// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build ignore // Generate tables for small malloc size classes. // // See malloc.go for overview. // // The size classes are chosen so that rounding an allocation // request up to the next size class wastes at most 12.5% (1.125x). // // Each size class has its own page count that gets allocated // and chopped up when new objects of the size class are needed. // That page count is chosen so that chopping up the run of // pages into objects of the given size wastes at most 12.5% (1.125x) // of the memory. It is not necessary that the cutoff here be // the same as above. // // The two sources of waste multiply, so the worst possible case // for the above constraints would be that allocations of some // size might have a 26.6% (1.266x) overhead. // In practice, only one of the wastes comes into play for a // given size (sizes < 512 waste mainly on the round-up, // sizes > 512 waste mainly on the page chopping). // For really small sizes, alignment constraints force the // overhead higher. package main import ( "bytes" "flag" "fmt" "go/format" "io" "log" "math" "math/bits" "os" ) // Generate msize.go var stdout = flag.Bool("stdout", false, "write to stdout instead of sizeclasses.go") func main() { flag.Parse() var b bytes.Buffer fmt.Fprintln(&b, "// Code generated by mksizeclasses.go; DO NOT EDIT.") fmt.Fprintln(&b, "//go:generate go run mksizeclasses.go") fmt.Fprintln(&b) fmt.Fprintln(&b, "package runtime") classes := makeClasses() printComment(&b, classes) printClasses(&b, classes) out, err := format.Source(b.Bytes()) if err != nil { log.Fatal(err) } if *stdout { _, err = os.Stdout.Write(out) } else { err = os.WriteFile("sizeclasses.go", out, 0666) } if err != nil { log.Fatal(err) } } const ( // Constants that we use and will transfer to the runtime. minHeapAlign = 8 maxSmallSize = 32 << 10 smallSizeDiv = 8 smallSizeMax = 1024 largeSizeDiv = 128 pageShift = 13 // Derived constants. pageSize = 1 << pageShift ) type class struct { size int // max size npages int // number of pages } func powerOfTwo(x int) bool { return x != 0 && x&(x-1) == 0 } func makeClasses() []class { var classes []class classes = append(classes, class{}) // class #0 is a dummy entry align := minHeapAlign for size := align; size <= maxSmallSize; size += align { if powerOfTwo(size) { // bump alignment once in a while if size >= 2048 { align = 256 } else if size >= 128 { align = size / 8 } else if size >= 32 { align = 16 // heap bitmaps assume 16 byte alignment for allocations >= 32 bytes. } } if !powerOfTwo(align) { panic("incorrect alignment") } // Make the allocnpages big enough that // the leftover is less than 1/8 of the total, // so wasted space is at most 12.5%. allocsize := pageSize for allocsize%size > allocsize/8 { allocsize += pageSize } npages := allocsize / pageSize // If the previous sizeclass chose the same // allocation size and fit the same number of // objects into the page, we might as well // use just this size instead of having two // different sizes. if len(classes) > 1 && npages == classes[len(classes)-1].npages && allocsize/size == allocsize/classes[len(classes)-1].size { classes[len(classes)-1].size = size continue } classes = append(classes, class{size: size, npages: npages}) } // Increase object sizes if we can fit the same number of larger objects // into the same number of pages. For example, we choose size 8448 above // with 6 objects in 7 pages. But we can well use object size 9472, // which is also 6 objects in 7 pages but +1024 bytes (+12.12%). // We need to preserve at least largeSizeDiv alignment otherwise // sizeToClass won't work. for i := range classes { if i == 0 { continue } c := &classes[i] psize := c.npages * pageSize new_size := (psize / (psize / c.size)) &^ (largeSizeDiv - 1) if new_size > c.size { c.size = new_size } } if len(classes) != 68 { panic("number of size classes has changed") } for i := range classes { computeDivMagic(&classes[i]) } return classes } // computeDivMagic checks that the division required to compute object // index from span offset can be computed using 32-bit multiplication. // n / c.size is implemented as (n * (^uint32(0)/uint32(c.size) + 1)) >> 32 // for all 0 <= n <= c.npages * pageSize func computeDivMagic(c *class) { // divisor d := c.size if d == 0 { return } // maximum input value for which the formula needs to work. max := c.npages * pageSize // As reported in [1], if n and d are unsigned N-bit integers, we // can compute n / d as ⌊n * c / 2^F⌋, where c is ⌈2^F / d⌉ and F is // computed with: // // Algorithm 2: Algorithm to select the number of fractional bits // and the scaled approximate reciprocal in the case of unsigned // integers. // // if d is a power of two then // Let F ← log₂(d) and c = 1. // else // Let F ← N + L where L is the smallest integer // such that d ≤ (2^(N+L) mod d) + 2^L. // end if // // [1] "Faster Remainder by Direct Computation: Applications to // Compilers and Software Libraries" Daniel Lemire, Owen Kaser, // Nathan Kurz arXiv:1902.01961 // // To minimize the risk of introducing errors, we implement the // algorithm exactly as stated, rather than trying to adapt it to // fit typical Go idioms. N := bits.Len(uint(max)) var F int if powerOfTwo(d) { F = int(math.Log2(float64(d))) if d != 1< 32 { fmt.Printf("d=%d max=%d N=%d F=%d\n", c.size, max, N, F) panic("size class requires more than 32 bits of precision") } // Brute force double-check with the exact computation that will be // done by the runtime. m := ^uint32(0)/uint32(c.size) + 1 for n := 0; n <= max; n++ { if uint32((uint64(n)*uint64(m))>>32) != uint32(n/c.size) { fmt.Printf("d=%d max=%d m=%d n=%d\n", d, max, m, n) panic("bad 32-bit multiply magic") } } } func printComment(w io.Writer, classes []class) { fmt.Fprintf(w, "// %-5s %-9s %-10s %-7s %-10s %-9s %-9s\n", "class", "bytes/obj", "bytes/span", "objects", "tail waste", "max waste", "min align") prevSize := 0 var minAligns [pageShift + 1]int for i, c := range classes { if i == 0 { continue } spanSize := c.npages * pageSize objects := spanSize / c.size tailWaste := spanSize - c.size*(spanSize/c.size) maxWaste := float64((c.size-prevSize-1)*objects+tailWaste) / float64(spanSize) alignBits := bits.TrailingZeros(uint(c.size)) if alignBits > pageShift { // object alignment is capped at page alignment alignBits = pageShift } for i := range minAligns { if i > alignBits { minAligns[i] = 0 } else if minAligns[i] == 0 { minAligns[i] = c.size } } prevSize = c.size fmt.Fprintf(w, "// %5d %9d %10d %7d %10d %8.2f%% %9d\n", i, c.size, spanSize, objects, tailWaste, 100*maxWaste, 1<= size { sc[i] = j break } } } fmt.Fprint(w, "var size_to_class8 = [smallSizeMax/smallSizeDiv+1]uint8 {") for _, v := range sc { fmt.Fprintf(w, "%d,", v) } fmt.Fprintln(w, "}") // map from size to size class, for large sizes. sc = make([]int, (maxSmallSize-smallSizeMax)/largeSizeDiv+1) for i := range sc { size := smallSizeMax + i*largeSizeDiv for j, c := range classes { if c.size >= size { sc[i] = j break } } } fmt.Fprint(w, "var size_to_class128 = [(_MaxSmallSize-smallSizeMax)/largeSizeDiv+1]uint8 {") for _, v := range sc { fmt.Fprintf(w, "%d,", v) } fmt.Fprintln(w, "}") }