// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sync import ( "internal/race" "runtime" "sync/atomic" "unsafe" ) // A Pool is a set of temporary objects that may be individually saved and // retrieved. // // Any item stored in the Pool may be removed automatically at any time without // notification. If the Pool holds the only reference when this happens, the // item might be deallocated. // // A Pool is safe for use by multiple goroutines simultaneously. // // Pool's purpose is to cache allocated but unused items for later reuse, // relieving pressure on the garbage collector. That is, it makes it easy to // build efficient, thread-safe free lists. However, it is not suitable for all // free lists. // // An appropriate use of a Pool is to manage a group of temporary items // silently shared among and potentially reused by concurrent independent // clients of a package. Pool provides a way to amortize allocation overhead // across many clients. // // An example of good use of a Pool is in the fmt package, which maintains a // dynamically-sized store of temporary output buffers. The store scales under // load (when many goroutines are actively printing) and shrinks when // quiescent. // // On the other hand, a free list maintained as part of a short-lived object is // not a suitable use for a Pool, since the overhead does not amortize well in // that scenario. It is more efficient to have such objects implement their own // free list. // // A Pool must not be copied after first use. // // In the terminology of [the Go memory model], a call to Put(x) “synchronizes before” // a call to [Pool.Get] returning that same value x. // Similarly, a call to New returning x “synchronizes before” // a call to Get returning that same value x. // // [the Go memory model]: https://go.dev/ref/mem type Pool struct { noCopy noCopy local unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal localSize uintptr // size of the local array victim unsafe.Pointer // local from previous cycle victimSize uintptr // size of victims array // New optionally specifies a function to generate // a value when Get would otherwise return nil. // It may not be changed concurrently with calls to Get. New func() any } // Local per-P Pool appendix. type poolLocalInternal struct { private any // Can be used only by the respective P. shared poolChain // Local P can pushHead/popHead; any P can popTail. } type poolLocal struct { poolLocalInternal // Prevents false sharing on widespread platforms with // 128 mod (cache line size) = 0 . pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte } // from runtime // //go:linkname runtime_randn runtime.randn func runtime_randn(n uint32) uint32 var poolRaceHash [128]uint64 // poolRaceAddr returns an address to use as the synchronization point // for race detector logic. We don't use the actual pointer stored in x // directly, for fear of conflicting with other synchronization on that address. // Instead, we hash the pointer to get an index into poolRaceHash. // See discussion on golang.org/cl/31589. func poolRaceAddr(x any) unsafe.Pointer { ptr := uintptr((*[2]unsafe.Pointer)(unsafe.Pointer(&x))[1]) h := uint32((uint64(uint32(ptr)) * 0x85ebca6b) >> 16) return unsafe.Pointer(&poolRaceHash[h%uint32(len(poolRaceHash))]) } // Put adds x to the pool. func (p *Pool) Put(x any) { if x == nil { return } if race.Enabled { if runtime_randn(4) == 0 { // Randomly drop x on floor. return } race.ReleaseMerge(poolRaceAddr(x)) race.Disable() } l, _ := p.pin() if l.private == nil { l.private = x } else { l.shared.pushHead(x) } runtime_procUnpin() if race.Enabled { race.Enable() } } // Get selects an arbitrary item from the [Pool], removes it from the // Pool, and returns it to the caller. // Get may choose to ignore the pool and treat it as empty. // Callers should not assume any relation between values passed to [Pool.Put] and // the values returned by Get. // // If Get would otherwise return nil and p.New is non-nil, Get returns // the result of calling p.New. func (p *Pool) Get() any { if race.Enabled { race.Disable() } l, pid := p.pin() x := l.private l.private = nil if x == nil { // Try to pop the head of the local shard. We prefer // the head over the tail for temporal locality of // reuse. x, _ = l.shared.popHead() if x == nil { x = p.getSlow(pid) } } runtime_procUnpin() if race.Enabled { race.Enable() if x != nil { race.Acquire(poolRaceAddr(x)) } } if x == nil && p.New != nil { x = p.New() } return x } func (p *Pool) getSlow(pid int) any { // See the comment in pin regarding ordering of the loads. size := runtime_LoadAcquintptr(&p.localSize) // load-acquire locals := p.local // load-consume // Try to steal one element from other procs. for i := 0; i < int(size); i++ { l := indexLocal(locals, (pid+i+1)%int(size)) if x, _ := l.shared.popTail(); x != nil { return x } } // Try the victim cache. We do this after attempting to steal // from all primary caches because we want objects in the // victim cache to age out if at all possible. size = atomic.LoadUintptr(&p.victimSize) if uintptr(pid) >= size { return nil } locals = p.victim l := indexLocal(locals, pid) if x := l.private; x != nil { l.private = nil return x } for i := 0; i < int(size); i++ { l := indexLocal(locals, (pid+i)%int(size)) if x, _ := l.shared.popTail(); x != nil { return x } } // Mark the victim cache as empty for future gets don't bother // with it. atomic.StoreUintptr(&p.victimSize, 0) return nil } // pin pins the current goroutine to P, disables preemption and // returns poolLocal pool for the P and the P's id. // Caller must call runtime_procUnpin() when done with the pool. func (p *Pool) pin() (*poolLocal, int) { // Check whether p is nil to get a panic. // Otherwise the nil dereference happens while the m is pinned, // causing a fatal error rather than a panic. if p == nil { panic("nil Pool") } pid := runtime_procPin() // In pinSlow we store to local and then to localSize, here we load in opposite order. // Since we've disabled preemption, GC cannot happen in between. // Thus here we must observe local at least as large localSize. // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness). s := runtime_LoadAcquintptr(&p.localSize) // load-acquire l := p.local // load-consume if uintptr(pid) < s { return indexLocal(l, pid), pid } return p.pinSlow() } func (p *Pool) pinSlow() (*poolLocal, int) { // Retry under the mutex. // Can not lock the mutex while pinned. runtime_procUnpin() allPoolsMu.Lock() defer allPoolsMu.Unlock() pid := runtime_procPin() // poolCleanup won't be called while we are pinned. s := p.localSize l := p.local if uintptr(pid) < s { return indexLocal(l, pid), pid } if p.local == nil { allPools = append(allPools, p) } // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one. size := runtime.GOMAXPROCS(0) local := make([]poolLocal, size) atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release runtime_StoreReluintptr(&p.localSize, uintptr(size)) // store-release return &local[pid], pid } // poolCleanup should be an internal detail, // but widely used packages access it using linkname. // Notable members of the hall of shame include: // - github.com/bytedance/gopkg // - github.com/songzhibin97/gkit // // Do not remove or change the type signature. // See go.dev/issue/67401. // //go:linkname poolCleanup func poolCleanup() { // This function is called with the world stopped, at the beginning of a garbage collection. // It must not allocate and probably should not call any runtime functions. // Because the world is stopped, no pool user can be in a // pinned section (in effect, this has all Ps pinned). // Drop victim caches from all pools. for _, p := range oldPools { p.victim = nil p.victimSize = 0 } // Move primary cache to victim cache. for _, p := range allPools { p.victim = p.local p.victimSize = p.localSize p.local = nil p.localSize = 0 } // The pools with non-empty primary caches now have non-empty // victim caches and no pools have primary caches. oldPools, allPools = allPools, nil } var ( allPoolsMu Mutex // allPools is the set of pools that have non-empty primary // caches. Protected by either 1) allPoolsMu and pinning or 2) // STW. allPools []*Pool // oldPools is the set of pools that may have non-empty victim // caches. Protected by STW. oldPools []*Pool ) func init() { runtime_registerPoolCleanup(poolCleanup) } func indexLocal(l unsafe.Pointer, i int) *poolLocal { lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{})) return (*poolLocal)(lp) } // Implemented in runtime. func runtime_registerPoolCleanup(cleanup func()) func runtime_procPin() int func runtime_procUnpin() // The below are implemented in internal/runtime/atomic and the // compiler also knows to intrinsify the symbol we linkname into this // package. //go:linkname runtime_LoadAcquintptr internal/runtime/atomic.LoadAcquintptr func runtime_LoadAcquintptr(ptr *uintptr) uintptr //go:linkname runtime_StoreReluintptr internal/runtime/atomic.StoreReluintptr func runtime_StoreReluintptr(ptr *uintptr, val uintptr) uintptr