// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: finalizers and block profiling. package runtime import ( "internal/abi" "internal/goarch" "internal/runtime/atomic" "runtime/internal/sys" "unsafe" ) // finblock is an array of finalizers to be executed. finblocks are // arranged in a linked list for the finalizer queue. // // finblock is allocated from non-GC'd memory, so any heap pointers // must be specially handled. GC currently assumes that the finalizer // queue does not grow during marking (but it can shrink). type finblock struct { _ sys.NotInHeap alllink *finblock next *finblock cnt uint32 _ int32 fin [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer } var fingStatus atomic.Uint32 // finalizer goroutine status. const ( fingUninitialized uint32 = iota fingCreated uint32 = 1 << (iota - 1) fingRunningFinalizer fingWait fingWake ) var finlock mutex // protects the following variables var fing *g // goroutine that runs finalizers var finq *finblock // list of finalizers that are to be executed var finc *finblock // cache of free blocks var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte var allfin *finblock // list of all blocks // NOTE: Layout known to queuefinalizer. type finalizer struct { fn *funcval // function to call (may be a heap pointer) arg unsafe.Pointer // ptr to object (may be a heap pointer) nret uintptr // bytes of return values from fn fint *_type // type of first argument of fn ot *ptrtype // type of ptr to object (may be a heap pointer) } var finalizer1 = [...]byte{ // Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here) // Each byte describes 8 words. // Need 8 Finalizers described by 5 bytes before pattern repeats: // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // ptr ptr INT ptr ptr // aka // // ptr ptr INT ptr ptr ptr ptr INT // ptr ptr ptr ptr INT ptr ptr ptr // ptr INT ptr ptr ptr ptr INT ptr // ptr ptr ptr INT ptr ptr ptr ptr // INT ptr ptr ptr ptr INT ptr ptr // // Assumptions about Finalizer layout checked below. 1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7, 1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7, 1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7, 1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7, 0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7, } // lockRankMayQueueFinalizer records the lock ranking effects of a // function that may call queuefinalizer. func lockRankMayQueueFinalizer() { lockWithRankMayAcquire(&finlock, getLockRank(&finlock)) } func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) { if gcphase != _GCoff { // Currently we assume that the finalizer queue won't // grow during marking so we don't have to rescan it // during mark termination. If we ever need to lift // this assumption, we can do it by adding the // necessary barriers to queuefinalizer (which it may // have automatically). throw("queuefinalizer during GC") } lock(&finlock) if finq == nil || finq.cnt == uint32(len(finq.fin)) { if finc == nil { finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys)) finc.alllink = allfin allfin = finc if finptrmask[0] == 0 { // Build pointer mask for Finalizer array in block. // Check assumptions made in finalizer1 array above. if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize || unsafe.Offsetof(finalizer{}.fn) != 0 || unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize || unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize || unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize || unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) { throw("finalizer out of sync") } for i := range finptrmask { finptrmask[i] = finalizer1[i%len(finalizer1)] } } } block := finc finc = block.next block.next = finq finq = block } f := &finq.fin[finq.cnt] atomic.Xadd(&finq.cnt, +1) // Sync with markroots f.fn = fn f.nret = nret f.fint = fint f.ot = ot f.arg = p unlock(&finlock) fingStatus.Or(fingWake) } //go:nowritebarrier func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) { for fb := allfin; fb != nil; fb = fb.alllink { for i := uint32(0); i < fb.cnt; i++ { f := &fb.fin[i] callback(f.fn, f.arg, f.nret, f.fint, f.ot) } } } func wakefing() *g { if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok { return fing } return nil } func createfing() { // start the finalizer goroutine exactly once if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) { go runfinq() } } func finalizercommit(gp *g, lock unsafe.Pointer) bool { unlock((*mutex)(lock)) // fingStatus should be modified after fing is put into a waiting state // to avoid waking fing in running state, even if it is about to be parked. fingStatus.Or(fingWait) return true } // This is the goroutine that runs all of the finalizers. func runfinq() { var ( frame unsafe.Pointer framecap uintptr argRegs int ) gp := getg() lock(&finlock) fing = gp unlock(&finlock) for { lock(&finlock) fb := finq finq = nil if fb == nil { gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1) continue } argRegs = intArgRegs unlock(&finlock) if raceenabled { racefingo() } for fb != nil { for i := fb.cnt; i > 0; i-- { f := &fb.fin[i-1] var regs abi.RegArgs // The args may be passed in registers or on stack. Even for // the register case, we still need the spill slots. // TODO: revisit if we remove spill slots. // // Unfortunately because we can have an arbitrary // amount of returns and it would be complex to try and // figure out how many of those can get passed in registers, // just conservatively assume none of them do. framesz := unsafe.Sizeof((any)(nil)) + f.nret if framecap < framesz { // The frame does not contain pointers interesting for GC, // all not yet finalized objects are stored in finq. // If we do not mark it as FlagNoScan, // the last finalized object is not collected. frame = mallocgc(framesz, nil, true) framecap = framesz } if f.fint == nil { throw("missing type in runfinq") } r := frame if argRegs > 0 { r = unsafe.Pointer(®s.Ints) } else { // frame is effectively uninitialized // memory. That means we have to clear // it before writing to it to avoid // confusing the write barrier. *(*[2]uintptr)(frame) = [2]uintptr{} } switch f.fint.Kind_ & abi.KindMask { case abi.Pointer: // direct use of pointer *(*unsafe.Pointer)(r) = f.arg case abi.Interface: ityp := (*interfacetype)(unsafe.Pointer(f.fint)) // set up with empty interface (*eface)(r)._type = &f.ot.Type (*eface)(r).data = f.arg if len(ityp.Methods) != 0 { // convert to interface with methods // this conversion is guaranteed to succeed - we checked in SetFinalizer (*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type) } default: throw("bad kind in runfinq") } fingStatus.Or(fingRunningFinalizer) reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), ®s) fingStatus.And(^fingRunningFinalizer) // Drop finalizer queue heap references // before hiding them from markroot. // This also ensures these will be // clear if we reuse the finalizer. f.fn = nil f.arg = nil f.ot = nil atomic.Store(&fb.cnt, i-1) } next := fb.next lock(&finlock) fb.next = finc finc = fb unlock(&finlock) fb = next } } } func isGoPointerWithoutSpan(p unsafe.Pointer) bool { // 0-length objects are okay. if p == unsafe.Pointer(&zerobase) { return true } // Global initializers might be linker-allocated. // var Foo = &Object{} // func main() { // runtime.SetFinalizer(Foo, nil) // } // The relevant segments are: noptrdata, data, bss, noptrbss. // We cannot assume they are in any order or even contiguous, // due to external linking. for datap := &firstmoduledata; datap != nil; datap = datap.next { if datap.noptrdata <= uintptr(p) && uintptr(p) < datap.enoptrdata || datap.data <= uintptr(p) && uintptr(p) < datap.edata || datap.bss <= uintptr(p) && uintptr(p) < datap.ebss || datap.noptrbss <= uintptr(p) && uintptr(p) < datap.enoptrbss { return true } } return false } // blockUntilEmptyFinalizerQueue blocks until either the finalizer // queue is emptied (and the finalizers have executed) or the timeout // is reached. Returns true if the finalizer queue was emptied. // This is used by the runtime and sync tests. func blockUntilEmptyFinalizerQueue(timeout int64) bool { start := nanotime() for nanotime()-start < timeout { lock(&finlock) // We know the queue has been drained when both finq is nil // and the finalizer g has stopped executing. empty := finq == nil empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait unlock(&finlock) if empty { return true } Gosched() } return false } // SetFinalizer sets the finalizer associated with obj to the provided // finalizer function. When the garbage collector finds an unreachable block // with an associated finalizer, it clears the association and runs // finalizer(obj) in a separate goroutine. This makes obj reachable again, // but now without an associated finalizer. Assuming that SetFinalizer // is not called again, the next time the garbage collector sees // that obj is unreachable, it will free obj. // // SetFinalizer(obj, nil) clears any finalizer associated with obj. // // The argument obj must be a pointer to an object allocated by calling // new, by taking the address of a composite literal, or by taking the // address of a local variable. // The argument finalizer must be a function that takes a single argument // to which obj's type can be assigned, and can have arbitrary ignored return // values. If either of these is not true, SetFinalizer may abort the // program. // // Finalizers are run in dependency order: if A points at B, both have // finalizers, and they are otherwise unreachable, only the finalizer // for A runs; once A is freed, the finalizer for B can run. // If a cyclic structure includes a block with a finalizer, that // cycle is not guaranteed to be garbage collected and the finalizer // is not guaranteed to run, because there is no ordering that // respects the dependencies. // // The finalizer is scheduled to run at some arbitrary time after the // program can no longer reach the object to which obj points. // There is no guarantee that finalizers will run before a program exits, // so typically they are useful only for releasing non-memory resources // associated with an object during a long-running program. // For example, an [os.File] object could use a finalizer to close the // associated operating system file descriptor when a program discards // an os.File without calling Close, but it would be a mistake // to depend on a finalizer to flush an in-memory I/O buffer such as a // [bufio.Writer], because the buffer would not be flushed at program exit. // // It is not guaranteed that a finalizer will run if the size of *obj is // zero bytes, because it may share same address with other zero-size // objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees. // // It is not guaranteed that a finalizer will run for objects allocated // in initializers for package-level variables. Such objects may be // linker-allocated, not heap-allocated. // // Note that because finalizers may execute arbitrarily far into the future // after an object is no longer referenced, the runtime is allowed to perform // a space-saving optimization that batches objects together in a single // allocation slot. The finalizer for an unreferenced object in such an // allocation may never run if it always exists in the same batch as a // referenced object. Typically, this batching only happens for tiny // (on the order of 16 bytes or less) and pointer-free objects. // // A finalizer may run as soon as an object becomes unreachable. // In order to use finalizers correctly, the program must ensure that // the object is reachable until it is no longer required. // Objects stored in global variables, or that can be found by tracing // pointers from a global variable, are reachable. A function argument or // receiver may become unreachable at the last point where the function // mentions it. To make an unreachable object reachable, pass the object // to a call of the [KeepAlive] function to mark the last point in the // function where the object must be reachable. // // For example, if p points to a struct, such as os.File, that contains // a file descriptor d, and p has a finalizer that closes that file // descriptor, and if the last use of p in a function is a call to // syscall.Write(p.d, buf, size), then p may be unreachable as soon as // the program enters [syscall.Write]. The finalizer may run at that moment, // closing p.d, causing syscall.Write to fail because it is writing to // a closed file descriptor (or, worse, to an entirely different // file descriptor opened by a different goroutine). To avoid this problem, // call KeepAlive(p) after the call to syscall.Write. // // A single goroutine runs all finalizers for a program, sequentially. // If a finalizer must run for a long time, it should do so by starting // a new goroutine. // // In the terminology of the Go memory model, a call // SetFinalizer(x, f) “synchronizes before” the finalization call f(x). // However, there is no guarantee that KeepAlive(x) or any other use of x // “synchronizes before” f(x), so in general a finalizer should use a mutex // or other synchronization mechanism if it needs to access mutable state in x. // For example, consider a finalizer that inspects a mutable field in x // that is modified from time to time in the main program before x // becomes unreachable and the finalizer is invoked. // The modifications in the main program and the inspection in the finalizer // need to use appropriate synchronization, such as mutexes or atomic updates, // to avoid read-write races. func SetFinalizer(obj any, finalizer any) { if debug.sbrk != 0 { // debug.sbrk never frees memory, so no finalizers run // (and we don't have the data structures to record them). return } e := efaceOf(&obj) etyp := e._type if etyp == nil { throw("runtime.SetFinalizer: first argument is nil") } if etyp.Kind_&abi.KindMask != abi.Pointer { throw("runtime.SetFinalizer: first argument is " + toRType(etyp).string() + ", not pointer") } ot := (*ptrtype)(unsafe.Pointer(etyp)) if ot.Elem == nil { throw("nil elem type!") } if inUserArenaChunk(uintptr(e.data)) { // Arena-allocated objects are not eligible for finalizers. throw("runtime.SetFinalizer: first argument was allocated into an arena") } // find the containing object base, span, _ := findObject(uintptr(e.data), 0, 0) if base == 0 { if isGoPointerWithoutSpan(e.data) { return } throw("runtime.SetFinalizer: pointer not in allocated block") } // Move base forward if we've got an allocation header. if !span.spanclass.noscan() && !heapBitsInSpan(span.elemsize) && span.spanclass.sizeclass() != 0 { base += mallocHeaderSize } if uintptr(e.data) != base { // As an implementation detail we allow to set finalizers for an inner byte // of an object if it could come from tiny alloc (see mallocgc for details). if ot.Elem == nil || ot.Elem.Pointers() || ot.Elem.Size_ >= maxTinySize { throw("runtime.SetFinalizer: pointer not at beginning of allocated block") } } f := efaceOf(&finalizer) ftyp := f._type if ftyp == nil { // switch to system stack and remove finalizer systemstack(func() { removefinalizer(e.data) }) return } if ftyp.Kind_&abi.KindMask != abi.Func { throw("runtime.SetFinalizer: second argument is " + toRType(ftyp).string() + ", not a function") } ft := (*functype)(unsafe.Pointer(ftyp)) if ft.IsVariadic() { throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string() + " because dotdotdot") } if ft.InCount != 1 { throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string()) } fint := ft.InSlice()[0] switch { case fint == etyp: // ok - same type goto okarg case fint.Kind_&abi.KindMask == abi.Pointer: if (fint.Uncommon() == nil || etyp.Uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).Elem == ot.Elem { // ok - not same type, but both pointers, // one or the other is unnamed, and same element type, so assignable. goto okarg } case fint.Kind_&abi.KindMask == abi.Interface: ityp := (*interfacetype)(unsafe.Pointer(fint)) if len(ityp.Methods) == 0 { // ok - satisfies empty interface goto okarg } if itab := assertE2I2(ityp, efaceOf(&obj)._type); itab != nil { goto okarg } } throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string()) okarg: // compute size needed for return parameters nret := uintptr(0) for _, t := range ft.OutSlice() { nret = alignUp(nret, uintptr(t.Align_)) + t.Size_ } nret = alignUp(nret, goarch.PtrSize) // make sure we have a finalizer goroutine createfing() systemstack(func() { if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) { throw("runtime.SetFinalizer: finalizer already set") } }) } // Mark KeepAlive as noinline so that it is easily detectable as an intrinsic. // //go:noinline // KeepAlive marks its argument as currently reachable. // This ensures that the object is not freed, and its finalizer is not run, // before the point in the program where KeepAlive is called. // // A very simplified example showing where KeepAlive is required: // // type File struct { d int } // d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0) // // ... do something if err != nil ... // p := &File{d} // runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) }) // var buf [10]byte // n, err := syscall.Read(p.d, buf[:]) // // Ensure p is not finalized until Read returns. // runtime.KeepAlive(p) // // No more uses of p after this point. // // Without the KeepAlive call, the finalizer could run at the start of // [syscall.Read], closing the file descriptor before syscall.Read makes // the actual system call. // // Note: KeepAlive should only be used to prevent finalizers from // running prematurely. In particular, when used with [unsafe.Pointer], // the rules for valid uses of unsafe.Pointer still apply. func KeepAlive(x any) { // Introduce a use of x that the compiler can't eliminate. // This makes sure x is alive on entry. We need x to be alive // on entry for "defer runtime.KeepAlive(x)"; see issue 21402. if cgoAlwaysFalse { println(x) } }