Source file src/runtime/mbarrier.go

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: write barriers.
     6  //
     7  // For the concurrent garbage collector, the Go compiler implements
     8  // updates to pointer-valued fields that may be in heap objects by
     9  // emitting calls to write barriers. The main write barrier for
    10  // individual pointer writes is gcWriteBarrier and is implemented in
    11  // assembly. This file contains write barrier entry points for bulk
    12  // operations. See also mwbbuf.go.
    13  
    14  package runtime
    15  
    16  import (
    17  	"internal/abi"
    18  	"internal/goarch"
    19  	"internal/goexperiment"
    20  	"unsafe"
    21  )
    22  
    23  // Go uses a hybrid barrier that combines a Yuasa-style deletion
    24  // barrier—which shades the object whose reference is being
    25  // overwritten—with Dijkstra insertion barrier—which shades the object
    26  // whose reference is being written. The insertion part of the barrier
    27  // is necessary while the calling goroutine's stack is grey. In
    28  // pseudocode, the barrier is:
    29  //
    30  //     writePointer(slot, ptr):
    31  //         shade(*slot)
    32  //         if current stack is grey:
    33  //             shade(ptr)
    34  //         *slot = ptr
    35  //
    36  // slot is the destination in Go code.
    37  // ptr is the value that goes into the slot in Go code.
    38  //
    39  // Shade indicates that it has seen a white pointer by adding the referent
    40  // to wbuf as well as marking it.
    41  //
    42  // The two shades and the condition work together to prevent a mutator
    43  // from hiding an object from the garbage collector:
    44  //
    45  // 1. shade(*slot) prevents a mutator from hiding an object by moving
    46  // the sole pointer to it from the heap to its stack. If it attempts
    47  // to unlink an object from the heap, this will shade it.
    48  //
    49  // 2. shade(ptr) prevents a mutator from hiding an object by moving
    50  // the sole pointer to it from its stack into a black object in the
    51  // heap. If it attempts to install the pointer into a black object,
    52  // this will shade it.
    53  //
    54  // 3. Once a goroutine's stack is black, the shade(ptr) becomes
    55  // unnecessary. shade(ptr) prevents hiding an object by moving it from
    56  // the stack to the heap, but this requires first having a pointer
    57  // hidden on the stack. Immediately after a stack is scanned, it only
    58  // points to shaded objects, so it's not hiding anything, and the
    59  // shade(*slot) prevents it from hiding any other pointers on its
    60  // stack.
    61  //
    62  // For a detailed description of this barrier and proof of
    63  // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
    64  //
    65  //
    66  //
    67  // Dealing with memory ordering:
    68  //
    69  // Both the Yuasa and Dijkstra barriers can be made conditional on the
    70  // color of the object containing the slot. We chose not to make these
    71  // conditional because the cost of ensuring that the object holding
    72  // the slot doesn't concurrently change color without the mutator
    73  // noticing seems prohibitive.
    74  //
    75  // Consider the following example where the mutator writes into
    76  // a slot and then loads the slot's mark bit while the GC thread
    77  // writes to the slot's mark bit and then as part of scanning reads
    78  // the slot.
    79  //
    80  // Initially both [slot] and [slotmark] are 0 (nil)
    81  // Mutator thread          GC thread
    82  // st [slot], ptr          st [slotmark], 1
    83  //
    84  // ld r1, [slotmark]       ld r2, [slot]
    85  //
    86  // Without an expensive memory barrier between the st and the ld, the final
    87  // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
    88  // example of what can happen when loads are allowed to be reordered with older
    89  // stores (avoiding such reorderings lies at the heart of the classic
    90  // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
    91  // barriers, which will slow down both the mutator and the GC, we always grey
    92  // the ptr object regardless of the slot's color.
    93  //
    94  // Another place where we intentionally omit memory barriers is when
    95  // accessing mheap_.arena_used to check if a pointer points into the
    96  // heap. On relaxed memory machines, it's possible for a mutator to
    97  // extend the size of the heap by updating arena_used, allocate an
    98  // object from this new region, and publish a pointer to that object,
    99  // but for tracing running on another processor to observe the pointer
   100  // but use the old value of arena_used. In this case, tracing will not
   101  // mark the object, even though it's reachable. However, the mutator
   102  // is guaranteed to execute a write barrier when it publishes the
   103  // pointer, so it will take care of marking the object. A general
   104  // consequence of this is that the garbage collector may cache the
   105  // value of mheap_.arena_used. (See issue #9984.)
   106  //
   107  //
   108  // Stack writes:
   109  //
   110  // The compiler omits write barriers for writes to the current frame,
   111  // but if a stack pointer has been passed down the call stack, the
   112  // compiler will generate a write barrier for writes through that
   113  // pointer (because it doesn't know it's not a heap pointer).
   114  //
   115  //
   116  // Global writes:
   117  //
   118  // The Go garbage collector requires write barriers when heap pointers
   119  // are stored in globals. Many garbage collectors ignore writes to
   120  // globals and instead pick up global -> heap pointers during
   121  // termination. This increases pause time, so we instead rely on write
   122  // barriers for writes to globals so that we don't have to rescan
   123  // global during mark termination.
   124  //
   125  //
   126  // Publication ordering:
   127  //
   128  // The write barrier is *pre-publication*, meaning that the write
   129  // barrier happens prior to the *slot = ptr write that may make ptr
   130  // reachable by some goroutine that currently cannot reach it.
   131  //
   132  //
   133  // Signal handler pointer writes:
   134  //
   135  // In general, the signal handler cannot safely invoke the write
   136  // barrier because it may run without a P or even during the write
   137  // barrier.
   138  //
   139  // There is exactly one exception: profbuf.go omits a barrier during
   140  // signal handler profile logging. That's safe only because of the
   141  // deletion barrier. See profbuf.go for a detailed argument. If we
   142  // remove the deletion barrier, we'll have to work out a new way to
   143  // handle the profile logging.
   144  
   145  // typedmemmove copies a value of type typ to dst from src.
   146  // Must be nosplit, see #16026.
   147  //
   148  // TODO: Perfect for go:nosplitrec since we can't have a safe point
   149  // anywhere in the bulk barrier or memmove.
   150  //
   151  // typedmemmove should be an internal detail,
   152  // but widely used packages access it using linkname.
   153  // Notable members of the hall of shame include:
   154  //   - github.com/RomiChan/protobuf
   155  //   - github.com/segmentio/encoding
   156  //
   157  // Do not remove or change the type signature.
   158  // See go.dev/issue/67401.
   159  //
   160  //go:linkname typedmemmove
   161  //go:nosplit
   162  func typedmemmove(typ *abi.Type, dst, src unsafe.Pointer) {
   163  	if dst == src {
   164  		return
   165  	}
   166  	if writeBarrier.enabled && typ.Pointers() {
   167  		// This always copies a full value of type typ so it's safe
   168  		// to pass typ along as an optimization. See the comment on
   169  		// bulkBarrierPreWrite.
   170  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ)
   171  	}
   172  	// There's a race here: if some other goroutine can write to
   173  	// src, it may change some pointer in src after we've
   174  	// performed the write barrier but before we perform the
   175  	// memory copy. This safe because the write performed by that
   176  	// other goroutine must also be accompanied by a write
   177  	// barrier, so at worst we've unnecessarily greyed the old
   178  	// pointer that was in src.
   179  	memmove(dst, src, typ.Size_)
   180  	if goexperiment.CgoCheck2 {
   181  		cgoCheckMemmove2(typ, dst, src, 0, typ.Size_)
   182  	}
   183  }
   184  
   185  // wbZero performs the write barrier operations necessary before
   186  // zeroing a region of memory at address dst of type typ.
   187  // Does not actually do the zeroing.
   188  //
   189  //go:nowritebarrierrec
   190  //go:nosplit
   191  func wbZero(typ *_type, dst unsafe.Pointer) {
   192  	// This always copies a full value of type typ so it's safe
   193  	// to pass typ along as an optimization. See the comment on
   194  	// bulkBarrierPreWrite.
   195  	bulkBarrierPreWrite(uintptr(dst), 0, typ.PtrBytes, typ)
   196  }
   197  
   198  // wbMove performs the write barrier operations necessary before
   199  // copying a region of memory from src to dst of type typ.
   200  // Does not actually do the copying.
   201  //
   202  //go:nowritebarrierrec
   203  //go:nosplit
   204  func wbMove(typ *_type, dst, src unsafe.Pointer) {
   205  	// This always copies a full value of type typ so it's safe to
   206  	// pass a type here.
   207  	//
   208  	// See the comment on bulkBarrierPreWrite.
   209  	bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes, typ)
   210  }
   211  
   212  // reflect_typedmemmove is meant for package reflect,
   213  // but widely used packages access it using linkname.
   214  // Notable members of the hall of shame include:
   215  //   - gitee.com/quant1x/gox
   216  //   - github.com/goccy/json
   217  //   - github.com/modern-go/reflect2
   218  //   - github.com/ugorji/go/codec
   219  //   - github.com/v2pro/plz
   220  //
   221  // Do not remove or change the type signature.
   222  // See go.dev/issue/67401.
   223  //
   224  //go:linkname reflect_typedmemmove reflect.typedmemmove
   225  func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   226  	if raceenabled {
   227  		raceWriteObjectPC(typ, dst, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove))
   228  		raceReadObjectPC(typ, src, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove))
   229  	}
   230  	if msanenabled {
   231  		msanwrite(dst, typ.Size_)
   232  		msanread(src, typ.Size_)
   233  	}
   234  	if asanenabled {
   235  		asanwrite(dst, typ.Size_)
   236  		asanread(src, typ.Size_)
   237  	}
   238  	typedmemmove(typ, dst, src)
   239  }
   240  
   241  //go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove
   242  func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   243  	reflect_typedmemmove(typ, dst, src)
   244  }
   245  
   246  // reflectcallmove is invoked by reflectcall to copy the return values
   247  // out of the stack and into the heap, invoking the necessary write
   248  // barriers. dst, src, and size describe the return value area to
   249  // copy. typ describes the entire frame (not just the return values).
   250  // typ may be nil, which indicates write barriers are not needed.
   251  //
   252  // It must be nosplit and must only call nosplit functions because the
   253  // stack map of reflectcall is wrong.
   254  //
   255  //go:nosplit
   256  func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) {
   257  	if writeBarrier.enabled && typ != nil && typ.Pointers() && size >= goarch.PtrSize {
   258  		// Pass nil for the type. dst does not point to value of type typ,
   259  		// but rather points into one, so applying the optimization is not
   260  		// safe. See the comment on this function.
   261  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), size, nil)
   262  	}
   263  	memmove(dst, src, size)
   264  
   265  	// Move pointers returned in registers to a place where the GC can see them.
   266  	for i := range regs.Ints {
   267  		if regs.ReturnIsPtr.Get(i) {
   268  			regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i])
   269  		}
   270  	}
   271  }
   272  
   273  // typedslicecopy should be an internal detail,
   274  // but widely used packages access it using linkname.
   275  // Notable members of the hall of shame include:
   276  //   - github.com/segmentio/encoding
   277  //
   278  // Do not remove or change the type signature.
   279  // See go.dev/issue/67401.
   280  //
   281  //go:linkname typedslicecopy
   282  //go:nosplit
   283  func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int {
   284  	n := dstLen
   285  	if n > srcLen {
   286  		n = srcLen
   287  	}
   288  	if n == 0 {
   289  		return 0
   290  	}
   291  
   292  	// The compiler emits calls to typedslicecopy before
   293  	// instrumentation runs, so unlike the other copying and
   294  	// assignment operations, it's not instrumented in the calling
   295  	// code and needs its own instrumentation.
   296  	if raceenabled {
   297  		callerpc := getcallerpc()
   298  		pc := abi.FuncPCABIInternal(slicecopy)
   299  		racewriterangepc(dstPtr, uintptr(n)*typ.Size_, callerpc, pc)
   300  		racereadrangepc(srcPtr, uintptr(n)*typ.Size_, callerpc, pc)
   301  	}
   302  	if msanenabled {
   303  		msanwrite(dstPtr, uintptr(n)*typ.Size_)
   304  		msanread(srcPtr, uintptr(n)*typ.Size_)
   305  	}
   306  	if asanenabled {
   307  		asanwrite(dstPtr, uintptr(n)*typ.Size_)
   308  		asanread(srcPtr, uintptr(n)*typ.Size_)
   309  	}
   310  
   311  	if goexperiment.CgoCheck2 {
   312  		cgoCheckSliceCopy(typ, dstPtr, srcPtr, n)
   313  	}
   314  
   315  	if dstPtr == srcPtr {
   316  		return n
   317  	}
   318  
   319  	// Note: No point in checking typ.PtrBytes here:
   320  	// compiler only emits calls to typedslicecopy for types with pointers,
   321  	// and growslice and reflect_typedslicecopy check for pointers
   322  	// before calling typedslicecopy.
   323  	size := uintptr(n) * typ.Size_
   324  	if writeBarrier.enabled {
   325  		// This always copies one or more full values of type typ so
   326  		// it's safe to pass typ along as an optimization. See the comment on
   327  		// bulkBarrierPreWrite.
   328  		pwsize := size - typ.Size_ + typ.PtrBytes
   329  		bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize, typ)
   330  	}
   331  	// See typedmemmove for a discussion of the race between the
   332  	// barrier and memmove.
   333  	memmove(dstPtr, srcPtr, size)
   334  	return n
   335  }
   336  
   337  // reflect_typedslicecopy is meant for package reflect,
   338  // but widely used packages access it using linkname.
   339  // Notable members of the hall of shame include:
   340  //   - gitee.com/quant1x/gox
   341  //   - github.com/modern-go/reflect2
   342  //   - github.com/RomiChan/protobuf
   343  //   - github.com/segmentio/encoding
   344  //   - github.com/v2pro/plz
   345  //
   346  // Do not remove or change the type signature.
   347  // See go.dev/issue/67401.
   348  //
   349  //go:linkname reflect_typedslicecopy reflect.typedslicecopy
   350  func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
   351  	if !elemType.Pointers() {
   352  		return slicecopy(dst.array, dst.len, src.array, src.len, elemType.Size_)
   353  	}
   354  	return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len)
   355  }
   356  
   357  // typedmemclr clears the typed memory at ptr with type typ. The
   358  // memory at ptr must already be initialized (and hence in type-safe
   359  // state). If the memory is being initialized for the first time, see
   360  // memclrNoHeapPointers.
   361  //
   362  // If the caller knows that typ has pointers, it can alternatively
   363  // call memclrHasPointers.
   364  //
   365  // TODO: A "go:nosplitrec" annotation would be perfect for this.
   366  //
   367  //go:nosplit
   368  func typedmemclr(typ *_type, ptr unsafe.Pointer) {
   369  	if writeBarrier.enabled && typ.Pointers() {
   370  		// This always clears a whole value of type typ, so it's
   371  		// safe to pass a type here and apply the optimization.
   372  		// See the comment on bulkBarrierPreWrite.
   373  		bulkBarrierPreWrite(uintptr(ptr), 0, typ.PtrBytes, typ)
   374  	}
   375  	memclrNoHeapPointers(ptr, typ.Size_)
   376  }
   377  
   378  // reflect_typedslicecopy is meant for package reflect,
   379  // but widely used packages access it using linkname.
   380  // Notable members of the hall of shame include:
   381  //   - github.com/ugorji/go/codec
   382  //
   383  // Do not remove or change the type signature.
   384  // See go.dev/issue/67401.
   385  //
   386  //go:linkname reflect_typedmemclr reflect.typedmemclr
   387  func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) {
   388  	typedmemclr(typ, ptr)
   389  }
   390  
   391  //go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial
   392  func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) {
   393  	if writeBarrier.enabled && typ.Pointers() {
   394  		// Pass nil for the type. ptr does not point to value of type typ,
   395  		// but rather points into one so it's not safe to apply the optimization.
   396  		// See the comment on this function in the reflect package and the
   397  		// comment on bulkBarrierPreWrite.
   398  		bulkBarrierPreWrite(uintptr(ptr), 0, size, nil)
   399  	}
   400  	memclrNoHeapPointers(ptr, size)
   401  }
   402  
   403  //go:linkname reflect_typedarrayclear reflect.typedarrayclear
   404  func reflect_typedarrayclear(typ *_type, ptr unsafe.Pointer, len int) {
   405  	size := typ.Size_ * uintptr(len)
   406  	if writeBarrier.enabled && typ.Pointers() {
   407  		// This always clears whole elements of an array, so it's
   408  		// safe to pass a type here. See the comment on bulkBarrierPreWrite.
   409  		bulkBarrierPreWrite(uintptr(ptr), 0, size, typ)
   410  	}
   411  	memclrNoHeapPointers(ptr, size)
   412  }
   413  
   414  // memclrHasPointers clears n bytes of typed memory starting at ptr.
   415  // The caller must ensure that the type of the object at ptr has
   416  // pointers, usually by checking typ.PtrBytes. However, ptr
   417  // does not have to point to the start of the allocation.
   418  //
   419  // memclrHasPointers should be an internal detail,
   420  // but widely used packages access it using linkname.
   421  // Notable members of the hall of shame include:
   422  //   - github.com/bytedance/sonic
   423  //
   424  // Do not remove or change the type signature.
   425  // See go.dev/issue/67401.
   426  //
   427  //go:linkname memclrHasPointers
   428  //go:nosplit
   429  func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
   430  	// Pass nil for the type since we don't have one here anyway.
   431  	bulkBarrierPreWrite(uintptr(ptr), 0, n, nil)
   432  	memclrNoHeapPointers(ptr, n)
   433  }
   434  

View as plain text