Text file src/runtime/asm_amd64.s

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  #include "go_asm.h"
     6  #include "go_tls.h"
     7  #include "funcdata.h"
     8  #include "textflag.h"
     9  #include "cgo/abi_amd64.h"
    10  
    11  // _rt0_amd64 is common startup code for most amd64 systems when using
    12  // internal linking. This is the entry point for the program from the
    13  // kernel for an ordinary -buildmode=exe program. The stack holds the
    14  // number of arguments and the C-style argv.
    15  TEXT _rt0_amd64(SB),NOSPLIT,$-8
    16  	MOVQ	0(SP), DI	// argc
    17  	LEAQ	8(SP), SI	// argv
    18  	JMP	runtime·rt0_go(SB)
    19  
    20  // main is common startup code for most amd64 systems when using
    21  // external linking. The C startup code will call the symbol "main"
    22  // passing argc and argv in the usual C ABI registers DI and SI.
    23  TEXT main(SB),NOSPLIT,$-8
    24  	JMP	runtime·rt0_go(SB)
    25  
    26  // _rt0_amd64_lib is common startup code for most amd64 systems when
    27  // using -buildmode=c-archive or -buildmode=c-shared. The linker will
    28  // arrange to invoke this function as a global constructor (for
    29  // c-archive) or when the shared library is loaded (for c-shared).
    30  // We expect argc and argv to be passed in the usual C ABI registers
    31  // DI and SI.
    32  TEXT _rt0_amd64_lib(SB),NOSPLIT|NOFRAME,$0
    33  	// Transition from C ABI to Go ABI.
    34  	PUSH_REGS_HOST_TO_ABI0()
    35  
    36  	MOVQ	DI, _rt0_amd64_lib_argc<>(SB)
    37  	MOVQ	SI, _rt0_amd64_lib_argv<>(SB)
    38  
    39  	// Synchronous initialization.
    40  	CALL	runtime·libpreinit(SB)
    41  
    42  	// Create a new thread to finish Go runtime initialization.
    43  	MOVQ	_cgo_sys_thread_create(SB), AX
    44  	TESTQ	AX, AX
    45  	JZ	nocgo
    46  
    47  	// We're calling back to C.
    48  	// Align stack per ELF ABI requirements.
    49  	MOVQ	SP, BX  // Callee-save in C ABI
    50  	ANDQ	$~15, SP
    51  	MOVQ	$_rt0_amd64_lib_go(SB), DI
    52  	MOVQ	$0, SI
    53  	CALL	AX
    54  	MOVQ	BX, SP
    55  	JMP	restore
    56  
    57  nocgo:
    58  	ADJSP	$16
    59  	MOVQ	$0x800000, 0(SP)		// stacksize
    60  	MOVQ	$_rt0_amd64_lib_go(SB), AX
    61  	MOVQ	AX, 8(SP)			// fn
    62  	CALL	runtime·newosproc0(SB)
    63  	ADJSP	$-16
    64  
    65  restore:
    66  	POP_REGS_HOST_TO_ABI0()
    67  	RET
    68  
    69  // _rt0_amd64_lib_go initializes the Go runtime.
    70  // This is started in a separate thread by _rt0_amd64_lib.
    71  TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0
    72  	MOVQ	_rt0_amd64_lib_argc<>(SB), DI
    73  	MOVQ	_rt0_amd64_lib_argv<>(SB), SI
    74  	JMP	runtime·rt0_go(SB)
    75  
    76  DATA _rt0_amd64_lib_argc<>(SB)/8, $0
    77  GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8
    78  DATA _rt0_amd64_lib_argv<>(SB)/8, $0
    79  GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8
    80  
    81  #ifdef GOAMD64_v2
    82  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v2 microarchitecture support.\n"
    83  #endif
    84  
    85  #ifdef GOAMD64_v3
    86  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v3 microarchitecture support.\n"
    87  #endif
    88  
    89  #ifdef GOAMD64_v4
    90  DATA bad_cpu_msg<>+0x00(SB)/84, $"This program can only be run on AMD64 processors with v4 microarchitecture support.\n"
    91  #endif
    92  
    93  GLOBL bad_cpu_msg<>(SB), RODATA, $84
    94  
    95  // Define a list of AMD64 microarchitecture level features
    96  // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
    97  
    98                       // SSE3     SSSE3    CMPXCHNG16 SSE4.1    SSE4.2    POPCNT
    99  #define V2_FEATURES_CX (1 << 0 | 1 << 9 | 1 << 13  | 1 << 19 | 1 << 20 | 1 << 23)
   100                           // LAHF/SAHF
   101  #define V2_EXT_FEATURES_CX (1 << 0)
   102                                        // FMA       MOVBE     OSXSAVE   AVX       F16C
   103  #define V3_FEATURES_CX (V2_FEATURES_CX | 1 << 12 | 1 << 22 | 1 << 27 | 1 << 28 | 1 << 29)
   104                                                // ABM (FOR LZNCT)
   105  #define V3_EXT_FEATURES_CX (V2_EXT_FEATURES_CX | 1 << 5)
   106                           // BMI1     AVX2     BMI2
   107  #define V3_EXT_FEATURES_BX (1 << 3 | 1 << 5 | 1 << 8)
   108                         // XMM      YMM
   109  #define V3_OS_SUPPORT_AX (1 << 1 | 1 << 2)
   110  
   111  #define V4_FEATURES_CX V3_FEATURES_CX
   112  
   113  #define V4_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   114                                                // AVX512F   AVX512DQ  AVX512CD  AVX512BW  AVX512VL
   115  #define V4_EXT_FEATURES_BX (V3_EXT_FEATURES_BX | 1 << 16 | 1 << 17 | 1 << 28 | 1 << 30 | 1 << 31)
   116                                            // OPMASK   ZMM
   117  #define V4_OS_SUPPORT_AX (V3_OS_SUPPORT_AX | 1 << 5 | (1 << 6 | 1 << 7))
   118  
   119  #ifdef GOAMD64_v2
   120  #define NEED_MAX_CPUID 0x80000001
   121  #define NEED_FEATURES_CX V2_FEATURES_CX
   122  #define NEED_EXT_FEATURES_CX V2_EXT_FEATURES_CX
   123  #endif
   124  
   125  #ifdef GOAMD64_v3
   126  #define NEED_MAX_CPUID 0x80000001
   127  #define NEED_FEATURES_CX V3_FEATURES_CX
   128  #define NEED_EXT_FEATURES_CX V3_EXT_FEATURES_CX
   129  #define NEED_EXT_FEATURES_BX V3_EXT_FEATURES_BX
   130  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   131  #endif
   132  
   133  #ifdef GOAMD64_v4
   134  #define NEED_MAX_CPUID 0x80000001
   135  #define NEED_FEATURES_CX V4_FEATURES_CX
   136  #define NEED_EXT_FEATURES_CX V4_EXT_FEATURES_CX
   137  #define NEED_EXT_FEATURES_BX V4_EXT_FEATURES_BX
   138  
   139  // Darwin requires a different approach to check AVX512 support, see CL 285572.
   140  #ifdef GOOS_darwin
   141  #define NEED_OS_SUPPORT_AX V3_OS_SUPPORT_AX
   142  // These values are from:
   143  // https://github.com/apple/darwin-xnu/blob/xnu-4570.1.46/osfmk/i386/cpu_capabilities.h
   144  #define commpage64_base_address         0x00007fffffe00000
   145  #define commpage64_cpu_capabilities64   (commpage64_base_address+0x010)
   146  #define commpage64_version              (commpage64_base_address+0x01E)
   147  #define AVX512F                         0x0000004000000000
   148  #define AVX512CD                        0x0000008000000000
   149  #define AVX512DQ                        0x0000010000000000
   150  #define AVX512BW                        0x0000020000000000
   151  #define AVX512VL                        0x0000100000000000
   152  #define NEED_DARWIN_SUPPORT             (AVX512F | AVX512DQ | AVX512CD | AVX512BW | AVX512VL)
   153  #else
   154  #define NEED_OS_SUPPORT_AX V4_OS_SUPPORT_AX
   155  #endif
   156  
   157  #endif
   158  
   159  TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME|TOPFRAME,$0
   160  	// copy arguments forward on an even stack
   161  	MOVQ	DI, AX		// argc
   162  	MOVQ	SI, BX		// argv
   163  	SUBQ	$(5*8), SP		// 3args 2auto
   164  	ANDQ	$~15, SP
   165  	MOVQ	AX, 24(SP)
   166  	MOVQ	BX, 32(SP)
   167  
   168  	// create istack out of the given (operating system) stack.
   169  	// _cgo_init may update stackguard.
   170  	MOVQ	$runtime·g0(SB), DI
   171  	LEAQ	(-64*1024)(SP), BX
   172  	MOVQ	BX, g_stackguard0(DI)
   173  	MOVQ	BX, g_stackguard1(DI)
   174  	MOVQ	BX, (g_stack+stack_lo)(DI)
   175  	MOVQ	SP, (g_stack+stack_hi)(DI)
   176  
   177  	// find out information about the processor we're on
   178  	MOVL	$0, AX
   179  	CPUID
   180  	CMPL	AX, $0
   181  	JE	nocpuinfo
   182  
   183  	CMPL	BX, $0x756E6547  // "Genu"
   184  	JNE	notintel
   185  	CMPL	DX, $0x49656E69  // "ineI"
   186  	JNE	notintel
   187  	CMPL	CX, $0x6C65746E  // "ntel"
   188  	JNE	notintel
   189  	MOVB	$1, runtime·isIntel(SB)
   190  
   191  notintel:
   192  	// Load EAX=1 cpuid flags
   193  	MOVL	$1, AX
   194  	CPUID
   195  	MOVL	AX, runtime·processorVersionInfo(SB)
   196  
   197  nocpuinfo:
   198  	// if there is an _cgo_init, call it.
   199  	MOVQ	_cgo_init(SB), AX
   200  	TESTQ	AX, AX
   201  	JZ	needtls
   202  	// arg 1: g0, already in DI
   203  	MOVQ	$setg_gcc<>(SB), SI // arg 2: setg_gcc
   204  	MOVQ	$0, DX	// arg 3, 4: not used when using platform's TLS
   205  	MOVQ	$0, CX
   206  #ifdef GOOS_android
   207  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   208  	// arg 4: TLS base, stored in slot 0 (Android's TLS_SLOT_SELF).
   209  	// Compensate for tls_g (+16).
   210  	MOVQ	-16(TLS), CX
   211  #endif
   212  #ifdef GOOS_windows
   213  	MOVQ	$runtime·tls_g(SB), DX 	// arg 3: &tls_g
   214  	// Adjust for the Win64 calling convention.
   215  	MOVQ	CX, R9 // arg 4
   216  	MOVQ	DX, R8 // arg 3
   217  	MOVQ	SI, DX // arg 2
   218  	MOVQ	DI, CX // arg 1
   219  #endif
   220  	CALL	AX
   221  
   222  	// update stackguard after _cgo_init
   223  	MOVQ	$runtime·g0(SB), CX
   224  	MOVQ	(g_stack+stack_lo)(CX), AX
   225  	ADDQ	$const_stackGuard, AX
   226  	MOVQ	AX, g_stackguard0(CX)
   227  	MOVQ	AX, g_stackguard1(CX)
   228  
   229  #ifndef GOOS_windows
   230  	JMP ok
   231  #endif
   232  needtls:
   233  #ifdef GOOS_plan9
   234  	// skip TLS setup on Plan 9
   235  	JMP ok
   236  #endif
   237  #ifdef GOOS_solaris
   238  	// skip TLS setup on Solaris
   239  	JMP ok
   240  #endif
   241  #ifdef GOOS_illumos
   242  	// skip TLS setup on illumos
   243  	JMP ok
   244  #endif
   245  #ifdef GOOS_darwin
   246  	// skip TLS setup on Darwin
   247  	JMP ok
   248  #endif
   249  #ifdef GOOS_openbsd
   250  	// skip TLS setup on OpenBSD
   251  	JMP ok
   252  #endif
   253  
   254  #ifdef GOOS_windows
   255  	CALL	runtime·wintls(SB)
   256  #endif
   257  
   258  	LEAQ	runtime·m0+m_tls(SB), DI
   259  	CALL	runtime·settls(SB)
   260  
   261  	// store through it, to make sure it works
   262  	get_tls(BX)
   263  	MOVQ	$0x123, g(BX)
   264  	MOVQ	runtime·m0+m_tls(SB), AX
   265  	CMPQ	AX, $0x123
   266  	JEQ 2(PC)
   267  	CALL	runtime·abort(SB)
   268  ok:
   269  	// set the per-goroutine and per-mach "registers"
   270  	get_tls(BX)
   271  	LEAQ	runtime·g0(SB), CX
   272  	MOVQ	CX, g(BX)
   273  	LEAQ	runtime·m0(SB), AX
   274  
   275  	// save m->g0 = g0
   276  	MOVQ	CX, m_g0(AX)
   277  	// save m0 to g0->m
   278  	MOVQ	AX, g_m(CX)
   279  
   280  	CLD				// convention is D is always left cleared
   281  
   282  	// Check GOAMD64 requirements
   283  	// We need to do this after setting up TLS, so that
   284  	// we can report an error if there is a failure. See issue 49586.
   285  #ifdef NEED_FEATURES_CX
   286  	MOVL	$0, AX
   287  	CPUID
   288  	CMPL	AX, $0
   289  	JE	bad_cpu
   290  	MOVL	$1, AX
   291  	CPUID
   292  	ANDL	$NEED_FEATURES_CX, CX
   293  	CMPL	CX, $NEED_FEATURES_CX
   294  	JNE	bad_cpu
   295  #endif
   296  
   297  #ifdef NEED_MAX_CPUID
   298  	MOVL	$0x80000000, AX
   299  	CPUID
   300  	CMPL	AX, $NEED_MAX_CPUID
   301  	JL	bad_cpu
   302  #endif
   303  
   304  #ifdef NEED_EXT_FEATURES_BX
   305  	MOVL	$7, AX
   306  	MOVL	$0, CX
   307  	CPUID
   308  	ANDL	$NEED_EXT_FEATURES_BX, BX
   309  	CMPL	BX, $NEED_EXT_FEATURES_BX
   310  	JNE	bad_cpu
   311  #endif
   312  
   313  #ifdef NEED_EXT_FEATURES_CX
   314  	MOVL	$0x80000001, AX
   315  	CPUID
   316  	ANDL	$NEED_EXT_FEATURES_CX, CX
   317  	CMPL	CX, $NEED_EXT_FEATURES_CX
   318  	JNE	bad_cpu
   319  #endif
   320  
   321  #ifdef NEED_OS_SUPPORT_AX
   322  	XORL    CX, CX
   323  	XGETBV
   324  	ANDL	$NEED_OS_SUPPORT_AX, AX
   325  	CMPL	AX, $NEED_OS_SUPPORT_AX
   326  	JNE	bad_cpu
   327  #endif
   328  
   329  #ifdef NEED_DARWIN_SUPPORT
   330  	MOVQ	$commpage64_version, BX
   331  	CMPW	(BX), $13  // cpu_capabilities64 undefined in versions < 13
   332  	JL	bad_cpu
   333  	MOVQ	$commpage64_cpu_capabilities64, BX
   334  	MOVQ	(BX), BX
   335  	MOVQ	$NEED_DARWIN_SUPPORT, CX
   336  	ANDQ	CX, BX
   337  	CMPQ	BX, CX
   338  	JNE	bad_cpu
   339  #endif
   340  
   341  	CALL	runtime·check(SB)
   342  
   343  	MOVL	24(SP), AX		// copy argc
   344  	MOVL	AX, 0(SP)
   345  	MOVQ	32(SP), AX		// copy argv
   346  	MOVQ	AX, 8(SP)
   347  	CALL	runtime·args(SB)
   348  	CALL	runtime·osinit(SB)
   349  	CALL	runtime·schedinit(SB)
   350  
   351  	// create a new goroutine to start program
   352  	MOVQ	$runtime·mainPC(SB), AX		// entry
   353  	PUSHQ	AX
   354  	CALL	runtime·newproc(SB)
   355  	POPQ	AX
   356  
   357  	// start this M
   358  	CALL	runtime·mstart(SB)
   359  
   360  	CALL	runtime·abort(SB)	// mstart should never return
   361  	RET
   362  
   363  bad_cpu: // show that the program requires a certain microarchitecture level.
   364  	MOVQ	$2, 0(SP)
   365  	MOVQ	$bad_cpu_msg<>(SB), AX
   366  	MOVQ	AX, 8(SP)
   367  	MOVQ	$84, 16(SP)
   368  	CALL	runtime·write(SB)
   369  	MOVQ	$1, 0(SP)
   370  	CALL	runtime·exit(SB)
   371  	CALL	runtime·abort(SB)
   372  	RET
   373  
   374  	// Prevent dead-code elimination of debugCallV2 and debugPinnerV1, which are
   375  	// intended to be called by debuggers.
   376  	MOVQ	$runtime·debugPinnerV1<ABIInternal>(SB), AX
   377  	MOVQ	$runtime·debugCallV2<ABIInternal>(SB), AX
   378  	RET
   379  
   380  // mainPC is a function value for runtime.main, to be passed to newproc.
   381  // The reference to runtime.main is made via ABIInternal, since the
   382  // actual function (not the ABI0 wrapper) is needed by newproc.
   383  DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
   384  GLOBL	runtime·mainPC(SB),RODATA,$8
   385  
   386  TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
   387  	BYTE	$0xcc
   388  	RET
   389  
   390  TEXT runtime·asminit(SB),NOSPLIT,$0-0
   391  	// No per-thread init.
   392  	RET
   393  
   394  TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME|NOFRAME,$0
   395  	CALL	runtime·mstart0(SB)
   396  	RET // not reached
   397  
   398  /*
   399   *  go-routine
   400   */
   401  
   402  // func gogo(buf *gobuf)
   403  // restore state from Gobuf; longjmp
   404  TEXT runtime·gogo(SB), NOSPLIT, $0-8
   405  	MOVQ	buf+0(FP), BX		// gobuf
   406  	MOVQ	gobuf_g(BX), DX
   407  	MOVQ	0(DX), CX		// make sure g != nil
   408  	JMP	gogo<>(SB)
   409  
   410  TEXT gogo<>(SB), NOSPLIT, $0
   411  	get_tls(CX)
   412  	MOVQ	DX, g(CX)
   413  	MOVQ	DX, R14		// set the g register
   414  	MOVQ	gobuf_sp(BX), SP	// restore SP
   415  	MOVQ	gobuf_ret(BX), AX
   416  	MOVQ	gobuf_ctxt(BX), DX
   417  	MOVQ	gobuf_bp(BX), BP
   418  	MOVQ	$0, gobuf_sp(BX)	// clear to help garbage collector
   419  	MOVQ	$0, gobuf_ret(BX)
   420  	MOVQ	$0, gobuf_ctxt(BX)
   421  	MOVQ	$0, gobuf_bp(BX)
   422  	MOVQ	gobuf_pc(BX), BX
   423  	JMP	BX
   424  
   425  // func mcall(fn func(*g))
   426  // Switch to m->g0's stack, call fn(g).
   427  // Fn must never return. It should gogo(&g->sched)
   428  // to keep running g.
   429  TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT, $0-8
   430  	MOVQ	AX, DX	// DX = fn
   431  
   432  	// Save state in g->sched. The caller's SP and PC are restored by gogo to
   433  	// resume execution in the caller's frame (implicit return). The caller's BP
   434  	// is also restored to support frame pointer unwinding.
   435  	MOVQ	SP, BX	// hide (SP) reads from vet
   436  	MOVQ	8(BX), BX	// caller's PC
   437  	MOVQ	BX, (g_sched+gobuf_pc)(R14)
   438  	LEAQ	fn+0(FP), BX	// caller's SP
   439  	MOVQ	BX, (g_sched+gobuf_sp)(R14)
   440  	// Get the caller's frame pointer by dereferencing BP. Storing BP as it is
   441  	// can cause a frame pointer cycle, see CL 476235.
   442  	MOVQ	(BP), BX // caller's BP
   443  	MOVQ	BX, (g_sched+gobuf_bp)(R14)
   444  
   445  	// switch to m->g0 & its stack, call fn
   446  	MOVQ	g_m(R14), BX
   447  	MOVQ	m_g0(BX), SI	// SI = g.m.g0
   448  	CMPQ	SI, R14	// if g == m->g0 call badmcall
   449  	JNE	goodm
   450  	JMP	runtime·badmcall(SB)
   451  goodm:
   452  	MOVQ	R14, AX		// AX (and arg 0) = g
   453  	MOVQ	SI, R14		// g = g.m.g0
   454  	get_tls(CX)		// Set G in TLS
   455  	MOVQ	R14, g(CX)
   456  	MOVQ	(g_sched+gobuf_sp)(R14), SP	// sp = g0.sched.sp
   457  	PUSHQ	AX	// open up space for fn's arg spill slot
   458  	MOVQ	0(DX), R12
   459  	CALL	R12		// fn(g)
   460  	// The Windows native stack unwinder incorrectly classifies the next instruction
   461  	// as part of the function epilogue, producing a wrong call stack.
   462  	// Add a NOP to work around this issue. See go.dev/issue/67007.
   463  	BYTE	$0x90
   464  	POPQ	AX
   465  	JMP	runtime·badmcall2(SB)
   466  	RET
   467  
   468  // systemstack_switch is a dummy routine that systemstack leaves at the bottom
   469  // of the G stack. We need to distinguish the routine that
   470  // lives at the bottom of the G stack from the one that lives
   471  // at the top of the system stack because the one at the top of
   472  // the system stack terminates the stack walk (see topofstack()).
   473  // The frame layout needs to match systemstack
   474  // so that it can pretend to be systemstack_switch.
   475  TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
   476  	UNDEF
   477  	// Make sure this function is not leaf,
   478  	// so the frame is saved.
   479  	CALL	runtime·abort(SB)
   480  	RET
   481  
   482  // func systemstack(fn func())
   483  TEXT runtime·systemstack(SB), NOSPLIT, $0-8
   484  	MOVQ	fn+0(FP), DI	// DI = fn
   485  	get_tls(CX)
   486  	MOVQ	g(CX), AX	// AX = g
   487  	MOVQ	g_m(AX), BX	// BX = m
   488  
   489  	CMPQ	AX, m_gsignal(BX)
   490  	JEQ	noswitch
   491  
   492  	MOVQ	m_g0(BX), DX	// DX = g0
   493  	CMPQ	AX, DX
   494  	JEQ	noswitch
   495  
   496  	CMPQ	AX, m_curg(BX)
   497  	JNE	bad
   498  
   499  	// Switch stacks.
   500  	// The original frame pointer is stored in BP,
   501  	// which is useful for stack unwinding.
   502  	// Save our state in g->sched. Pretend to
   503  	// be systemstack_switch if the G stack is scanned.
   504  	CALL	gosave_systemstack_switch<>(SB)
   505  
   506  	// switch to g0
   507  	MOVQ	DX, g(CX)
   508  	MOVQ	DX, R14 // set the g register
   509  	MOVQ	(g_sched+gobuf_sp)(DX), SP
   510  
   511  	// call target function
   512  	MOVQ	DI, DX
   513  	MOVQ	0(DI), DI
   514  	CALL	DI
   515  
   516  	// switch back to g
   517  	get_tls(CX)
   518  	MOVQ	g(CX), AX
   519  	MOVQ	g_m(AX), BX
   520  	MOVQ	m_curg(BX), AX
   521  	MOVQ	AX, g(CX)
   522  	MOVQ	(g_sched+gobuf_sp)(AX), SP
   523  	MOVQ	(g_sched+gobuf_bp)(AX), BP
   524  	MOVQ	$0, (g_sched+gobuf_sp)(AX)
   525  	MOVQ	$0, (g_sched+gobuf_bp)(AX)
   526  	RET
   527  
   528  noswitch:
   529  	// already on m stack; tail call the function
   530  	// Using a tail call here cleans up tracebacks since we won't stop
   531  	// at an intermediate systemstack.
   532  	MOVQ	DI, DX
   533  	MOVQ	0(DI), DI
   534  	// The function epilogue is not called on a tail call.
   535  	// Pop BP from the stack to simulate it.
   536  	POPQ	BP
   537  	JMP	DI
   538  
   539  bad:
   540  	// Bad: g is not gsignal, not g0, not curg. What is it?
   541  	MOVQ	$runtime·badsystemstack(SB), AX
   542  	CALL	AX
   543  	INT	$3
   544  
   545  // func switchToCrashStack0(fn func())
   546  TEXT runtime·switchToCrashStack0<ABIInternal>(SB), NOSPLIT, $0-8
   547  	MOVQ	g_m(R14), BX // curm
   548  
   549  	// set g to gcrash
   550  	LEAQ	runtime·gcrash(SB), R14 // g = &gcrash
   551  	MOVQ	BX, g_m(R14)            // g.m = curm
   552  	MOVQ	R14, m_g0(BX)           // curm.g0 = g
   553  	get_tls(CX)
   554  	MOVQ	R14, g(CX)
   555  
   556  	// switch to crashstack
   557  	MOVQ	(g_stack+stack_hi)(R14), BX
   558  	SUBQ	$(4*8), BX
   559  	MOVQ	BX, SP
   560  
   561  	// call target function
   562  	MOVQ	AX, DX
   563  	MOVQ	0(AX), AX
   564  	CALL	AX
   565  
   566  	// should never return
   567  	CALL	runtime·abort(SB)
   568  	UNDEF
   569  
   570  /*
   571   * support for morestack
   572   */
   573  
   574  // Called during function prolog when more stack is needed.
   575  //
   576  // The traceback routines see morestack on a g0 as being
   577  // the top of a stack (for example, morestack calling newstack
   578  // calling the scheduler calling newm calling gc), so we must
   579  // record an argument size. For that purpose, it has no arguments.
   580  TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
   581  	// Cannot grow scheduler stack (m->g0).
   582  	get_tls(CX)
   583  	MOVQ	g(CX), DI     // DI = g
   584  	MOVQ	g_m(DI), BX   // BX = m
   585  
   586  	// Set g->sched to context in f.
   587  	MOVQ	0(SP), AX // f's PC
   588  	MOVQ	AX, (g_sched+gobuf_pc)(DI)
   589  	LEAQ	8(SP), AX // f's SP
   590  	MOVQ	AX, (g_sched+gobuf_sp)(DI)
   591  	MOVQ	BP, (g_sched+gobuf_bp)(DI)
   592  	MOVQ	DX, (g_sched+gobuf_ctxt)(DI)
   593  
   594  	MOVQ	m_g0(BX), SI  // SI = m.g0
   595  	CMPQ	DI, SI
   596  	JNE	3(PC)
   597  	CALL	runtime·badmorestackg0(SB)
   598  	CALL	runtime·abort(SB)
   599  
   600  	// Cannot grow signal stack (m->gsignal).
   601  	MOVQ	m_gsignal(BX), SI
   602  	CMPQ	DI, SI
   603  	JNE	3(PC)
   604  	CALL	runtime·badmorestackgsignal(SB)
   605  	CALL	runtime·abort(SB)
   606  
   607  	// Called from f.
   608  	// Set m->morebuf to f's caller.
   609  	NOP	SP	// tell vet SP changed - stop checking offsets
   610  	MOVQ	8(SP), AX	// f's caller's PC
   611  	MOVQ	AX, (m_morebuf+gobuf_pc)(BX)
   612  	LEAQ	16(SP), AX	// f's caller's SP
   613  	MOVQ	AX, (m_morebuf+gobuf_sp)(BX)
   614  	MOVQ	DI, (m_morebuf+gobuf_g)(BX)
   615  
   616  	// Call newstack on m->g0's stack.
   617  	MOVQ	m_g0(BX), BX
   618  	MOVQ	BX, g(CX)
   619  	MOVQ	(g_sched+gobuf_sp)(BX), SP
   620  	MOVQ	(g_sched+gobuf_bp)(BX), BP
   621  	CALL	runtime·newstack(SB)
   622  	CALL	runtime·abort(SB)	// crash if newstack returns
   623  	RET
   624  
   625  // morestack but not preserving ctxt.
   626  TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0
   627  	MOVL	$0, DX
   628  	JMP	runtime·morestack(SB)
   629  
   630  // spillArgs stores return values from registers to a *internal/abi.RegArgs in R12.
   631  TEXT ·spillArgs(SB),NOSPLIT,$0-0
   632  	MOVQ AX, 0(R12)
   633  	MOVQ BX, 8(R12)
   634  	MOVQ CX, 16(R12)
   635  	MOVQ DI, 24(R12)
   636  	MOVQ SI, 32(R12)
   637  	MOVQ R8, 40(R12)
   638  	MOVQ R9, 48(R12)
   639  	MOVQ R10, 56(R12)
   640  	MOVQ R11, 64(R12)
   641  	MOVQ X0, 72(R12)
   642  	MOVQ X1, 80(R12)
   643  	MOVQ X2, 88(R12)
   644  	MOVQ X3, 96(R12)
   645  	MOVQ X4, 104(R12)
   646  	MOVQ X5, 112(R12)
   647  	MOVQ X6, 120(R12)
   648  	MOVQ X7, 128(R12)
   649  	MOVQ X8, 136(R12)
   650  	MOVQ X9, 144(R12)
   651  	MOVQ X10, 152(R12)
   652  	MOVQ X11, 160(R12)
   653  	MOVQ X12, 168(R12)
   654  	MOVQ X13, 176(R12)
   655  	MOVQ X14, 184(R12)
   656  	RET
   657  
   658  // unspillArgs loads args into registers from a *internal/abi.RegArgs in R12.
   659  TEXT ·unspillArgs(SB),NOSPLIT,$0-0
   660  	MOVQ 0(R12), AX
   661  	MOVQ 8(R12), BX
   662  	MOVQ 16(R12), CX
   663  	MOVQ 24(R12), DI
   664  	MOVQ 32(R12), SI
   665  	MOVQ 40(R12), R8
   666  	MOVQ 48(R12), R9
   667  	MOVQ 56(R12), R10
   668  	MOVQ 64(R12), R11
   669  	MOVQ 72(R12), X0
   670  	MOVQ 80(R12), X1
   671  	MOVQ 88(R12), X2
   672  	MOVQ 96(R12), X3
   673  	MOVQ 104(R12), X4
   674  	MOVQ 112(R12), X5
   675  	MOVQ 120(R12), X6
   676  	MOVQ 128(R12), X7
   677  	MOVQ 136(R12), X8
   678  	MOVQ 144(R12), X9
   679  	MOVQ 152(R12), X10
   680  	MOVQ 160(R12), X11
   681  	MOVQ 168(R12), X12
   682  	MOVQ 176(R12), X13
   683  	MOVQ 184(R12), X14
   684  	RET
   685  
   686  // reflectcall: call a function with the given argument list
   687  // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
   688  // we don't have variable-sized frames, so we use a small number
   689  // of constant-sized-frame functions to encode a few bits of size in the pc.
   690  // Caution: ugly multiline assembly macros in your future!
   691  
   692  #define DISPATCH(NAME,MAXSIZE)		\
   693  	CMPQ	CX, $MAXSIZE;		\
   694  	JA	3(PC);			\
   695  	MOVQ	$NAME(SB), AX;		\
   696  	JMP	AX
   697  // Note: can't just "JMP NAME(SB)" - bad inlining results.
   698  
   699  TEXT ·reflectcall(SB), NOSPLIT, $0-48
   700  	MOVLQZX frameSize+32(FP), CX
   701  	DISPATCH(runtime·call16, 16)
   702  	DISPATCH(runtime·call32, 32)
   703  	DISPATCH(runtime·call64, 64)
   704  	DISPATCH(runtime·call128, 128)
   705  	DISPATCH(runtime·call256, 256)
   706  	DISPATCH(runtime·call512, 512)
   707  	DISPATCH(runtime·call1024, 1024)
   708  	DISPATCH(runtime·call2048, 2048)
   709  	DISPATCH(runtime·call4096, 4096)
   710  	DISPATCH(runtime·call8192, 8192)
   711  	DISPATCH(runtime·call16384, 16384)
   712  	DISPATCH(runtime·call32768, 32768)
   713  	DISPATCH(runtime·call65536, 65536)
   714  	DISPATCH(runtime·call131072, 131072)
   715  	DISPATCH(runtime·call262144, 262144)
   716  	DISPATCH(runtime·call524288, 524288)
   717  	DISPATCH(runtime·call1048576, 1048576)
   718  	DISPATCH(runtime·call2097152, 2097152)
   719  	DISPATCH(runtime·call4194304, 4194304)
   720  	DISPATCH(runtime·call8388608, 8388608)
   721  	DISPATCH(runtime·call16777216, 16777216)
   722  	DISPATCH(runtime·call33554432, 33554432)
   723  	DISPATCH(runtime·call67108864, 67108864)
   724  	DISPATCH(runtime·call134217728, 134217728)
   725  	DISPATCH(runtime·call268435456, 268435456)
   726  	DISPATCH(runtime·call536870912, 536870912)
   727  	DISPATCH(runtime·call1073741824, 1073741824)
   728  	MOVQ	$runtime·badreflectcall(SB), AX
   729  	JMP	AX
   730  
   731  #define CALLFN(NAME,MAXSIZE)			\
   732  TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
   733  	NO_LOCAL_POINTERS;			\
   734  	/* copy arguments to stack */		\
   735  	MOVQ	stackArgs+16(FP), SI;		\
   736  	MOVLQZX stackArgsSize+24(FP), CX;		\
   737  	MOVQ	SP, DI;				\
   738  	REP;MOVSB;				\
   739  	/* set up argument registers */		\
   740  	MOVQ    regArgs+40(FP), R12;		\
   741  	CALL    ·unspillArgs(SB);		\
   742  	/* call function */			\
   743  	MOVQ	f+8(FP), DX;			\
   744  	PCDATA  $PCDATA_StackMapIndex, $0;	\
   745  	MOVQ	(DX), R12;			\
   746  	CALL	R12;				\
   747  	/* copy register return values back */		\
   748  	MOVQ    regArgs+40(FP), R12;		\
   749  	CALL    ·spillArgs(SB);		\
   750  	MOVLQZX	stackArgsSize+24(FP), CX;		\
   751  	MOVLQZX	stackRetOffset+28(FP), BX;		\
   752  	MOVQ	stackArgs+16(FP), DI;		\
   753  	MOVQ	stackArgsType+0(FP), DX;		\
   754  	MOVQ	SP, SI;				\
   755  	ADDQ	BX, DI;				\
   756  	ADDQ	BX, SI;				\
   757  	SUBQ	BX, CX;				\
   758  	CALL	callRet<>(SB);			\
   759  	RET
   760  
   761  // callRet copies return values back at the end of call*. This is a
   762  // separate function so it can allocate stack space for the arguments
   763  // to reflectcallmove. It does not follow the Go ABI; it expects its
   764  // arguments in registers.
   765  TEXT callRet<>(SB), NOSPLIT, $40-0
   766  	NO_LOCAL_POINTERS
   767  	MOVQ	DX, 0(SP)
   768  	MOVQ	DI, 8(SP)
   769  	MOVQ	SI, 16(SP)
   770  	MOVQ	CX, 24(SP)
   771  	MOVQ	R12, 32(SP)
   772  	CALL	runtime·reflectcallmove(SB)
   773  	RET
   774  
   775  CALLFN(·call16, 16)
   776  CALLFN(·call32, 32)
   777  CALLFN(·call64, 64)
   778  CALLFN(·call128, 128)
   779  CALLFN(·call256, 256)
   780  CALLFN(·call512, 512)
   781  CALLFN(·call1024, 1024)
   782  CALLFN(·call2048, 2048)
   783  CALLFN(·call4096, 4096)
   784  CALLFN(·call8192, 8192)
   785  CALLFN(·call16384, 16384)
   786  CALLFN(·call32768, 32768)
   787  CALLFN(·call65536, 65536)
   788  CALLFN(·call131072, 131072)
   789  CALLFN(·call262144, 262144)
   790  CALLFN(·call524288, 524288)
   791  CALLFN(·call1048576, 1048576)
   792  CALLFN(·call2097152, 2097152)
   793  CALLFN(·call4194304, 4194304)
   794  CALLFN(·call8388608, 8388608)
   795  CALLFN(·call16777216, 16777216)
   796  CALLFN(·call33554432, 33554432)
   797  CALLFN(·call67108864, 67108864)
   798  CALLFN(·call134217728, 134217728)
   799  CALLFN(·call268435456, 268435456)
   800  CALLFN(·call536870912, 536870912)
   801  CALLFN(·call1073741824, 1073741824)
   802  
   803  TEXT runtime·procyield(SB),NOSPLIT,$0-0
   804  	MOVL	cycles+0(FP), AX
   805  again:
   806  	PAUSE
   807  	SUBL	$1, AX
   808  	JNZ	again
   809  	RET
   810  
   811  
   812  TEXT ·publicationBarrier<ABIInternal>(SB),NOSPLIT,$0-0
   813  	// Stores are already ordered on x86, so this is just a
   814  	// compile barrier.
   815  	RET
   816  
   817  // Save state of caller into g->sched,
   818  // but using fake PC from systemstack_switch.
   819  // Must only be called from functions with frame pointer
   820  // and without locals ($0) or else unwinding from
   821  // systemstack_switch is incorrect.
   822  // Smashes R9.
   823  TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
   824  	// Take systemstack_switch PC and add 8 bytes to skip
   825  	// the prologue. The final location does not matter
   826  	// as long as we are between the prologue and the epilogue.
   827  	MOVQ	$runtime·systemstack_switch+8(SB), R9
   828  	MOVQ	R9, (g_sched+gobuf_pc)(R14)
   829  	LEAQ	8(SP), R9
   830  	MOVQ	R9, (g_sched+gobuf_sp)(R14)
   831  	MOVQ	$0, (g_sched+gobuf_ret)(R14)
   832  	MOVQ	BP, (g_sched+gobuf_bp)(R14)
   833  	// Assert ctxt is zero. See func save.
   834  	MOVQ	(g_sched+gobuf_ctxt)(R14), R9
   835  	TESTQ	R9, R9
   836  	JZ	2(PC)
   837  	CALL	runtime·abort(SB)
   838  	RET
   839  
   840  // func asmcgocall_no_g(fn, arg unsafe.Pointer)
   841  // Call fn(arg) aligned appropriately for the gcc ABI.
   842  // Called on a system stack, and there may be no g yet (during needm).
   843  TEXT ·asmcgocall_no_g(SB),NOSPLIT,$32-16
   844  	MOVQ	fn+0(FP), AX
   845  	MOVQ	arg+8(FP), BX
   846  	MOVQ	SP, DX
   847  	ANDQ	$~15, SP	// alignment
   848  	MOVQ	DX, 8(SP)
   849  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   850  	MOVQ	BX, CX		// CX = first argument in Win64
   851  	CALL	AX
   852  	MOVQ	8(SP), DX
   853  	MOVQ	DX, SP
   854  	RET
   855  
   856  // asmcgocall_landingpad calls AX with BX as argument.
   857  // Must be called on the system stack.
   858  TEXT ·asmcgocall_landingpad(SB),NOSPLIT,$0-0
   859  #ifdef GOOS_windows
   860  	// Make sure we have enough room for 4 stack-backed fast-call
   861  	// registers as per Windows amd64 calling convention.
   862  	ADJSP	$32
   863  	// On Windows, asmcgocall_landingpad acts as landing pad for exceptions
   864  	// thrown in the cgo call. Exceptions that reach this function will be
   865  	// handled by runtime.sehtramp thanks to the SEH metadata added
   866  	// by the compiler.
   867  	// Note that runtime.sehtramp can't be attached directly to asmcgocall
   868  	// because its initial stack pointer can be outside the system stack bounds,
   869  	// and Windows stops the stack unwinding without calling the exception handler
   870  	// when it reaches that point.
   871  	MOVQ	BX, CX		// CX = first argument in Win64
   872  	CALL	AX
   873  	// The exception handler is not called if the next instruction is part of
   874  	// the epilogue, which includes the RET instruction, so we need to add a NOP here.
   875  	BYTE	$0x90
   876  	ADJSP	$-32
   877  	RET
   878  #endif
   879  	// Tail call AX on non-Windows, as the extra stack frame is not needed.
   880  	MOVQ	BX, DI		// DI = first argument in AMD64 ABI
   881  	JMP	AX
   882  
   883  // func asmcgocall(fn, arg unsafe.Pointer) int32
   884  // Call fn(arg) on the scheduler stack,
   885  // aligned appropriately for the gcc ABI.
   886  // See cgocall.go for more details.
   887  TEXT ·asmcgocall(SB),NOSPLIT,$0-20
   888  	MOVQ	fn+0(FP), AX
   889  	MOVQ	arg+8(FP), BX
   890  
   891  	MOVQ	SP, DX
   892  
   893  	// Figure out if we need to switch to m->g0 stack.
   894  	// We get called to create new OS threads too, and those
   895  	// come in on the m->g0 stack already. Or we might already
   896  	// be on the m->gsignal stack.
   897  	get_tls(CX)
   898  	MOVQ	g(CX), DI
   899  	CMPQ	DI, $0
   900  	JEQ	nosave
   901  	MOVQ	g_m(DI), R8
   902  	MOVQ	m_gsignal(R8), SI
   903  	CMPQ	DI, SI
   904  	JEQ	nosave
   905  	MOVQ	m_g0(R8), SI
   906  	CMPQ	DI, SI
   907  	JEQ	nosave
   908  
   909  	// Switch to system stack.
   910  	// The original frame pointer is stored in BP,
   911  	// which is useful for stack unwinding.
   912  	CALL	gosave_systemstack_switch<>(SB)
   913  	MOVQ	SI, g(CX)
   914  	MOVQ	(g_sched+gobuf_sp)(SI), SP
   915  
   916  	// Now on a scheduling stack (a pthread-created stack).
   917  	SUBQ	$16, SP
   918  	ANDQ	$~15, SP	// alignment for gcc ABI
   919  	MOVQ	DI, 8(SP)	// save g
   920  	MOVQ	(g_stack+stack_hi)(DI), DI
   921  	SUBQ	DX, DI
   922  	MOVQ	DI, 0(SP)	// save depth in stack (can't just save SP, as stack might be copied during a callback)
   923  	CALL	runtime·asmcgocall_landingpad(SB)
   924  
   925  	// Restore registers, g, stack pointer.
   926  	get_tls(CX)
   927  	MOVQ	8(SP), DI
   928  	MOVQ	(g_stack+stack_hi)(DI), SI
   929  	SUBQ	0(SP), SI
   930  	MOVQ	DI, g(CX)
   931  	MOVQ	SI, SP
   932  
   933  	MOVL	AX, ret+16(FP)
   934  	RET
   935  
   936  nosave:
   937  	// Running on a system stack, perhaps even without a g.
   938  	// Having no g can happen during thread creation or thread teardown
   939  	// (see needm/dropm on Solaris, for example).
   940  	// This code is like the above sequence but without saving/restoring g
   941  	// and without worrying about the stack moving out from under us
   942  	// (because we're on a system stack, not a goroutine stack).
   943  	// The above code could be used directly if already on a system stack,
   944  	// but then the only path through this code would be a rare case on Solaris.
   945  	// Using this code for all "already on system stack" calls exercises it more,
   946  	// which should help keep it correct.
   947  	SUBQ	$16, SP
   948  	ANDQ	$~15, SP
   949  	MOVQ	$0, 8(SP)		// where above code stores g, in case someone looks during debugging
   950  	MOVQ	DX, 0(SP)	// save original stack pointer
   951  	CALL	runtime·asmcgocall_landingpad(SB)
   952  	MOVQ	0(SP), SI	// restore original stack pointer
   953  	MOVQ	SI, SP
   954  	MOVL	AX, ret+16(FP)
   955  	RET
   956  
   957  #ifdef GOOS_windows
   958  // Dummy TLS that's used on Windows so that we don't crash trying
   959  // to restore the G register in needm. needm and its callees are
   960  // very careful never to actually use the G, the TLS just can't be
   961  // unset since we're in Go code.
   962  GLOBL zeroTLS<>(SB),RODATA,$const_tlsSize
   963  #endif
   964  
   965  // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
   966  // See cgocall.go for more details.
   967  TEXT ·cgocallback(SB),NOSPLIT,$24-24
   968  	NO_LOCAL_POINTERS
   969  
   970  	// Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g.
   971  	// It is used to dropm while thread is exiting.
   972  	MOVQ	fn+0(FP), AX
   973  	CMPQ	AX, $0
   974  	JNE	loadg
   975  	// Restore the g from frame.
   976  	get_tls(CX)
   977  	MOVQ	frame+8(FP), BX
   978  	MOVQ	BX, g(CX)
   979  	JMP	dropm
   980  
   981  loadg:
   982  	// If g is nil, Go did not create the current thread,
   983  	// or if this thread never called into Go on pthread platforms.
   984  	// Call needm to obtain one m for temporary use.
   985  	// In this case, we're running on the thread stack, so there's
   986  	// lots of space, but the linker doesn't know. Hide the call from
   987  	// the linker analysis by using an indirect call through AX.
   988  	get_tls(CX)
   989  #ifdef GOOS_windows
   990  	MOVL	$0, BX
   991  	CMPQ	CX, $0
   992  	JEQ	2(PC)
   993  #endif
   994  	MOVQ	g(CX), BX
   995  	CMPQ	BX, $0
   996  	JEQ	needm
   997  	MOVQ	g_m(BX), BX
   998  	MOVQ	BX, savedm-8(SP)	// saved copy of oldm
   999  	JMP	havem
  1000  needm:
  1001  #ifdef GOOS_windows
  1002  	// Set up a dummy TLS value. needm is careful not to use it,
  1003  	// but it needs to be there to prevent autogenerated code from
  1004  	// crashing when it loads from it.
  1005  	// We don't need to clear it or anything later because needm
  1006  	// will set up TLS properly.
  1007  	MOVQ	$zeroTLS<>(SB), DI
  1008  	CALL	runtime·settls(SB)
  1009  #endif
  1010  	// On some platforms (Windows) we cannot call needm through
  1011  	// an ABI wrapper because there's no TLS set up, and the ABI
  1012  	// wrapper will try to restore the G register (R14) from TLS.
  1013  	// Clear X15 because Go expects it and we're not calling
  1014  	// through a wrapper, but otherwise avoid setting the G
  1015  	// register in the wrapper and call needm directly. It
  1016  	// takes no arguments and doesn't return any values so
  1017  	// there's no need to handle that. Clear R14 so that there's
  1018  	// a bad value in there, in case needm tries to use it.
  1019  	XORPS	X15, X15
  1020  	XORQ    R14, R14
  1021  	MOVQ	$runtime·needAndBindM<ABIInternal>(SB), AX
  1022  	CALL	AX
  1023  	MOVQ	$0, savedm-8(SP)
  1024  	get_tls(CX)
  1025  	MOVQ	g(CX), BX
  1026  	MOVQ	g_m(BX), BX
  1027  
  1028  	// Set m->sched.sp = SP, so that if a panic happens
  1029  	// during the function we are about to execute, it will
  1030  	// have a valid SP to run on the g0 stack.
  1031  	// The next few lines (after the havem label)
  1032  	// will save this SP onto the stack and then write
  1033  	// the same SP back to m->sched.sp. That seems redundant,
  1034  	// but if an unrecovered panic happens, unwindm will
  1035  	// restore the g->sched.sp from the stack location
  1036  	// and then systemstack will try to use it. If we don't set it here,
  1037  	// that restored SP will be uninitialized (typically 0) and
  1038  	// will not be usable.
  1039  	MOVQ	m_g0(BX), SI
  1040  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1041  
  1042  havem:
  1043  	// Now there's a valid m, and we're running on its m->g0.
  1044  	// Save current m->g0->sched.sp on stack and then set it to SP.
  1045  	// Save current sp in m->g0->sched.sp in preparation for
  1046  	// switch back to m->curg stack.
  1047  	// NOTE: unwindm knows that the saved g->sched.sp is at 0(SP).
  1048  	MOVQ	m_g0(BX), SI
  1049  	MOVQ	(g_sched+gobuf_sp)(SI), AX
  1050  	MOVQ	AX, 0(SP)
  1051  	MOVQ	SP, (g_sched+gobuf_sp)(SI)
  1052  
  1053  	// Switch to m->curg stack and call runtime.cgocallbackg.
  1054  	// Because we are taking over the execution of m->curg
  1055  	// but *not* resuming what had been running, we need to
  1056  	// save that information (m->curg->sched) so we can restore it.
  1057  	// We can restore m->curg->sched.sp easily, because calling
  1058  	// runtime.cgocallbackg leaves SP unchanged upon return.
  1059  	// To save m->curg->sched.pc, we push it onto the curg stack and
  1060  	// open a frame the same size as cgocallback's g0 frame.
  1061  	// Once we switch to the curg stack, the pushed PC will appear
  1062  	// to be the return PC of cgocallback, so that the traceback
  1063  	// will seamlessly trace back into the earlier calls.
  1064  	MOVQ	m_curg(BX), SI
  1065  	MOVQ	SI, g(CX)
  1066  	MOVQ	(g_sched+gobuf_sp)(SI), DI  // prepare stack as DI
  1067  	MOVQ	(g_sched+gobuf_pc)(SI), BX
  1068  	MOVQ	BX, -8(DI)  // "push" return PC on the g stack
  1069  	// Gather our arguments into registers.
  1070  	MOVQ	fn+0(FP), BX
  1071  	MOVQ	frame+8(FP), CX
  1072  	MOVQ	ctxt+16(FP), DX
  1073  	// Compute the size of the frame, including return PC and, if
  1074  	// GOEXPERIMENT=framepointer, the saved base pointer
  1075  	LEAQ	fn+0(FP), AX
  1076  	SUBQ	SP, AX   // AX is our actual frame size
  1077  	SUBQ	AX, DI   // Allocate the same frame size on the g stack
  1078  	MOVQ	DI, SP
  1079  
  1080  	MOVQ	BX, 0(SP)
  1081  	MOVQ	CX, 8(SP)
  1082  	MOVQ	DX, 16(SP)
  1083  	MOVQ	$runtime·cgocallbackg(SB), AX
  1084  	CALL	AX	// indirect call to bypass nosplit check. We're on a different stack now.
  1085  
  1086  	// Compute the size of the frame again. FP and SP have
  1087  	// completely different values here than they did above,
  1088  	// but only their difference matters.
  1089  	LEAQ	fn+0(FP), AX
  1090  	SUBQ	SP, AX
  1091  
  1092  	// Restore g->sched (== m->curg->sched) from saved values.
  1093  	get_tls(CX)
  1094  	MOVQ	g(CX), SI
  1095  	MOVQ	SP, DI
  1096  	ADDQ	AX, DI
  1097  	MOVQ	-8(DI), BX
  1098  	MOVQ	BX, (g_sched+gobuf_pc)(SI)
  1099  	MOVQ	DI, (g_sched+gobuf_sp)(SI)
  1100  
  1101  	// Switch back to m->g0's stack and restore m->g0->sched.sp.
  1102  	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
  1103  	// so we do not have to restore it.)
  1104  	MOVQ	g(CX), BX
  1105  	MOVQ	g_m(BX), BX
  1106  	MOVQ	m_g0(BX), SI
  1107  	MOVQ	SI, g(CX)
  1108  	MOVQ	(g_sched+gobuf_sp)(SI), SP
  1109  	MOVQ	0(SP), AX
  1110  	MOVQ	AX, (g_sched+gobuf_sp)(SI)
  1111  
  1112  	// If the m on entry was nil, we called needm above to borrow an m,
  1113  	// 1. for the duration of the call on non-pthread platforms,
  1114  	// 2. or the duration of the C thread alive on pthread platforms.
  1115  	// If the m on entry wasn't nil,
  1116  	// 1. the thread might be a Go thread,
  1117  	// 2. or it wasn't the first call from a C thread on pthread platforms,
  1118  	//    since then we skip dropm to reuse the m in the first call.
  1119  	MOVQ	savedm-8(SP), BX
  1120  	CMPQ	BX, $0
  1121  	JNE	done
  1122  
  1123  	// Skip dropm to reuse it in the next call, when a pthread key has been created.
  1124  	MOVQ	_cgo_pthread_key_created(SB), AX
  1125  	// It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm.
  1126  	CMPQ	AX, $0
  1127  	JEQ	dropm
  1128  	CMPQ	(AX), $0
  1129  	JNE	done
  1130  
  1131  dropm:
  1132  	MOVQ	$runtime·dropm(SB), AX
  1133  	CALL	AX
  1134  #ifdef GOOS_windows
  1135  	// We need to clear the TLS pointer in case the next
  1136  	// thread that comes into Go tries to reuse that space
  1137  	// but uses the same M.
  1138  	XORQ	DI, DI
  1139  	CALL	runtime·settls(SB)
  1140  #endif
  1141  done:
  1142  
  1143  	// Done!
  1144  	RET
  1145  
  1146  // func setg(gg *g)
  1147  // set g. for use by needm.
  1148  TEXT runtime·setg(SB), NOSPLIT, $0-8
  1149  	MOVQ	gg+0(FP), BX
  1150  	get_tls(CX)
  1151  	MOVQ	BX, g(CX)
  1152  	RET
  1153  
  1154  // void setg_gcc(G*); set g called from gcc.
  1155  TEXT setg_gcc<>(SB),NOSPLIT,$0
  1156  	get_tls(AX)
  1157  	MOVQ	DI, g(AX)
  1158  	MOVQ	DI, R14 // set the g register
  1159  	RET
  1160  
  1161  TEXT runtime·abort(SB),NOSPLIT,$0-0
  1162  	INT	$3
  1163  loop:
  1164  	JMP	loop
  1165  
  1166  // check that SP is in range [g->stack.lo, g->stack.hi)
  1167  TEXT runtime·stackcheck(SB), NOSPLIT|NOFRAME, $0-0
  1168  	get_tls(CX)
  1169  	MOVQ	g(CX), AX
  1170  	CMPQ	(g_stack+stack_hi)(AX), SP
  1171  	JHI	2(PC)
  1172  	CALL	runtime·abort(SB)
  1173  	CMPQ	SP, (g_stack+stack_lo)(AX)
  1174  	JHI	2(PC)
  1175  	CALL	runtime·abort(SB)
  1176  	RET
  1177  
  1178  // func cputicks() int64
  1179  TEXT runtime·cputicks(SB),NOSPLIT,$0-0
  1180  	CMPB	internal∕cpu·X86+const_offsetX86HasRDTSCP(SB), $1
  1181  	JNE	fences
  1182  	// Instruction stream serializing RDTSCP is supported.
  1183  	// RDTSCP is supported by Intel Nehalem (2008) and
  1184  	// AMD K8 Rev. F (2006) and newer.
  1185  	RDTSCP
  1186  done:
  1187  	SHLQ	$32, DX
  1188  	ADDQ	DX, AX
  1189  	MOVQ	AX, ret+0(FP)
  1190  	RET
  1191  fences:
  1192  	// MFENCE is instruction stream serializing and flushes the
  1193  	// store buffers on AMD. The serialization semantics of LFENCE on AMD
  1194  	// are dependent on MSR C001_1029 and CPU generation.
  1195  	// LFENCE on Intel does wait for all previous instructions to have executed.
  1196  	// Intel recommends MFENCE;LFENCE in its manuals before RDTSC to have all
  1197  	// previous instructions executed and all previous loads and stores to globally visible.
  1198  	// Using MFENCE;LFENCE here aligns the serializing properties without
  1199  	// runtime detection of CPU manufacturer.
  1200  	MFENCE
  1201  	LFENCE
  1202  	RDTSC
  1203  	JMP done
  1204  
  1205  // func memhash(p unsafe.Pointer, h, s uintptr) uintptr
  1206  // hash function using AES hardware instructions
  1207  TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT,$0-32
  1208  	// AX = ptr to data
  1209  	// BX = seed
  1210  	// CX = size
  1211  	CMPB	runtime·useAeshash(SB), $0
  1212  	JEQ	noaes
  1213  	JMP	aeshashbody<>(SB)
  1214  noaes:
  1215  	JMP	runtime·memhashFallback<ABIInternal>(SB)
  1216  
  1217  // func strhash(p unsafe.Pointer, h uintptr) uintptr
  1218  TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT,$0-24
  1219  	// AX = ptr to string struct
  1220  	// BX = seed
  1221  	CMPB	runtime·useAeshash(SB), $0
  1222  	JEQ	noaes
  1223  	MOVQ	8(AX), CX	// length of string
  1224  	MOVQ	(AX), AX	// string data
  1225  	JMP	aeshashbody<>(SB)
  1226  noaes:
  1227  	JMP	runtime·strhashFallback<ABIInternal>(SB)
  1228  
  1229  // AX: data
  1230  // BX: hash seed
  1231  // CX: length
  1232  // At return: AX = return value
  1233  TEXT aeshashbody<>(SB),NOSPLIT,$0-0
  1234  	// Fill an SSE register with our seeds.
  1235  	MOVQ	BX, X0				// 64 bits of per-table hash seed
  1236  	PINSRW	$4, CX, X0			// 16 bits of length
  1237  	PSHUFHW $0, X0, X0			// repeat length 4 times total
  1238  	MOVO	X0, X1				// save unscrambled seed
  1239  	PXOR	runtime·aeskeysched(SB), X0	// xor in per-process seed
  1240  	AESENC	X0, X0				// scramble seed
  1241  
  1242  	CMPQ	CX, $16
  1243  	JB	aes0to15
  1244  	JE	aes16
  1245  	CMPQ	CX, $32
  1246  	JBE	aes17to32
  1247  	CMPQ	CX, $64
  1248  	JBE	aes33to64
  1249  	CMPQ	CX, $128
  1250  	JBE	aes65to128
  1251  	JMP	aes129plus
  1252  
  1253  aes0to15:
  1254  	TESTQ	CX, CX
  1255  	JE	aes0
  1256  
  1257  	ADDQ	$16, AX
  1258  	TESTW	$0xff0, AX
  1259  	JE	endofpage
  1260  
  1261  	// 16 bytes loaded at this address won't cross
  1262  	// a page boundary, so we can load it directly.
  1263  	MOVOU	-16(AX), X1
  1264  	ADDQ	CX, CX
  1265  	MOVQ	$masks<>(SB), AX
  1266  	PAND	(AX)(CX*8), X1
  1267  final1:
  1268  	PXOR	X0, X1	// xor data with seed
  1269  	AESENC	X1, X1	// scramble combo 3 times
  1270  	AESENC	X1, X1
  1271  	AESENC	X1, X1
  1272  	MOVQ	X1, AX	// return X1
  1273  	RET
  1274  
  1275  endofpage:
  1276  	// address ends in 1111xxxx. Might be up against
  1277  	// a page boundary, so load ending at last byte.
  1278  	// Then shift bytes down using pshufb.
  1279  	MOVOU	-32(AX)(CX*1), X1
  1280  	ADDQ	CX, CX
  1281  	MOVQ	$shifts<>(SB), AX
  1282  	PSHUFB	(AX)(CX*8), X1
  1283  	JMP	final1
  1284  
  1285  aes0:
  1286  	// Return scrambled input seed
  1287  	AESENC	X0, X0
  1288  	MOVQ	X0, AX	// return X0
  1289  	RET
  1290  
  1291  aes16:
  1292  	MOVOU	(AX), X1
  1293  	JMP	final1
  1294  
  1295  aes17to32:
  1296  	// make second starting seed
  1297  	PXOR	runtime·aeskeysched+16(SB), X1
  1298  	AESENC	X1, X1
  1299  
  1300  	// load data to be hashed
  1301  	MOVOU	(AX), X2
  1302  	MOVOU	-16(AX)(CX*1), X3
  1303  
  1304  	// xor with seed
  1305  	PXOR	X0, X2
  1306  	PXOR	X1, X3
  1307  
  1308  	// scramble 3 times
  1309  	AESENC	X2, X2
  1310  	AESENC	X3, X3
  1311  	AESENC	X2, X2
  1312  	AESENC	X3, X3
  1313  	AESENC	X2, X2
  1314  	AESENC	X3, X3
  1315  
  1316  	// combine results
  1317  	PXOR	X3, X2
  1318  	MOVQ	X2, AX	// return X2
  1319  	RET
  1320  
  1321  aes33to64:
  1322  	// make 3 more starting seeds
  1323  	MOVO	X1, X2
  1324  	MOVO	X1, X3
  1325  	PXOR	runtime·aeskeysched+16(SB), X1
  1326  	PXOR	runtime·aeskeysched+32(SB), X2
  1327  	PXOR	runtime·aeskeysched+48(SB), X3
  1328  	AESENC	X1, X1
  1329  	AESENC	X2, X2
  1330  	AESENC	X3, X3
  1331  
  1332  	MOVOU	(AX), X4
  1333  	MOVOU	16(AX), X5
  1334  	MOVOU	-32(AX)(CX*1), X6
  1335  	MOVOU	-16(AX)(CX*1), X7
  1336  
  1337  	PXOR	X0, X4
  1338  	PXOR	X1, X5
  1339  	PXOR	X2, X6
  1340  	PXOR	X3, X7
  1341  
  1342  	AESENC	X4, X4
  1343  	AESENC	X5, X5
  1344  	AESENC	X6, X6
  1345  	AESENC	X7, X7
  1346  
  1347  	AESENC	X4, X4
  1348  	AESENC	X5, X5
  1349  	AESENC	X6, X6
  1350  	AESENC	X7, X7
  1351  
  1352  	AESENC	X4, X4
  1353  	AESENC	X5, X5
  1354  	AESENC	X6, X6
  1355  	AESENC	X7, X7
  1356  
  1357  	PXOR	X6, X4
  1358  	PXOR	X7, X5
  1359  	PXOR	X5, X4
  1360  	MOVQ	X4, AX	// return X4
  1361  	RET
  1362  
  1363  aes65to128:
  1364  	// make 7 more starting seeds
  1365  	MOVO	X1, X2
  1366  	MOVO	X1, X3
  1367  	MOVO	X1, X4
  1368  	MOVO	X1, X5
  1369  	MOVO	X1, X6
  1370  	MOVO	X1, X7
  1371  	PXOR	runtime·aeskeysched+16(SB), X1
  1372  	PXOR	runtime·aeskeysched+32(SB), X2
  1373  	PXOR	runtime·aeskeysched+48(SB), X3
  1374  	PXOR	runtime·aeskeysched+64(SB), X4
  1375  	PXOR	runtime·aeskeysched+80(SB), X5
  1376  	PXOR	runtime·aeskeysched+96(SB), X6
  1377  	PXOR	runtime·aeskeysched+112(SB), X7
  1378  	AESENC	X1, X1
  1379  	AESENC	X2, X2
  1380  	AESENC	X3, X3
  1381  	AESENC	X4, X4
  1382  	AESENC	X5, X5
  1383  	AESENC	X6, X6
  1384  	AESENC	X7, X7
  1385  
  1386  	// load data
  1387  	MOVOU	(AX), X8
  1388  	MOVOU	16(AX), X9
  1389  	MOVOU	32(AX), X10
  1390  	MOVOU	48(AX), X11
  1391  	MOVOU	-64(AX)(CX*1), X12
  1392  	MOVOU	-48(AX)(CX*1), X13
  1393  	MOVOU	-32(AX)(CX*1), X14
  1394  	MOVOU	-16(AX)(CX*1), X15
  1395  
  1396  	// xor with seed
  1397  	PXOR	X0, X8
  1398  	PXOR	X1, X9
  1399  	PXOR	X2, X10
  1400  	PXOR	X3, X11
  1401  	PXOR	X4, X12
  1402  	PXOR	X5, X13
  1403  	PXOR	X6, X14
  1404  	PXOR	X7, X15
  1405  
  1406  	// scramble 3 times
  1407  	AESENC	X8, X8
  1408  	AESENC	X9, X9
  1409  	AESENC	X10, X10
  1410  	AESENC	X11, X11
  1411  	AESENC	X12, X12
  1412  	AESENC	X13, X13
  1413  	AESENC	X14, X14
  1414  	AESENC	X15, X15
  1415  
  1416  	AESENC	X8, X8
  1417  	AESENC	X9, X9
  1418  	AESENC	X10, X10
  1419  	AESENC	X11, X11
  1420  	AESENC	X12, X12
  1421  	AESENC	X13, X13
  1422  	AESENC	X14, X14
  1423  	AESENC	X15, X15
  1424  
  1425  	AESENC	X8, X8
  1426  	AESENC	X9, X9
  1427  	AESENC	X10, X10
  1428  	AESENC	X11, X11
  1429  	AESENC	X12, X12
  1430  	AESENC	X13, X13
  1431  	AESENC	X14, X14
  1432  	AESENC	X15, X15
  1433  
  1434  	// combine results
  1435  	PXOR	X12, X8
  1436  	PXOR	X13, X9
  1437  	PXOR	X14, X10
  1438  	PXOR	X15, X11
  1439  	PXOR	X10, X8
  1440  	PXOR	X11, X9
  1441  	PXOR	X9, X8
  1442  	// X15 must be zero on return
  1443  	PXOR	X15, X15
  1444  	MOVQ	X8, AX	// return X8
  1445  	RET
  1446  
  1447  aes129plus:
  1448  	// make 7 more starting seeds
  1449  	MOVO	X1, X2
  1450  	MOVO	X1, X3
  1451  	MOVO	X1, X4
  1452  	MOVO	X1, X5
  1453  	MOVO	X1, X6
  1454  	MOVO	X1, X7
  1455  	PXOR	runtime·aeskeysched+16(SB), X1
  1456  	PXOR	runtime·aeskeysched+32(SB), X2
  1457  	PXOR	runtime·aeskeysched+48(SB), X3
  1458  	PXOR	runtime·aeskeysched+64(SB), X4
  1459  	PXOR	runtime·aeskeysched+80(SB), X5
  1460  	PXOR	runtime·aeskeysched+96(SB), X6
  1461  	PXOR	runtime·aeskeysched+112(SB), X7
  1462  	AESENC	X1, X1
  1463  	AESENC	X2, X2
  1464  	AESENC	X3, X3
  1465  	AESENC	X4, X4
  1466  	AESENC	X5, X5
  1467  	AESENC	X6, X6
  1468  	AESENC	X7, X7
  1469  
  1470  	// start with last (possibly overlapping) block
  1471  	MOVOU	-128(AX)(CX*1), X8
  1472  	MOVOU	-112(AX)(CX*1), X9
  1473  	MOVOU	-96(AX)(CX*1), X10
  1474  	MOVOU	-80(AX)(CX*1), X11
  1475  	MOVOU	-64(AX)(CX*1), X12
  1476  	MOVOU	-48(AX)(CX*1), X13
  1477  	MOVOU	-32(AX)(CX*1), X14
  1478  	MOVOU	-16(AX)(CX*1), X15
  1479  
  1480  	// xor in seed
  1481  	PXOR	X0, X8
  1482  	PXOR	X1, X9
  1483  	PXOR	X2, X10
  1484  	PXOR	X3, X11
  1485  	PXOR	X4, X12
  1486  	PXOR	X5, X13
  1487  	PXOR	X6, X14
  1488  	PXOR	X7, X15
  1489  
  1490  	// compute number of remaining 128-byte blocks
  1491  	DECQ	CX
  1492  	SHRQ	$7, CX
  1493  
  1494  	PCALIGN $16
  1495  aesloop:
  1496  	// scramble state
  1497  	AESENC	X8, X8
  1498  	AESENC	X9, X9
  1499  	AESENC	X10, X10
  1500  	AESENC	X11, X11
  1501  	AESENC	X12, X12
  1502  	AESENC	X13, X13
  1503  	AESENC	X14, X14
  1504  	AESENC	X15, X15
  1505  
  1506  	// scramble state, xor in a block
  1507  	MOVOU	(AX), X0
  1508  	MOVOU	16(AX), X1
  1509  	MOVOU	32(AX), X2
  1510  	MOVOU	48(AX), X3
  1511  	AESENC	X0, X8
  1512  	AESENC	X1, X9
  1513  	AESENC	X2, X10
  1514  	AESENC	X3, X11
  1515  	MOVOU	64(AX), X4
  1516  	MOVOU	80(AX), X5
  1517  	MOVOU	96(AX), X6
  1518  	MOVOU	112(AX), X7
  1519  	AESENC	X4, X12
  1520  	AESENC	X5, X13
  1521  	AESENC	X6, X14
  1522  	AESENC	X7, X15
  1523  
  1524  	ADDQ	$128, AX
  1525  	DECQ	CX
  1526  	JNE	aesloop
  1527  
  1528  	// 3 more scrambles to finish
  1529  	AESENC	X8, X8
  1530  	AESENC	X9, X9
  1531  	AESENC	X10, X10
  1532  	AESENC	X11, X11
  1533  	AESENC	X12, X12
  1534  	AESENC	X13, X13
  1535  	AESENC	X14, X14
  1536  	AESENC	X15, X15
  1537  	AESENC	X8, X8
  1538  	AESENC	X9, X9
  1539  	AESENC	X10, X10
  1540  	AESENC	X11, X11
  1541  	AESENC	X12, X12
  1542  	AESENC	X13, X13
  1543  	AESENC	X14, X14
  1544  	AESENC	X15, X15
  1545  	AESENC	X8, X8
  1546  	AESENC	X9, X9
  1547  	AESENC	X10, X10
  1548  	AESENC	X11, X11
  1549  	AESENC	X12, X12
  1550  	AESENC	X13, X13
  1551  	AESENC	X14, X14
  1552  	AESENC	X15, X15
  1553  
  1554  	PXOR	X12, X8
  1555  	PXOR	X13, X9
  1556  	PXOR	X14, X10
  1557  	PXOR	X15, X11
  1558  	PXOR	X10, X8
  1559  	PXOR	X11, X9
  1560  	PXOR	X9, X8
  1561  	// X15 must be zero on return
  1562  	PXOR	X15, X15
  1563  	MOVQ	X8, AX	// return X8
  1564  	RET
  1565  
  1566  // func memhash32(p unsafe.Pointer, h uintptr) uintptr
  1567  // ABIInternal for performance.
  1568  TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT,$0-24
  1569  	// AX = ptr to data
  1570  	// BX = seed
  1571  	CMPB	runtime·useAeshash(SB), $0
  1572  	JEQ	noaes
  1573  	MOVQ	BX, X0	// X0 = seed
  1574  	PINSRD	$2, (AX), X0	// data
  1575  	AESENC	runtime·aeskeysched+0(SB), X0
  1576  	AESENC	runtime·aeskeysched+16(SB), X0
  1577  	AESENC	runtime·aeskeysched+32(SB), X0
  1578  	MOVQ	X0, AX	// return X0
  1579  	RET
  1580  noaes:
  1581  	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
  1582  
  1583  // func memhash64(p unsafe.Pointer, h uintptr) uintptr
  1584  // ABIInternal for performance.
  1585  TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT,$0-24
  1586  	// AX = ptr to data
  1587  	// BX = seed
  1588  	CMPB	runtime·useAeshash(SB), $0
  1589  	JEQ	noaes
  1590  	MOVQ	BX, X0	// X0 = seed
  1591  	PINSRQ	$1, (AX), X0	// data
  1592  	AESENC	runtime·aeskeysched+0(SB), X0
  1593  	AESENC	runtime·aeskeysched+16(SB), X0
  1594  	AESENC	runtime·aeskeysched+32(SB), X0
  1595  	MOVQ	X0, AX	// return X0
  1596  	RET
  1597  noaes:
  1598  	JMP	runtime·memhash64Fallback<ABIInternal>(SB)
  1599  
  1600  // simple mask to get rid of data in the high part of the register.
  1601  DATA masks<>+0x00(SB)/8, $0x0000000000000000
  1602  DATA masks<>+0x08(SB)/8, $0x0000000000000000
  1603  DATA masks<>+0x10(SB)/8, $0x00000000000000ff
  1604  DATA masks<>+0x18(SB)/8, $0x0000000000000000
  1605  DATA masks<>+0x20(SB)/8, $0x000000000000ffff
  1606  DATA masks<>+0x28(SB)/8, $0x0000000000000000
  1607  DATA masks<>+0x30(SB)/8, $0x0000000000ffffff
  1608  DATA masks<>+0x38(SB)/8, $0x0000000000000000
  1609  DATA masks<>+0x40(SB)/8, $0x00000000ffffffff
  1610  DATA masks<>+0x48(SB)/8, $0x0000000000000000
  1611  DATA masks<>+0x50(SB)/8, $0x000000ffffffffff
  1612  DATA masks<>+0x58(SB)/8, $0x0000000000000000
  1613  DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff
  1614  DATA masks<>+0x68(SB)/8, $0x0000000000000000
  1615  DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff
  1616  DATA masks<>+0x78(SB)/8, $0x0000000000000000
  1617  DATA masks<>+0x80(SB)/8, $0xffffffffffffffff
  1618  DATA masks<>+0x88(SB)/8, $0x0000000000000000
  1619  DATA masks<>+0x90(SB)/8, $0xffffffffffffffff
  1620  DATA masks<>+0x98(SB)/8, $0x00000000000000ff
  1621  DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff
  1622  DATA masks<>+0xa8(SB)/8, $0x000000000000ffff
  1623  DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff
  1624  DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff
  1625  DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff
  1626  DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff
  1627  DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff
  1628  DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff
  1629  DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff
  1630  DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff
  1631  DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff
  1632  DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff
  1633  GLOBL masks<>(SB),RODATA,$256
  1634  
  1635  // func checkASM() bool
  1636  TEXT ·checkASM(SB),NOSPLIT,$0-1
  1637  	// check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte
  1638  	MOVQ	$masks<>(SB), AX
  1639  	MOVQ	$shifts<>(SB), BX
  1640  	ORQ	BX, AX
  1641  	TESTQ	$15, AX
  1642  	SETEQ	ret+0(FP)
  1643  	RET
  1644  
  1645  // these are arguments to pshufb. They move data down from
  1646  // the high bytes of the register to the low bytes of the register.
  1647  // index is how many bytes to move.
  1648  DATA shifts<>+0x00(SB)/8, $0x0000000000000000
  1649  DATA shifts<>+0x08(SB)/8, $0x0000000000000000
  1650  DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f
  1651  DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff
  1652  DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e
  1653  DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff
  1654  DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d
  1655  DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff
  1656  DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c
  1657  DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff
  1658  DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b
  1659  DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff
  1660  DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a
  1661  DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff
  1662  DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09
  1663  DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff
  1664  DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908
  1665  DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff
  1666  DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807
  1667  DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f
  1668  DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706
  1669  DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e
  1670  DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605
  1671  DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d
  1672  DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504
  1673  DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c
  1674  DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403
  1675  DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b
  1676  DATA shifts<>+0xe0(SB)/8, $0x0908070605040302
  1677  DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a
  1678  DATA shifts<>+0xf0(SB)/8, $0x0807060504030201
  1679  DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09
  1680  GLOBL shifts<>(SB),RODATA,$256
  1681  
  1682  TEXT runtime·return0(SB), NOSPLIT, $0
  1683  	MOVL	$0, AX
  1684  	RET
  1685  
  1686  
  1687  // Called from cgo wrappers, this function returns g->m->curg.stack.hi.
  1688  // Must obey the gcc calling convention.
  1689  TEXT _cgo_topofstack(SB),NOSPLIT,$0
  1690  	get_tls(CX)
  1691  	MOVQ	g(CX), AX
  1692  	MOVQ	g_m(AX), AX
  1693  	MOVQ	m_curg(AX), AX
  1694  	MOVQ	(g_stack+stack_hi)(AX), AX
  1695  	RET
  1696  
  1697  // The top-most function running on a goroutine
  1698  // returns to goexit+PCQuantum.
  1699  TEXT runtime·goexit(SB),NOSPLIT|TOPFRAME|NOFRAME,$0-0
  1700  	BYTE	$0x90	// NOP
  1701  	CALL	runtime·goexit1(SB)	// does not return
  1702  	// traceback from goexit1 must hit code range of goexit
  1703  	BYTE	$0x90	// NOP
  1704  
  1705  // This is called from .init_array and follows the platform, not Go, ABI.
  1706  TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0
  1707  	PUSHQ	R15 // The access to global variables below implicitly uses R15, which is callee-save
  1708  	MOVQ	runtime·lastmoduledatap(SB), AX
  1709  	MOVQ	DI, moduledata_next(AX)
  1710  	MOVQ	DI, runtime·lastmoduledatap(SB)
  1711  	POPQ	R15
  1712  	RET
  1713  
  1714  // Initialize special registers then jump to sigpanic.
  1715  // This function is injected from the signal handler for panicking
  1716  // signals. It is quite painful to set X15 in the signal context,
  1717  // so we do it here.
  1718  TEXT ·sigpanic0(SB),NOSPLIT,$0-0
  1719  	get_tls(R14)
  1720  	MOVQ	g(R14), R14
  1721  #ifndef GOOS_plan9
  1722  	XORPS	X15, X15
  1723  #endif
  1724  	JMP	·sigpanic<ABIInternal>(SB)
  1725  
  1726  // gcWriteBarrier informs the GC about heap pointer writes.
  1727  //
  1728  // gcWriteBarrier returns space in a write barrier buffer which
  1729  // should be filled in by the caller.
  1730  // gcWriteBarrier does NOT follow the Go ABI. It accepts the
  1731  // number of bytes of buffer needed in R11, and returns a pointer
  1732  // to the buffer space in R11.
  1733  // It clobbers FLAGS. It does not clobber any general-purpose registers,
  1734  // but may clobber others (e.g., SSE registers).
  1735  // Typical use would be, when doing *(CX+88) = AX
  1736  //     CMPL    $0, runtime.writeBarrier(SB)
  1737  //     JEQ     dowrite
  1738  //     CALL    runtime.gcBatchBarrier2(SB)
  1739  //     MOVQ    AX, (R11)
  1740  //     MOVQ    88(CX), DX
  1741  //     MOVQ    DX, 8(R11)
  1742  // dowrite:
  1743  //     MOVQ    AX, 88(CX)
  1744  TEXT gcWriteBarrier<>(SB),NOSPLIT,$112
  1745  	// Save the registers clobbered by the fast path. This is slightly
  1746  	// faster than having the caller spill these.
  1747  	MOVQ	R12, 96(SP)
  1748  	MOVQ	R13, 104(SP)
  1749  retry:
  1750  	// TODO: Consider passing g.m.p in as an argument so they can be shared
  1751  	// across a sequence of write barriers.
  1752  	MOVQ	g_m(R14), R13
  1753  	MOVQ	m_p(R13), R13
  1754  	// Get current buffer write position.
  1755  	MOVQ	(p_wbBuf+wbBuf_next)(R13), R12	// original next position
  1756  	ADDQ	R11, R12			// new next position
  1757  	// Is the buffer full?
  1758  	CMPQ	R12, (p_wbBuf+wbBuf_end)(R13)
  1759  	JA	flush
  1760  	// Commit to the larger buffer.
  1761  	MOVQ	R12, (p_wbBuf+wbBuf_next)(R13)
  1762  	// Make return value (the original next position)
  1763  	SUBQ	R11, R12
  1764  	MOVQ	R12, R11
  1765  	// Restore registers.
  1766  	MOVQ	96(SP), R12
  1767  	MOVQ	104(SP), R13
  1768  	RET
  1769  
  1770  flush:
  1771  	// Save all general purpose registers since these could be
  1772  	// clobbered by wbBufFlush and were not saved by the caller.
  1773  	// It is possible for wbBufFlush to clobber other registers
  1774  	// (e.g., SSE registers), but the compiler takes care of saving
  1775  	// those in the caller if necessary. This strikes a balance
  1776  	// with registers that are likely to be used.
  1777  	//
  1778  	// We don't have type information for these, but all code under
  1779  	// here is NOSPLIT, so nothing will observe these.
  1780  	//
  1781  	// TODO: We could strike a different balance; e.g., saving X0
  1782  	// and not saving GP registers that are less likely to be used.
  1783  	MOVQ	DI, 0(SP)
  1784  	MOVQ	AX, 8(SP)
  1785  	MOVQ	BX, 16(SP)
  1786  	MOVQ	CX, 24(SP)
  1787  	MOVQ	DX, 32(SP)
  1788  	// DI already saved
  1789  	MOVQ	SI, 40(SP)
  1790  	MOVQ	BP, 48(SP)
  1791  	MOVQ	R8, 56(SP)
  1792  	MOVQ	R9, 64(SP)
  1793  	MOVQ	R10, 72(SP)
  1794  	MOVQ	R11, 80(SP)
  1795  	// R12 already saved
  1796  	// R13 already saved
  1797  	// R14 is g
  1798  	MOVQ	R15, 88(SP)
  1799  
  1800  	CALL	runtime·wbBufFlush(SB)
  1801  
  1802  	MOVQ	0(SP), DI
  1803  	MOVQ	8(SP), AX
  1804  	MOVQ	16(SP), BX
  1805  	MOVQ	24(SP), CX
  1806  	MOVQ	32(SP), DX
  1807  	MOVQ	40(SP), SI
  1808  	MOVQ	48(SP), BP
  1809  	MOVQ	56(SP), R8
  1810  	MOVQ	64(SP), R9
  1811  	MOVQ	72(SP), R10
  1812  	MOVQ	80(SP), R11
  1813  	MOVQ	88(SP), R15
  1814  	JMP	retry
  1815  
  1816  TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1817  	MOVL   $8, R11
  1818  	JMP     gcWriteBarrier<>(SB)
  1819  TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1820  	MOVL   $16, R11
  1821  	JMP     gcWriteBarrier<>(SB)
  1822  TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1823  	MOVL   $24, R11
  1824  	JMP     gcWriteBarrier<>(SB)
  1825  TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1826  	MOVL   $32, R11
  1827  	JMP     gcWriteBarrier<>(SB)
  1828  TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1829  	MOVL   $40, R11
  1830  	JMP     gcWriteBarrier<>(SB)
  1831  TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1832  	MOVL   $48, R11
  1833  	JMP     gcWriteBarrier<>(SB)
  1834  TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1835  	MOVL   $56, R11
  1836  	JMP     gcWriteBarrier<>(SB)
  1837  TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  1838  	MOVL   $64, R11
  1839  	JMP     gcWriteBarrier<>(SB)
  1840  
  1841  DATA	debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large"
  1842  GLOBL	debugCallFrameTooLarge<>(SB), RODATA, $20	// Size duplicated below
  1843  
  1844  // debugCallV2 is the entry point for debugger-injected function
  1845  // calls on running goroutines. It informs the runtime that a
  1846  // debug call has been injected and creates a call frame for the
  1847  // debugger to fill in.
  1848  //
  1849  // To inject a function call, a debugger should:
  1850  // 1. Check that the goroutine is in state _Grunning and that
  1851  //    there are at least 256 bytes free on the stack.
  1852  // 2. Push the current PC on the stack (updating SP).
  1853  // 3. Write the desired argument frame size at SP-16 (using the SP
  1854  //    after step 2).
  1855  // 4. Save all machine registers (including flags and XMM registers)
  1856  //    so they can be restored later by the debugger.
  1857  // 5. Set the PC to debugCallV2 and resume execution.
  1858  //
  1859  // If the goroutine is in state _Grunnable, then it's not generally
  1860  // safe to inject a call because it may return out via other runtime
  1861  // operations. Instead, the debugger should unwind the stack to find
  1862  // the return to non-runtime code, add a temporary breakpoint there,
  1863  // and inject the call once that breakpoint is hit.
  1864  //
  1865  // If the goroutine is in any other state, it's not safe to inject a call.
  1866  //
  1867  // This function communicates back to the debugger by setting R12 and
  1868  // invoking INT3 to raise a breakpoint signal. See the comments in the
  1869  // implementation for the protocol the debugger is expected to
  1870  // follow. InjectDebugCall in the runtime tests demonstrates this protocol.
  1871  //
  1872  // The debugger must ensure that any pointers passed to the function
  1873  // obey escape analysis requirements. Specifically, it must not pass
  1874  // a stack pointer to an escaping argument. debugCallV2 cannot check
  1875  // this invariant.
  1876  //
  1877  // This is ABIInternal because Go code injects its PC directly into new
  1878  // goroutine stacks.
  1879  TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT,$152-0
  1880  	// Save all registers that may contain pointers so they can be
  1881  	// conservatively scanned.
  1882  	//
  1883  	// We can't do anything that might clobber any of these
  1884  	// registers before this.
  1885  	MOVQ	R15, r15-(14*8+8)(SP)
  1886  	MOVQ	R14, r14-(13*8+8)(SP)
  1887  	MOVQ	R13, r13-(12*8+8)(SP)
  1888  	MOVQ	R12, r12-(11*8+8)(SP)
  1889  	MOVQ	R11, r11-(10*8+8)(SP)
  1890  	MOVQ	R10, r10-(9*8+8)(SP)
  1891  	MOVQ	R9, r9-(8*8+8)(SP)
  1892  	MOVQ	R8, r8-(7*8+8)(SP)
  1893  	MOVQ	DI, di-(6*8+8)(SP)
  1894  	MOVQ	SI, si-(5*8+8)(SP)
  1895  	MOVQ	BP, bp-(4*8+8)(SP)
  1896  	MOVQ	BX, bx-(3*8+8)(SP)
  1897  	MOVQ	DX, dx-(2*8+8)(SP)
  1898  	// Save the frame size before we clobber it. Either of the last
  1899  	// saves could clobber this depending on whether there's a saved BP.
  1900  	MOVQ	frameSize-24(FP), DX	// aka -16(RSP) before prologue
  1901  	MOVQ	CX, cx-(1*8+8)(SP)
  1902  	MOVQ	AX, ax-(0*8+8)(SP)
  1903  
  1904  	// Save the argument frame size.
  1905  	MOVQ	DX, frameSize-128(SP)
  1906  
  1907  	// Perform a safe-point check.
  1908  	MOVQ	retpc-8(FP), AX	// Caller's PC
  1909  	MOVQ	AX, 0(SP)
  1910  	CALL	runtime·debugCallCheck(SB)
  1911  	MOVQ	8(SP), AX
  1912  	TESTQ	AX, AX
  1913  	JZ	good
  1914  	// The safety check failed. Put the reason string at the top
  1915  	// of the stack.
  1916  	MOVQ	AX, 0(SP)
  1917  	MOVQ	16(SP), AX
  1918  	MOVQ	AX, 8(SP)
  1919  	// Set R12 to 8 and invoke INT3. The debugger should get the
  1920  	// reason a call can't be injected from the top of the stack
  1921  	// and resume execution.
  1922  	MOVQ	$8, R12
  1923  	BYTE	$0xcc
  1924  	JMP	restore
  1925  
  1926  good:
  1927  	// Registers are saved and it's safe to make a call.
  1928  	// Open up a call frame, moving the stack if necessary.
  1929  	//
  1930  	// Once the frame is allocated, this will set R12 to 0 and
  1931  	// invoke INT3. The debugger should write the argument
  1932  	// frame for the call at SP, set up argument registers, push
  1933  	// the trapping PC on the stack, set the PC to the function to
  1934  	// call, set RDX to point to the closure (if a closure call),
  1935  	// and resume execution.
  1936  	//
  1937  	// If the function returns, this will set R12 to 1 and invoke
  1938  	// INT3. The debugger can then inspect any return value saved
  1939  	// on the stack at SP and in registers and resume execution again.
  1940  	//
  1941  	// If the function panics, this will set R12 to 2 and invoke INT3.
  1942  	// The interface{} value of the panic will be at SP. The debugger
  1943  	// can inspect the panic value and resume execution again.
  1944  #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE)	\
  1945  	CMPQ	AX, $MAXSIZE;			\
  1946  	JA	5(PC);				\
  1947  	MOVQ	$NAME(SB), AX;			\
  1948  	MOVQ	AX, 0(SP);			\
  1949  	CALL	runtime·debugCallWrap(SB);	\
  1950  	JMP	restore
  1951  
  1952  	MOVQ	frameSize-128(SP), AX
  1953  	DEBUG_CALL_DISPATCH(debugCall32<>, 32)
  1954  	DEBUG_CALL_DISPATCH(debugCall64<>, 64)
  1955  	DEBUG_CALL_DISPATCH(debugCall128<>, 128)
  1956  	DEBUG_CALL_DISPATCH(debugCall256<>, 256)
  1957  	DEBUG_CALL_DISPATCH(debugCall512<>, 512)
  1958  	DEBUG_CALL_DISPATCH(debugCall1024<>, 1024)
  1959  	DEBUG_CALL_DISPATCH(debugCall2048<>, 2048)
  1960  	DEBUG_CALL_DISPATCH(debugCall4096<>, 4096)
  1961  	DEBUG_CALL_DISPATCH(debugCall8192<>, 8192)
  1962  	DEBUG_CALL_DISPATCH(debugCall16384<>, 16384)
  1963  	DEBUG_CALL_DISPATCH(debugCall32768<>, 32768)
  1964  	DEBUG_CALL_DISPATCH(debugCall65536<>, 65536)
  1965  	// The frame size is too large. Report the error.
  1966  	MOVQ	$debugCallFrameTooLarge<>(SB), AX
  1967  	MOVQ	AX, 0(SP)
  1968  	MOVQ	$20, 8(SP) // length of debugCallFrameTooLarge string
  1969  	MOVQ	$8, R12
  1970  	BYTE	$0xcc
  1971  	JMP	restore
  1972  
  1973  restore:
  1974  	// Calls and failures resume here.
  1975  	//
  1976  	// Set R12 to 16 and invoke INT3. The debugger should restore
  1977  	// all registers except RIP and RSP and resume execution.
  1978  	MOVQ	$16, R12
  1979  	BYTE	$0xcc
  1980  	// We must not modify flags after this point.
  1981  
  1982  	// Restore pointer-containing registers, which may have been
  1983  	// modified from the debugger's copy by stack copying.
  1984  	MOVQ	ax-(0*8+8)(SP), AX
  1985  	MOVQ	cx-(1*8+8)(SP), CX
  1986  	MOVQ	dx-(2*8+8)(SP), DX
  1987  	MOVQ	bx-(3*8+8)(SP), BX
  1988  	MOVQ	bp-(4*8+8)(SP), BP
  1989  	MOVQ	si-(5*8+8)(SP), SI
  1990  	MOVQ	di-(6*8+8)(SP), DI
  1991  	MOVQ	r8-(7*8+8)(SP), R8
  1992  	MOVQ	r9-(8*8+8)(SP), R9
  1993  	MOVQ	r10-(9*8+8)(SP), R10
  1994  	MOVQ	r11-(10*8+8)(SP), R11
  1995  	MOVQ	r12-(11*8+8)(SP), R12
  1996  	MOVQ	r13-(12*8+8)(SP), R13
  1997  	MOVQ	r14-(13*8+8)(SP), R14
  1998  	MOVQ	r15-(14*8+8)(SP), R15
  1999  
  2000  	RET
  2001  
  2002  // runtime.debugCallCheck assumes that functions defined with the
  2003  // DEBUG_CALL_FN macro are safe points to inject calls.
  2004  #define DEBUG_CALL_FN(NAME,MAXSIZE)		\
  2005  TEXT NAME(SB),WRAPPER,$MAXSIZE-0;		\
  2006  	NO_LOCAL_POINTERS;			\
  2007  	MOVQ	$0, R12;				\
  2008  	BYTE	$0xcc;				\
  2009  	MOVQ	$1, R12;				\
  2010  	BYTE	$0xcc;				\
  2011  	RET
  2012  DEBUG_CALL_FN(debugCall32<>, 32)
  2013  DEBUG_CALL_FN(debugCall64<>, 64)
  2014  DEBUG_CALL_FN(debugCall128<>, 128)
  2015  DEBUG_CALL_FN(debugCall256<>, 256)
  2016  DEBUG_CALL_FN(debugCall512<>, 512)
  2017  DEBUG_CALL_FN(debugCall1024<>, 1024)
  2018  DEBUG_CALL_FN(debugCall2048<>, 2048)
  2019  DEBUG_CALL_FN(debugCall4096<>, 4096)
  2020  DEBUG_CALL_FN(debugCall8192<>, 8192)
  2021  DEBUG_CALL_FN(debugCall16384<>, 16384)
  2022  DEBUG_CALL_FN(debugCall32768<>, 32768)
  2023  DEBUG_CALL_FN(debugCall65536<>, 65536)
  2024  
  2025  // func debugCallPanicked(val interface{})
  2026  TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16
  2027  	// Copy the panic value to the top of stack.
  2028  	MOVQ	val_type+0(FP), AX
  2029  	MOVQ	AX, 0(SP)
  2030  	MOVQ	val_data+8(FP), AX
  2031  	MOVQ	AX, 8(SP)
  2032  	MOVQ	$2, R12
  2033  	BYTE	$0xcc
  2034  	RET
  2035  
  2036  // Note: these functions use a special calling convention to save generated code space.
  2037  // Arguments are passed in registers, but the space for those arguments are allocated
  2038  // in the caller's stack frame. These stubs write the args into that stack space and
  2039  // then tail call to the corresponding runtime handler.
  2040  // The tail call makes these stubs disappear in backtraces.
  2041  // Defined as ABIInternal since they do not use the stack-based Go ABI.
  2042  TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
  2043  	MOVQ	CX, BX
  2044  	JMP	runtime·goPanicIndex<ABIInternal>(SB)
  2045  TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
  2046  	MOVQ	CX, BX
  2047  	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
  2048  TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
  2049  	MOVQ	CX, AX
  2050  	MOVQ	DX, BX
  2051  	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
  2052  TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2053  	MOVQ	CX, AX
  2054  	MOVQ	DX, BX
  2055  	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
  2056  TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
  2057  	MOVQ	CX, AX
  2058  	MOVQ	DX, BX
  2059  	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
  2060  TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2061  	MOVQ	CX, AX
  2062  	MOVQ	DX, BX
  2063  	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
  2064  TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
  2065  	MOVQ	CX, BX
  2066  	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
  2067  TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
  2068  	MOVQ	CX, BX
  2069  	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
  2070  TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
  2071  	MOVQ	DX, AX
  2072  	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
  2073  TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
  2074  	MOVQ	DX, AX
  2075  	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
  2076  TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
  2077  	MOVQ	DX, AX
  2078  	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
  2079  TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
  2080  	MOVQ	DX, AX
  2081  	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
  2082  TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
  2083  	MOVQ	CX, AX
  2084  	MOVQ	DX, BX
  2085  	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
  2086  TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
  2087  	MOVQ	CX, AX
  2088  	MOVQ	DX, BX
  2089  	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
  2090  TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
  2091  	MOVQ	CX, BX
  2092  	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
  2093  TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
  2094  	MOVQ	CX, BX
  2095  	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
  2096  TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
  2097  	MOVQ	DX, AX
  2098  	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)
  2099  
  2100  #ifdef GOOS_android
  2101  // Use the free TLS_SLOT_APP slot #2 on Android Q.
  2102  // Earlier androids are set up in gcc_android.c.
  2103  DATA runtime·tls_g+0(SB)/8, $16
  2104  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2105  #endif
  2106  #ifdef GOOS_windows
  2107  GLOBL runtime·tls_g+0(SB), NOPTR, $8
  2108  #endif
  2109  
  2110  // The compiler and assembler's -spectre=ret mode rewrites
  2111  // all indirect CALL AX / JMP AX instructions to be
  2112  // CALL retpolineAX / JMP retpolineAX.
  2113  // See https://support.google.com/faqs/answer/7625886.
  2114  #define RETPOLINE(reg) \
  2115  	/*   CALL setup */     BYTE $0xE8; BYTE $(2+2); BYTE $0; BYTE $0; BYTE $0;	\
  2116  	/* nospec: */									\
  2117  	/*   PAUSE */           BYTE $0xF3; BYTE $0x90;					\
  2118  	/*   JMP nospec */      BYTE $0xEB; BYTE $-(2+2);				\
  2119  	/* setup: */									\
  2120  	/*   MOVQ AX, 0(SP) */  BYTE $0x48|((reg&8)>>1); BYTE $0x89;			\
  2121  	                        BYTE $0x04|((reg&7)<<3); BYTE $0x24;			\
  2122  	/*   RET */             BYTE $0xC3
  2123  
  2124  TEXT runtime·retpolineAX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(0)
  2125  TEXT runtime·retpolineCX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(1)
  2126  TEXT runtime·retpolineDX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(2)
  2127  TEXT runtime·retpolineBX(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(3)
  2128  /* SP is 4, can't happen / magic encodings */
  2129  TEXT runtime·retpolineBP(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(5)
  2130  TEXT runtime·retpolineSI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(6)
  2131  TEXT runtime·retpolineDI(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(7)
  2132  TEXT runtime·retpolineR8(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(8)
  2133  TEXT runtime·retpolineR9(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(9)
  2134  TEXT runtime·retpolineR10(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(10)
  2135  TEXT runtime·retpolineR11(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(11)
  2136  TEXT runtime·retpolineR12(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(12)
  2137  TEXT runtime·retpolineR13(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(13)
  2138  TEXT runtime·retpolineR14(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(14)
  2139  TEXT runtime·retpolineR15(SB),NOSPLIT|NOFRAME,$0; RETPOLINE(15)
  2140  
  2141  TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0
  2142  	MOVQ BP, AX
  2143  	RET
  2144  

View as plain text