock() p.sigMu.Unlock() } var ( status syscall.WaitStatus rusage syscall.Rusage pid1 int e error ) for { pid1, e = syscall.Wait4(p.Pid, &status, 0, &rusage) if e != syscall.EINTR { break } } if e != nil { return nil, NewSyscallError("wait", e) } p.pidDeactivate(statusDone) return &ProcessState{ pid: pid1, status: status, rusage: &rusage, }, nil } func (p *Process) signal(sig Signal) error { s, ok := sig.(syscall.Signal) if !ok { return errors.New("os: unsupported signal type") } // Which type of Process do we have? switch p.mode { case modeHandle: // pidfd return p.pidfdSendSignal(s) case modePID: // Regular PID return p.pidSignal(s) default: panic("unreachable") } } func (p *Process) pidSignal(s syscall.Signal) error { if p.Pid == pidReleased { return errors.New("os: process already released") } if p.Pid == pidUnset { return errors.New("os: process not initialized") } p.sigMu.RLock() defer p.sigMu.RUnlock() switch p.pidStatus() { case statusDone: return ErrProcessDone case statusReleased: return errors.New("os: process already released") } return convertESRCH(syscall.Kill(p.Pid, s)) } func convertESRCH(err error) error { if err == syscall.ESRCH { return ErrProcessDone } return err } func (p *Process) release() error { // We clear the Pid field only for API compatibility. On Unix, Release // has always set Pid to -1. Internally, the implementation relies // solely on statusReleased to determine that the Process is released. p.Pid = pidReleased switch p.mode { case modeHandle: // Drop the Process' reference and mark handle unusable for // future calls. // // Ignore the return value: we don't care if this was a no-op // racing with Wait, or a double Release. p.handlePersistentRelease(statusReleased) case modePID: // Just mark the PID unusable. p.pidDeactivate(statusReleased) } // no need for a finalizer anymore runtime.SetFinalizer(p, nil) return nil } func findProcess(pid int) (p *Process, err error) { h, err := pidfdFind(pid) if err == ErrProcessDone { // We can't return an error here since users are not expecting // it. Instead, return a process with a "done" state already // and let a subsequent Signal or Wait call catch that. return newDoneProcess(pid), nil } else if err != nil { // Ignore other errors from pidfdFind, as the callers // do not expect them. Fall back to using the PID. return newPIDProcess(pid), nil } // Use the handle. return newHandleProcess(pid, h), nil } func (p *ProcessState) userTime() time.Duration { return time.Duration(p.rusage.Utime.Nano()) * time.Nanosecond } func (p *ProcessState) systemTime() time.Duration { return time.Duration(p.rusage.Stime.Nano()) * time.Nanosecond }