// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build cgo package ld import ( "debug/elf" "fmt" "internal/testenv" "os" "os/exec" "path/filepath" "runtime" "sort" "strings" "testing" ) func TestDynSymShInfo(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) dir := t.TempDir() const prog = ` package main import "net" func main() { net.Dial("", "") } ` src := filepath.Join(dir, "issue33358.go") if err := os.WriteFile(src, []byte(prog), 0666); err != nil { t.Fatal(err) } binFile := filepath.Join(dir, "issue33358") cmd := testenv.Command(t, testenv.GoToolPath(t), "build", "-o", binFile, src) if out, err := cmd.CombinedOutput(); err != nil { t.Fatalf("%v: %v:\n%s", cmd.Args, err, out) } fi, err := os.Open(binFile) if err != nil { t.Fatalf("failed to open built file: %v", err) } defer fi.Close() elfFile, err := elf.NewFile(fi) if err != nil { t.Skip("The system may not support ELF, skipped.") } section := elfFile.Section(".dynsym") if section == nil { t.Fatal("no dynsym") } symbols, err := elfFile.DynamicSymbols() if err != nil { t.Fatalf("failed to get dynamic symbols: %v", err) } var numLocalSymbols uint32 for i, s := range symbols { if elf.ST_BIND(s.Info) != elf.STB_LOCAL { numLocalSymbols = uint32(i + 1) break } } if section.Info != numLocalSymbols { t.Fatalf("Unexpected sh info, want greater than 0, got: %d", section.Info) } } func TestNoDuplicateNeededEntries(t *testing.T) { testenv.MustHaveGoBuild(t) testenv.MustHaveCGO(t) // run this test on just a small set of platforms (no need to test it // across the board given the nature of the test). pair := runtime.GOOS + "-" + runtime.GOARCH switch pair { case "linux-amd64", "linux-arm64", "freebsd-amd64", "openbsd-amd64": default: t.Skip("no need for test on " + pair) } t.Parallel() dir := t.TempDir() wd, err := os.Getwd() if err != nil { t.Fatalf("Failed to get working directory: %v", err) } path := filepath.Join(dir, "x") argv := []string{"build", "-o", path, filepath.Join(wd, "testdata", "issue39256")} out, err := testenv.Command(t, testenv.GoToolPath(t), argv...).CombinedOutput() if err != nil { t.Fatalf("Build failure: %s\n%s\n", err, string(out)) } f, err := elf.Open(path) if err != nil { t.Fatalf("Failed to open ELF file: %v", err) } libs, err := f.ImportedLibraries() if err != nil { t.Fatalf("Failed to read imported libraries: %v", err) } var count int for _, lib := range libs { if lib == "libc.so" || strings.HasPrefix(lib, "libc.so.") { count++ } } if got, want := count, 1; got != want { t.Errorf("Got %d entries for `libc.so`, want %d", got, want) } } func TestShStrTabAttributesIssue62600(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) dir := t.TempDir() const prog = ` package main func main() { println("whee") } ` src := filepath.Join(dir, "issue62600.go") if err := os.WriteFile(src, []byte(prog), 0666); err != nil { t.Fatal(err) } binFile := filepath.Join(dir, "issue62600") cmd := testenv.Command(t, testenv.GoToolPath(t), "build", "-o", binFile, src) if out, err := cmd.CombinedOutput(); err != nil { t.Fatalf("%v: %v:\n%s", cmd.Args, err, out) } fi, err := os.Open(binFile) if err != nil { t.Fatalf("failed to open built file: %v", err) } defer fi.Close() elfFile, err := elf.NewFile(fi) if err != nil { t.Skip("The system may not support ELF, skipped.") } section := elfFile.Section(".shstrtab") if section == nil { t.Fatal("no .shstrtab") } // The .shstrtab section should have a zero address, non-zero // size, no ALLOC flag, and the offset should not fall into any of // the segments defined by the program headers. if section.Addr != 0 { t.Fatalf("expected Addr == 0 for .shstrtab got %x", section.Addr) } if section.Size == 0 { t.Fatal("expected nonzero Size for .shstrtab got 0") } if section.Flags&elf.SHF_ALLOC != 0 { t.Fatal("expected zero alloc flag got nonzero for .shstrtab") } for idx, p := range elfFile.Progs { if section.Offset >= p.Off && section.Offset < p.Off+p.Filesz { t.Fatalf("badly formed .shstrtab, is contained in segment %d", idx) } } } func TestElfBindNow(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) const ( prog = `package main; func main() {}` // with default buildmode code compiles in a statically linked binary, hence CGO progC = `package main; import "C"; func main() {}` ) // Notes: // - for linux/amd64 and linux/arm64, for relro we'll always see a // .got section when building with -buildmode=pie (in addition // to .dynamic); for some other less mainstream archs (ppc64le, // s390) this is not the case (on ppc64le for example we only // see got refs from C objects). Hence we put ".dynamic" in the // 'want RO' list below and ".got" in the 'want RO if present". // - when using the external linker, checking for read-only ".got" // is problematic since some linkers will only make the .got // read-only if its size is above a specific threshold, e.g. // https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=ld/scripttempl/elf.sc;h=d5022fa502f24db23f396f337a6c8978fbc8415b;hb=6fde04116b4b835fa9ec3b3497fcac4e4a0637e2#l74 . For this reason, don't try to verify read-only .got // in the external linking case. tests := []struct { name string args []string prog string wantSecsRO []string wantSecsROIfPresent []string mustHaveBuildModePIE bool mustHaveCGO bool mustInternalLink bool wantDfBindNow bool wantDf1Now bool wantDf1Pie bool }{ {name: "default", prog: prog}, { name: "pie-linkmode-internal", args: []string{"-buildmode=pie", "-ldflags", "-linkmode=internal"}, prog: prog, mustHaveBuildModePIE: true, mustInternalLink: true, wantDf1Pie: true, wantSecsRO: []string{".dynamic"}, wantSecsROIfPresent: []string{".got"}, }, { name: "bindnow-linkmode-internal", args: []string{"-ldflags", "-bindnow -linkmode=internal"}, prog: progC, mustHaveCGO: true, mustInternalLink: true, wantDfBindNow: true, wantDf1Now: true, }, { name: "bindnow-pie-linkmode-internal", args: []string{"-buildmode=pie", "-ldflags", "-bindnow -linkmode=internal"}, prog: prog, mustHaveBuildModePIE: true, mustInternalLink: true, wantDfBindNow: true, wantDf1Now: true, wantDf1Pie: true, wantSecsRO: []string{".dynamic"}, wantSecsROIfPresent: []string{".got", ".got.plt"}, }, { name: "bindnow-pie-linkmode-external", args: []string{"-buildmode=pie", "-ldflags", "-bindnow -linkmode=external"}, prog: prog, mustHaveBuildModePIE: true, mustHaveCGO: true, wantDfBindNow: true, wantDf1Now: true, wantDf1Pie: true, wantSecsRO: []string{".dynamic"}, }, } gotDynFlag := func(flags []uint64, dynFlag uint64) bool { for _, flag := range flags { if gotFlag := dynFlag&flag != 0; gotFlag { return true } } return false } segContainsSec := func(p *elf.Prog, s *elf.Section) bool { return s.Addr >= p.Vaddr && s.Addr+s.FileSize <= p.Vaddr+p.Filesz } for _, test := range tests { t.Run(test.name, func(t *testing.T) { if test.mustInternalLink { testenv.MustInternalLink(t, test.mustHaveCGO) } if test.mustHaveCGO { testenv.MustHaveCGO(t) } if test.mustHaveBuildModePIE { testenv.MustHaveBuildMode(t, "pie") } if test.mustHaveBuildModePIE && test.mustInternalLink { testenv.MustInternalLinkPIE(t) } var ( dir = t.TempDir() src = filepath.Join(dir, fmt.Sprintf("elf_%s.go", test.name)) binFile = filepath.Join(dir, test.name) ) if err := os.WriteFile(src, []byte(test.prog), 0666); err != nil { t.Fatal(err) } cmdArgs := append([]string{"build", "-o", binFile}, append(test.args, src)...) cmd := testenv.Command(t, testenv.GoToolPath(t), cmdArgs...) if out, err := cmd.CombinedOutput(); err != nil { t.Fatalf("failed to build %v: %v:\n%s", cmd.Args, err, out) } fi, err := os.Open(binFile) if err != nil { t.Fatalf("failed to open built file: %v", err) } defer fi.Close() elfFile, err := elf.NewFile(fi) if err != nil { t.Skip("The system may not support ELF, skipped.") } defer elfFile.Close() flags, err := elfFile.DynValue(elf.DT_FLAGS) if err != nil { t.Fatalf("failed to get DT_FLAGS: %v", err) } flags1, err := elfFile.DynValue(elf.DT_FLAGS_1) if err != nil { t.Fatalf("failed to get DT_FLAGS_1: %v", err) } gotDfBindNow := gotDynFlag(flags, uint64(elf.DF_BIND_NOW)) gotDf1Now := gotDynFlag(flags1, uint64(elf.DF_1_NOW)) bindNowFlagsMatch := gotDfBindNow == test.wantDfBindNow && gotDf1Now == test.wantDf1Now // some external linkers may set one of the two flags but not both. if !test.mustInternalLink { bindNowFlagsMatch = gotDfBindNow == test.wantDfBindNow || gotDf1Now == test.wantDf1Now } if !bindNowFlagsMatch { t.Fatalf("Dynamic flags mismatch:\n"+ "DT_FLAGS BIND_NOW got: %v, want: %v\n"+ "DT_FLAGS_1 DF_1_NOW got: %v, want: %v", gotDfBindNow, test.wantDfBindNow, gotDf1Now, test.wantDf1Now) } if gotDf1Pie := gotDynFlag(flags1, uint64(elf.DF_1_PIE)); gotDf1Pie != test.wantDf1Pie { t.Fatalf("DT_FLAGS_1 DF_1_PIE got: %v, want: %v", gotDf1Pie, test.wantDf1Pie) } wsrolists := [][]string{test.wantSecsRO, test.wantSecsROIfPresent} for k, wsrolist := range wsrolists { for _, wsroname := range wsrolist { // Locate section of interest. var wsro *elf.Section for _, s := range elfFile.Sections { if s.Name == wsroname { wsro = s break } } if wsro == nil { if k == 0 { t.Fatalf("test %s: can't locate %q section", test.name, wsroname) } continue } // Now walk the program headers. Section should be part of // some segment that is readonly. foundRO := false foundSegs := []*elf.Prog{} for _, p := range elfFile.Progs { if segContainsSec(p, wsro) { foundSegs = append(foundSegs, p) if p.Flags == elf.PF_R { foundRO = true } } } if !foundRO { // Things went off the rails. Write out some // useful information for a human looking at the // test failure. t.Logf("test %s: %q section not in readonly segment", wsro.Name, test.name) t.Logf("section %s location: st=0x%x en=0x%x\n", wsro.Name, wsro.Addr, wsro.Addr+wsro.FileSize) t.Logf("sec %s found in these segments: ", wsro.Name) for _, p := range foundSegs { t.Logf(" %q", p.Type) } t.Logf("\nall segments: \n") for k, p := range elfFile.Progs { t.Logf("%d t=%s fl=%s st=0x%x en=0x%x\n", k, p.Type, p.Flags, p.Vaddr, p.Vaddr+p.Filesz) } t.Fatalf("test %s failed", test.name) } } } }) } } // This program is intended to be just big/complicated enough that // we wind up with decent-sized .data.rel.ro.{typelink,itablink,gopclntab} // sections. const ifacecallsProg = ` package main import "reflect" type A string type B int type C float64 type describer interface{ What() string } type timer interface{ When() int } type rationale interface{ Why() error } func (a *A) What() string { return "string" } func (b *B) What() string { return "int" } func (b *B) When() int { return int(*b) } func (b *B) Why() error { return nil } func (c *C) What() string { return "float64" } func i_am_dead(c C) { var d describer = &c println(d.What()) } func example(a A, b B) describer { if b == 1 { return &a } return &b } func ouch(a any, what string) string { cv := reflect.ValueOf(a).MethodByName(what).Call(nil) return cv[0].String() } func main() { println(example("", 1).What()) println(ouch(example("", 1), "What")) } ` func TestRelroSectionOverlapIssue67261(t *testing.T) { t.Parallel() testenv.MustHaveGoBuild(t) testenv.MustHaveBuildMode(t, "pie") testenv.MustInternalLinkPIE(t) // This test case inspired by issue 67261, in which the linker // produces a set of sections for -buildmode=pie that confuse the // "strip" command, due to overlapping extents. The test first // verifies that we don't have any overlapping PROGBITS/DYNAMIC // sections, then runs "strip" on the resulting binary. dir := t.TempDir() src := filepath.Join(dir, "e.go") binFile := filepath.Join(dir, "e.exe") if err := os.WriteFile(src, []byte(ifacecallsProg), 0666); err != nil { t.Fatal(err) } cmdArgs := []string{"build", "-o", binFile, "-buildmode=pie", "-ldflags=linkmode=internal", src} cmd := testenv.Command(t, testenv.GoToolPath(t), cmdArgs...) if out, err := cmd.CombinedOutput(); err != nil { t.Fatalf("failed to build %v: %v:\n%s", cmd.Args, err, out) } fi, err := os.Open(binFile) if err != nil { t.Fatalf("failed to open built file: %v", err) } defer fi.Close() elfFile, err := elf.NewFile(fi) if err != nil { t.Skip("The system may not support ELF, skipped.") } defer elfFile.Close() // List of interesting sections. Here "interesting" means progbits/dynamic // and loadable (has an address), nonzero size. secs := []*elf.Section{} for _, s := range elfFile.Sections { if s.Type != elf.SHT_PROGBITS && s.Type != elf.SHT_DYNAMIC { continue } if s.Addr == 0 || s.Size == 0 { continue } secs = append(secs, s) } secOverlaps := func(s1, s2 *elf.Section) bool { st1 := s1.Addr st2 := s2.Addr en1 := s1.Addr + s1.Size en2 := s2.Addr + s2.Size return max(st1, st2) < min(en1, en2) } // Sort by address sort.SliceStable(secs, func(i, j int) bool { return secs[i].Addr < secs[j].Addr }) // Check to make sure we don't have any overlaps. foundOverlap := false for i := 0; i < len(secs)-1; i++ { for j := i + 1; j < len(secs); j++ { s := secs[i] sn := secs[j] if secOverlaps(s, sn) { t.Errorf("unexpected: section %d:%q (addr=%x size=%x) overlaps section %d:%q (addr=%x size=%x)", i, s.Name, s.Addr, s.Size, i+1, sn.Name, sn.Addr, sn.Size) foundOverlap = true } } } if foundOverlap { // Print some additional info for human inspection. t.Logf("** section list follows\n") for i := range secs { s := secs[i] fmt.Printf(" | %2d: ad=0x%08x en=0x%08x sz=0x%08x t=%s %q\n", i, s.Addr, s.Addr+s.Size, s.Size, s.Type, s.Name) } } // We need CGO / c-compiler for the next bit. testenv.MustHaveCGO(t) // Make sure that the resulting binary can be put through strip. // Try both "strip" and "llvm-strip"; in each case ask out CC // command where to find the tool with "-print-prog-name" (meaning // that if CC is gcc, we typically won't be able to find llvm-strip). // // Interestingly, binutils version of strip will (unfortunately) // print error messages if there is a problem but will not return // a non-zero exit status (?why?), so we consider any output a // failure here. stripExecs := []string{} ecmd := testenv.Command(t, testenv.GoToolPath(t), "env", "CC") if out, err := ecmd.CombinedOutput(); err != nil { t.Fatalf("go env CC failed: %v:\n%s", err, out) } else { ccprog := strings.TrimSpace(string(out)) tries := []string{"strip", "llvm-strip"} for _, try := range tries { cmd := testenv.Command(t, ccprog, "-print-prog-name="+try) if out, err := cmd.CombinedOutput(); err != nil { t.Fatalf("print-prog-name failed: %+v %v:\n%s", cmd.Args, err, out) } else { sprog := strings.TrimSpace(string(out)) stripExecs = append(stripExecs, sprog) } } } // Run strip on our Go PIE binary, making sure that the strip // succeeds and we get no output from strip, then run the resulting // stripped binary. for k, sprog := range stripExecs { if _, err := os.Stat(sprog); err != nil { sp1, err := exec.LookPath(sprog) if err != nil || sp1 == "" { continue } sprog = sp1 } targ := fmt.Sprintf("p%d.exe", k) scmd := testenv.Command(t, sprog, "-o", targ, binFile) scmd.Dir = dir if sout, serr := scmd.CombinedOutput(); serr != nil { t.Fatalf("failed to strip %v: %v:\n%s", scmd.Args, serr, sout) } else { // Non-empty output indicates failure, as mentioned above. if len(string(sout)) != 0 { t.Errorf("unexpected outut from %s:\n%s\n", sprog, string(sout)) } } rcmd := testenv.Command(t, filepath.Join(dir, targ)) if out, err := rcmd.CombinedOutput(); err != nil { t.Errorf("binary stripped by %s failed: %v:\n%s", scmd.Args, err, string(out)) } } }