// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build linux package syscall import ( errpkg "errors" "internal/itoa" "runtime" "unsafe" ) // Linux unshare/clone/clone2/clone3 flags, architecture-independent, // copied from linux/sched.h. const ( CLONE_VM = 0x00000100 // set if VM shared between processes CLONE_FS = 0x00000200 // set if fs info shared between processes CLONE_FILES = 0x00000400 // set if open files shared between processes CLONE_SIGHAND = 0x00000800 // set if signal handlers and blocked signals shared CLONE_PIDFD = 0x00001000 // set if a pidfd should be placed in parent CLONE_PTRACE = 0x00002000 // set if we want to let tracing continue on the child too CLONE_VFORK = 0x00004000 // set if the parent wants the child to wake it up on mm_release CLONE_PARENT = 0x00008000 // set if we want to have the same parent as the cloner CLONE_THREAD = 0x00010000 // Same thread group? CLONE_NEWNS = 0x00020000 // New mount namespace group CLONE_SYSVSEM = 0x00040000 // share system V SEM_UNDO semantics CLONE_SETTLS = 0x00080000 // create a new TLS for the child CLONE_PARENT_SETTID = 0x00100000 // set the TID in the parent CLONE_CHILD_CLEARTID = 0x00200000 // clear the TID in the child CLONE_DETACHED = 0x00400000 // Unused, ignored CLONE_UNTRACED = 0x00800000 // set if the tracing process can't force CLONE_PTRACE on this clone CLONE_CHILD_SETTID = 0x01000000 // set the TID in the child CLONE_NEWCGROUP = 0x02000000 // New cgroup namespace CLONE_NEWUTS = 0x04000000 // New utsname namespace CLONE_NEWIPC = 0x08000000 // New ipc namespace CLONE_NEWUSER = 0x10000000 // New user namespace CLONE_NEWPID = 0x20000000 // New pid namespace CLONE_NEWNET = 0x40000000 // New network namespace CLONE_IO = 0x80000000 // Clone io context // Flags for the clone3() syscall. CLONE_CLEAR_SIGHAND = 0x100000000 // Clear any signal handler and reset to SIG_DFL. CLONE_INTO_CGROUP = 0x200000000 // Clone into a specific cgroup given the right permissions. // Cloning flags intersect with CSIGNAL so can be used with unshare and clone3 // syscalls only: CLONE_NEWTIME = 0x00000080 // New time namespace ) // SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux. // See user_namespaces(7). // // Note that User Namespaces are not available on a number of popular Linux // versions (due to security issues), or are available but subject to AppArmor // restrictions like in Ubuntu 24.04. type SysProcIDMap struct { ContainerID int // Container ID. HostID int // Host ID. Size int // Size. } type SysProcAttr struct { Chroot string // Chroot. Credential *Credential // Credential. // Ptrace tells the child to call ptrace(PTRACE_TRACEME). // Call runtime.LockOSThread before starting a process with this set, // and don't call UnlockOSThread until done with PtraceSyscall calls. Ptrace bool Setsid bool // Create session. // Setpgid sets the process group ID of the child to Pgid, // or, if Pgid == 0, to the new child's process ID. Setpgid bool // Setctty sets the controlling terminal of the child to // file descriptor Ctty. Ctty must be a descriptor number // in the child process: an index into ProcAttr.Files. // This is only meaningful if Setsid is true. Setctty bool Noctty bool // Detach fd 0 from controlling terminal. Ctty int // Controlling TTY fd. // Foreground places the child process group in the foreground. // This implies Setpgid. The Ctty field must be set to // the descriptor of the controlling TTY. // Unlike Setctty, in this case Ctty must be a descriptor // number in the parent process. Foreground bool Pgid int // Child's process group ID if Setpgid. // Pdeathsig, if non-zero, is a signal that the kernel will send to // the child process when the creating thread dies. Note that the signal // is sent on thread termination, which may happen before process termination. // There are more details at https://go.dev/issue/27505. Pdeathsig Signal Cloneflags uintptr // Flags for clone calls. Unshareflags uintptr // Flags for unshare calls. UidMappings []SysProcIDMap // User ID mappings for user namespaces. GidMappings []SysProcIDMap // Group ID mappings for user namespaces. // GidMappingsEnableSetgroups enabling setgroups syscall. // If false, then setgroups syscall will be disabled for the child process. // This parameter is no-op if GidMappings == nil. Otherwise for unprivileged // users this should be set to false for mappings work. GidMappingsEnableSetgroups bool AmbientCaps []uintptr // Ambient capabilities. UseCgroupFD bool // Whether to make use of the CgroupFD field. CgroupFD int // File descriptor of a cgroup to put the new process into. // PidFD, if not nil, is used to store the pidfd of a child, if the // functionality is supported by the kernel, or -1. Note *PidFD is // changed only if the process starts successfully. PidFD *int } var ( none = [...]byte{'n', 'o', 'n', 'e', 0} slash = [...]byte{'/', 0} forceClone3 = false // Used by unit tests only. ) // Implemented in runtime package. func runtime_BeforeFork() func runtime_AfterFork() func runtime_AfterForkInChild() // Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child. // If a dup or exec fails, write the errno error to pipe. // (Pipe is close-on-exec so if exec succeeds, it will be closed.) // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // For the same reason compiler does not race instrument it. // The calls to RawSyscall are okay because they are assembly // functions that do not grow the stack. // //go:norace func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { // Set up and fork. This returns immediately in the parent or // if there's an error. upid, pidfd, err, mapPipe, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe) if locked { runtime_AfterFork() } if err != 0 { return 0, err } // parent; return PID pid = int(upid) if sys.PidFD != nil { *sys.PidFD = int(pidfd) } if sys.UidMappings != nil || sys.GidMappings != nil { Close(mapPipe[0]) var err2 Errno // uid/gid mappings will be written after fork and unshare(2) for user // namespaces. if sys.Unshareflags&CLONE_NEWUSER == 0 { if err := writeUidGidMappings(pid, sys); err != nil { err2 = err.(Errno) } } RawSyscall(SYS_WRITE, uintptr(mapPipe[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) Close(mapPipe[1]) } return pid, 0 } const _LINUX_CAPABILITY_VERSION_3 = 0x20080522 type capHeader struct { version uint32 pid int32 } type capData struct { effective uint32 permitted uint32 inheritable uint32 } type caps struct { hdr capHeader data [2]capData } // See CAP_TO_INDEX in linux/capability.h: func capToIndex(cap uintptr) uintptr { return cap >> 5 } // See CAP_TO_MASK in linux/capability.h: func capToMask(cap uintptr) uint32 { return 1 << uint(cap&31) } // cloneArgs holds arguments for clone3 Linux syscall. type cloneArgs struct { flags uint64 // Flags bit mask pidFD uint64 // Where to store PID file descriptor (int *) childTID uint64 // Where to store child TID, in child's memory (pid_t *) parentTID uint64 // Where to store child TID, in parent's memory (pid_t *) exitSignal uint64 // Signal to deliver to parent on child termination stack uint64 // Pointer to lowest byte of stack stackSize uint64 // Size of stack tls uint64 // Location of new TLS setTID uint64 // Pointer to a pid_t array (since Linux 5.5) setTIDSize uint64 // Number of elements in set_tid (since Linux 5.5) cgroup uint64 // File descriptor for target cgroup of child (since Linux 5.7) } // forkAndExecInChild1 implements the body of forkAndExecInChild up to // the parent's post-fork path. This is a separate function so we can // separate the child's and parent's stack frames if we're using // vfork. // // This is go:noinline because the point is to keep the stack frames // of this and forkAndExecInChild separate. // //go:noinline //go:norace //go:nocheckptr func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, pidfd int32, err1 Errno, mapPipe [2]int, locked bool) { // Defined in linux/prctl.h starting with Linux 4.3. const ( PR_CAP_AMBIENT = 0x2f PR_CAP_AMBIENT_RAISE = 0x2 ) // vfork requires that the child not touch any of the parent's // active stack frames. Hence, the child does all post-fork // processing in this stack frame and never returns, while the // parent returns immediately from this frame and does all // post-fork processing in the outer frame. // // Declare all variables at top in case any // declarations require heap allocation (e.g., err2). // ":=" should not be used to declare any variable after // the call to runtime_BeforeFork. // // NOTE(bcmills): The allocation behavior described in the above comment // seems to lack a corresponding test, and it may be rendered invalid // by an otherwise-correct change in the compiler. var ( err2 Errno nextfd int i int caps caps fd1, flags uintptr puid, psetgroups, pgid []byte uidmap, setgroups, gidmap []byte clone3 *cloneArgs pgrp int32 dirfd int cred *Credential ngroups, groups uintptr c uintptr ) pidfd = -1 rlim := origRlimitNofile.Load() if sys.UidMappings != nil { puid = []byte("/proc/self/uid_map\000") uidmap = formatIDMappings(sys.UidMappings) } if sys.GidMappings != nil { psetgroups = []byte("/proc/self/setgroups\000") pgid = []byte("/proc/self/gid_map\000") if sys.GidMappingsEnableSetgroups { setgroups = []byte("allow\000") } else { setgroups = []byte("deny\000") } gidmap = formatIDMappings(sys.GidMappings) } // Record parent PID so child can test if it has died. ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0) // Guard against side effects of shuffling fds below. // Make sure that nextfd is beyond any currently open files so // that we can't run the risk of overwriting any of them. fd := make([]int, len(attr.Files)) nextfd = len(attr.Files) for i, ufd := range attr.Files { if nextfd < int(ufd) { nextfd = int(ufd) } fd[i] = int(ufd) } nextfd++ // Allocate another pipe for parent to child communication for // synchronizing writing of User ID/Group ID mappings. if sys.UidMappings != nil || sys.GidMappings != nil { if err := forkExecPipe(mapPipe[:]); err != nil { err1 = err.(Errno) return } } flags = sys.Cloneflags if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 { flags |= CLONE_VFORK | CLONE_VM } if sys.PidFD != nil { flags |= CLONE_PIDFD } // Whether to use clone3. if sys.UseCgroupFD || flags&CLONE_NEWTIME != 0 || forceClone3 { clone3 = &cloneArgs{ flags: uint64(flags), exitSignal: uint64(SIGCHLD), } if sys.UseCgroupFD { clone3.flags |= CLONE_INTO_CGROUP clone3.cgroup = uint64(sys.CgroupFD) } if sys.PidFD != nil { clone3.pidFD = uint64(uintptr(unsafe.Pointer(&pidfd))) } } // About to call fork. // No more allocation or calls of non-assembly functions. runtime_BeforeFork() locked = true if clone3 != nil { pid, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3), 0) } else { // N.B. Keep in sync with doCheckClonePidfd. flags |= uintptr(SIGCHLD) if runtime.GOARCH == "s390x" { // On Linux/s390, the first two arguments of clone(2) are swapped. pid, err1 = rawVforkSyscall(SYS_CLONE, 0, flags, uintptr(unsafe.Pointer(&pidfd))) } else { pid, err1 = rawVforkSyscall(SYS_CLONE, flags, 0, uintptr(unsafe.Pointer(&pidfd))) } } if err1 != 0 || pid != 0 { // If we're in the parent, we must return immediately // so we're not in the same stack frame as the child. // This can at most use the return PC, which the child // will not modify, and the results of // rawVforkSyscall, which must have been written after // the child was replaced. return } // Fork succeeded, now in child. // Enable the "keep capabilities" flag to set ambient capabilities later. if len(sys.AmbientCaps) > 0 { _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0) if err1 != 0 { goto childerror } } // Wait for User ID/Group ID mappings to be written. if sys.UidMappings != nil || sys.GidMappings != nil { if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(mapPipe[1]), 0, 0); err1 != 0 { goto childerror } pid, _, err1 = RawSyscall(SYS_READ, uintptr(mapPipe[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) if err1 != 0 { goto childerror } if pid != unsafe.Sizeof(err2) { err1 = EINVAL goto childerror } if err2 != 0 { err1 = err2 goto childerror } } // Session ID if sys.Setsid { _, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0) if err1 != 0 { goto childerror } } // Set process group if sys.Setpgid || sys.Foreground { // Place child in process group. _, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0) if err1 != 0 { goto childerror } } if sys.Foreground { pgrp = int32(sys.Pgid) if pgrp == 0 { pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0) pgrp = int32(pid) } // Place process group in foreground. _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp))) if err1 != 0 { goto childerror } } // Restore the signal mask. We do this after TIOCSPGRP to avoid // having the kernel send a SIGTTOU signal to the process group. runtime_AfterForkInChild() // Unshare if sys.Unshareflags != 0 { _, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0) if err1 != 0 { goto childerror } if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil { dirfd = int(_AT_FDCWD) if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { goto childerror } pid, _, err1 = RawSyscall(SYS_WRITE, fd1, uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups))) if err1 != 0 { goto childerror } if _, _, err1 = RawSyscall(SYS_CLOSE, fd1, 0, 0); err1 != 0 { goto childerror } if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { goto childerror } pid, _, err1 = RawSyscall(SYS_WRITE, fd1, uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap))) if err1 != 0 { goto childerror } if _, _, err1 = RawSyscall(SYS_CLOSE, fd1, 0, 0); err1 != 0 { goto childerror } } if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil { dirfd = int(_AT_FDCWD) if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 { goto childerror } pid, _, err1 = RawSyscall(SYS_WRITE, fd1, uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap))) if err1 != 0 { goto childerror } if _, _, err1 = RawSyscall(SYS_CLOSE, fd1, 0, 0); err1 != 0 { goto childerror } } // The unshare system call in Linux doesn't unshare mount points // mounted with --shared. Systemd mounts / with --shared. For a // long discussion of the pros and cons of this see debian bug 739593. // The Go model of unsharing is more like Plan 9, where you ask // to unshare and the namespaces are unconditionally unshared. // To make this model work we must further mark / as MS_PRIVATE. // This is what the standard unshare command does. if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS { _, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0) if err1 != 0 { goto childerror } } } // Chroot if chroot != nil { _, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0) if err1 != 0 { goto childerror } } // User and groups if cred = sys.Credential; cred != nil { ngroups = uintptr(len(cred.Groups)) groups = uintptr(0) if ngroups > 0 { groups = uintptr(unsafe.Pointer(&cred.Groups[0])) } if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups { _, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0) if err1 != 0 { goto childerror } } _, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0) if err1 != 0 { goto childerror } _, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0) if err1 != 0 { goto childerror } } if len(sys.AmbientCaps) != 0 { // Ambient capabilities were added in the 4.3 kernel, // so it is safe to always use _LINUX_CAPABILITY_VERSION_3. caps.hdr.version = _LINUX_CAPABILITY_VERSION_3 if _, _, err1 = RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 { goto childerror } for _, c = range sys.AmbientCaps { // Add the c capability to the permitted and inheritable capability mask, // otherwise we will not be able to add it to the ambient capability mask. caps.data[capToIndex(c)].permitted |= capToMask(c) caps.data[capToIndex(c)].inheritable |= capToMask(c) } if _, _, err1 = RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 { goto childerror } for _, c = range sys.AmbientCaps { _, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0) if err1 != 0 { goto childerror } } } // Chdir if dir != nil { _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0) if err1 != 0 { goto childerror } } // Parent death signal if sys.Pdeathsig != 0 { _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0) if err1 != 0 { goto childerror } // Signal self if parent is already dead. This might cause a // duplicate signal in rare cases, but it won't matter when // using SIGKILL. pid, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0) if pid != ppid { pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0) _, _, err1 = RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0) if err1 != 0 { goto childerror } } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. if pipe < nextfd { _, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC) if err1 != 0 { goto childerror } pipe = nextfd nextfd++ } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < i { if nextfd == pipe { // don't stomp on pipe nextfd++ } _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC) if err1 != 0 { goto childerror } fd[i] = nextfd nextfd++ } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) continue } if fd[i] == i { // dup2(i, i) won't clear close-on-exec flag on Linux, // probably not elsewhere either. _, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0) if err1 != 0 { goto childerror } continue } // The new fd is created NOT close-on-exec, // which is exactly what we want. _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(i), 0) if err1 != 0 { goto childerror } } // By convention, we don't close-on-exec the fds we are // started with, so if len(fd) < 3, close 0, 1, 2 as needed. // Programs that know they inherit fds >= 3 will need // to set them close-on-exec. for i = len(fd); i < 3; i++ { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) } // Detach fd 0 from tty if sys.Noctty { _, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0) if err1 != 0 { goto childerror } } // Set the controlling TTY to Ctty if sys.Setctty { _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1) if err1 != 0 { goto childerror } } // Restore original rlimit. if rlim != nil { rawSetrlimit(RLIMIT_NOFILE, rlim) } // Enable tracing if requested. // Do this right before exec so that we don't unnecessarily trace the runtime // setting up after the fork. See issue #21428. if sys.Ptrace { _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0) if err1 != 0 { goto childerror } } // Time to exec. _, _, err1 = RawSyscall(SYS_EXECVE, uintptr(unsafe.Pointer(argv0)), uintptr(unsafe.Pointer(&argv[0])), uintptr(unsafe.Pointer(&envv[0]))) childerror: // send error code on pipe RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1)) for { RawSyscall(SYS_EXIT, 253, 0, 0) } } func formatIDMappings(idMap []SysProcIDMap) []byte { var data []byte for _, im := range idMap { data = append(data, itoa.Itoa(im.ContainerID)+" "+itoa.Itoa(im.HostID)+" "+itoa.Itoa(im.Size)+"\n"...) } return data } // writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path. func writeIDMappings(path string, idMap []SysProcIDMap) error { fd, err := Open(path, O_RDWR, 0) if err != nil { return err } if _, err := Write(fd, formatIDMappings(idMap)); err != nil { Close(fd) return err } if err := Close(fd); err != nil { return err } return nil } // writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false // and "allow" if enable is true. // This is needed since kernel 3.19, because you can't write gid_map without // disabling setgroups() system call. func writeSetgroups(pid int, enable bool) error { sgf := "/proc/" + itoa.Itoa(pid) + "/setgroups" fd, err := Open(sgf, O_RDWR, 0) if err != nil { return err } var data []byte if enable { data = []byte("allow") } else { data = []byte("deny") } if _, err := Write(fd, data); err != nil { Close(fd) return err } return Close(fd) } // writeUidGidMappings writes User ID and Group ID mappings for user namespaces // for a process and it is called from the parent process. func writeUidGidMappings(pid int, sys *SysProcAttr) error { if sys.UidMappings != nil { uidf := "/proc/" + itoa.Itoa(pid) + "/uid_map" if err := writeIDMappings(uidf, sys.UidMappings); err != nil { return err } } if sys.GidMappings != nil { // If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK. if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT { return err } gidf := "/proc/" + itoa.Itoa(pid) + "/gid_map" if err := writeIDMappings(gidf, sys.GidMappings); err != nil { return err } } return nil } // forkAndExecFailureCleanup cleans up after an exec failure. func forkAndExecFailureCleanup(attr *ProcAttr, sys *SysProcAttr) { if sys.PidFD != nil && *sys.PidFD != -1 { Close(*sys.PidFD) *sys.PidFD = -1 } } // checkClonePidfd verifies that clone(CLONE_PIDFD) works by actually doing a // clone. // //go:linkname os_checkClonePidfd os.checkClonePidfd func os_checkClonePidfd() error { pidfd := int32(-1) pid, errno := doCheckClonePidfd(&pidfd) if errno != 0 { return errno } if pidfd == -1 { // Bad: CLONE_PIDFD failed to provide a pidfd. Reap the process // before returning. var err error for { var status WaitStatus _, err = Wait4(int(pid), &status, 0, nil) if err != EINTR { break } } if err != nil { return err } return errpkg.New("clone(CLONE_PIDFD) failed to return pidfd") } // Good: CLONE_PIDFD provided a pidfd. Reap the process and close the // pidfd. defer Close(int(pidfd)) for { const _P_PIDFD = 3 _, _, errno = Syscall6(SYS_WAITID, _P_PIDFD, uintptr(pidfd), 0, WEXITED, 0, 0) if errno != EINTR { break } } if errno != 0 { return errno } return nil } // doCheckClonePidfd implements the actual clone call of os_checkClonePidfd and // child execution. This is a separate function so we can separate the child's // and parent's stack frames if we're using vfork. // // This is go:noinline because the point is to keep the stack frames of this // and os_checkClonePidfd separate. // //go:noinline func doCheckClonePidfd(pidfd *int32) (pid uintptr, errno Errno) { flags := uintptr(CLONE_VFORK|CLONE_VM|CLONE_PIDFD|SIGCHLD) if runtime.GOARCH == "s390x" { // On Linux/s390, the first two arguments of clone(2) are swapped. pid, errno = rawVforkSyscall(SYS_CLONE, 0, flags, uintptr(unsafe.Pointer(pidfd))) } else { pid, errno = rawVforkSyscall(SYS_CLONE, flags, 0, uintptr(unsafe.Pointer(pidfd))) } if errno != 0 || pid != 0 { // If we're in the parent, we must return immediately // so we're not in the same stack frame as the child. // This can at most use the return PC, which the child // will not modify, and the results of // rawVforkSyscall, which must have been written after // the child was replaced. return } for { RawSyscall(SYS_EXIT_GROUP, 0, 0, 0) } }