// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "fmt" "go/ast" "go/constant" "go/token" "internal/buildcfg" . "internal/types/errors" ) func (check *Checker) declare(scope *Scope, id *ast.Ident, obj Object, pos token.Pos) { // spec: "The blank identifier, represented by the underscore // character _, may be used in a declaration like any other // identifier but the declaration does not introduce a new // binding." if obj.Name() != "_" { if alt := scope.Insert(obj); alt != nil { err := check.newError(DuplicateDecl) err.addf(obj, "%s redeclared in this block", obj.Name()) err.addAltDecl(alt) err.report() return } obj.setScopePos(pos) } if id != nil { check.recordDef(id, obj) } } // pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g]. func pathString(path []Object) string { var s string for i, p := range path { if i > 0 { s += "->" } s += p.Name() } return s } // objDecl type-checks the declaration of obj in its respective (file) environment. // For the meaning of def, see Checker.definedType, in typexpr.go. func (check *Checker) objDecl(obj Object, def *TypeName) { if check.conf._Trace && obj.Type() == nil { if check.indent == 0 { fmt.Println() // empty line between top-level objects for readability } check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath)) check.indent++ defer func() { check.indent-- check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color()) }() } // Checking the declaration of obj means inferring its type // (and possibly its value, for constants). // An object's type (and thus the object) may be in one of // three states which are expressed by colors: // // - an object whose type is not yet known is painted white (initial color) // - an object whose type is in the process of being inferred is painted grey // - an object whose type is fully inferred is painted black // // During type inference, an object's color changes from white to grey // to black (pre-declared objects are painted black from the start). // A black object (i.e., its type) can only depend on (refer to) other black // ones. White and grey objects may depend on white and black objects. // A dependency on a grey object indicates a cycle which may or may not be // valid. // // When objects turn grey, they are pushed on the object path (a stack); // they are popped again when they turn black. Thus, if a grey object (a // cycle) is encountered, it is on the object path, and all the objects // it depends on are the remaining objects on that path. Color encoding // is such that the color value of a grey object indicates the index of // that object in the object path. // During type-checking, white objects may be assigned a type without // traversing through objDecl; e.g., when initializing constants and // variables. Update the colors of those objects here (rather than // everywhere where we set the type) to satisfy the color invariants. if obj.color() == white && obj.Type() != nil { obj.setColor(black) return } switch obj.color() { case white: assert(obj.Type() == nil) // All color values other than white and black are considered grey. // Because black and white are < grey, all values >= grey are grey. // Use those values to encode the object's index into the object path. obj.setColor(grey + color(check.push(obj))) defer func() { check.pop().setColor(black) }() case black: assert(obj.Type() != nil) return default: // Color values other than white or black are considered grey. fallthrough case grey: // We have a (possibly invalid) cycle. // In the existing code, this is marked by a non-nil type // for the object except for constants and variables whose // type may be non-nil (known), or nil if it depends on the // not-yet known initialization value. // In the former case, set the type to Typ[Invalid] because // we have an initialization cycle. The cycle error will be // reported later, when determining initialization order. // TODO(gri) Report cycle here and simplify initialization // order code. switch obj := obj.(type) { case *Const: if !check.validCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *Var: if !check.validCycle(obj) || obj.typ == nil { obj.typ = Typ[Invalid] } case *TypeName: if !check.validCycle(obj) { // break cycle // (without this, calling underlying() // below may lead to an endless loop // if we have a cycle for a defined // (*Named) type) obj.typ = Typ[Invalid] } case *Func: if !check.validCycle(obj) { // Don't set obj.typ to Typ[Invalid] here // because plenty of code type-asserts that // functions have a *Signature type. Grey // functions have their type set to an empty // signature which makes it impossible to // initialize a variable with the function. } default: panic("unreachable") } assert(obj.Type() != nil) return } d := check.objMap[obj] if d == nil { check.dump("%v: %s should have been declared", obj.Pos(), obj) panic("unreachable") } // save/restore current environment and set up object environment defer func(env environment) { check.environment = env }(check.environment) check.environment = environment{ scope: d.file, } // Const and var declarations must not have initialization // cycles. We track them by remembering the current declaration // in check.decl. Initialization expressions depending on other // consts, vars, or functions, add dependencies to the current // check.decl. switch obj := obj.(type) { case *Const: check.decl = d // new package-level const decl check.constDecl(obj, d.vtyp, d.init, d.inherited) case *Var: check.decl = d // new package-level var decl check.varDecl(obj, d.lhs, d.vtyp, d.init) case *TypeName: // invalid recursive types are detected via path check.typeDecl(obj, d.tdecl, def) check.collectMethods(obj) // methods can only be added to top-level types case *Func: // functions may be recursive - no need to track dependencies check.funcDecl(obj, d) default: panic("unreachable") } } // validCycle checks if the cycle starting with obj is valid and // reports an error if it is not. func (check *Checker) validCycle(obj Object) (valid bool) { // The object map contains the package scope objects and the non-interface methods. if debug { info := check.objMap[obj] inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods isPkgObj := obj.Parent() == check.pkg.scope if isPkgObj != inObjMap { check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap) panic("unreachable") } } // Count cycle objects. assert(obj.color() >= grey) start := obj.color() - grey // index of obj in objPath cycle := check.objPath[start:] tparCycle := false // if set, the cycle is through a type parameter list nval := 0 // number of (constant or variable) values in the cycle; valid if !generic ndef := 0 // number of type definitions in the cycle; valid if !generic loop: for _, obj := range cycle { switch obj := obj.(type) { case *Const, *Var: nval++ case *TypeName: // If we reach a generic type that is part of a cycle // and we are in a type parameter list, we have a cycle // through a type parameter list, which is invalid. if check.inTParamList && isGeneric(obj.typ) { tparCycle = true break loop } // Determine if the type name is an alias or not. For // package-level objects, use the object map which // provides syntactic information (which doesn't rely // on the order in which the objects are set up). For // local objects, we can rely on the order, so use // the object's predicate. // TODO(gri) It would be less fragile to always access // the syntactic information. We should consider storing // this information explicitly in the object. var alias bool if check.conf._EnableAlias { alias = obj.IsAlias() } else { if d := check.objMap[obj]; d != nil { alias = d.tdecl.Assign.IsValid() // package-level object } else { alias = obj.IsAlias() // function local object } } if !alias { ndef++ } case *Func: // ignored for now default: panic("unreachable") } } if check.conf._Trace { check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle)) if tparCycle { check.trace(obj.Pos(), "## cycle contains: generic type in a type parameter list") } else { check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef) } defer func() { if valid { check.trace(obj.Pos(), "=> cycle is valid") } else { check.trace(obj.Pos(), "=> error: cycle is invalid") } }() } if !tparCycle { // A cycle involving only constants and variables is invalid but we // ignore them here because they are reported via the initialization // cycle check. if nval == len(cycle) { return true } // A cycle involving only types (and possibly functions) must have at least // one type definition to be permitted: If there is no type definition, we // have a sequence of alias type names which will expand ad infinitum. if nval == 0 && ndef > 0 { return true } } check.cycleError(cycle, firstInSrc(cycle)) return false } // cycleError reports a declaration cycle starting with the object at cycle[start]. func (check *Checker) cycleError(cycle []Object, start int) { // name returns the (possibly qualified) object name. // This is needed because with generic types, cycles // may refer to imported types. See go.dev/issue/50788. // TODO(gri) Thus functionality is used elsewhere. Factor it out. name := func(obj Object) string { return packagePrefix(obj.Pkg(), check.qualifier) + obj.Name() } obj := cycle[start] objName := name(obj) // If obj is a type alias, mark it as valid (not broken) in order to avoid follow-on errors. tname, _ := obj.(*TypeName) if tname != nil && tname.IsAlias() { // If we use Alias nodes, it is initialized with Typ[Invalid]. // TODO(gri) Adjust this code if we initialize with nil. if !check.conf._EnableAlias { check.validAlias(tname, Typ[Invalid]) } } // report a more concise error for self references if len(cycle) == 1 { if tname != nil { check.errorf(obj, InvalidDeclCycle, "invalid recursive type: %s refers to itself", objName) } else { check.errorf(obj, InvalidDeclCycle, "invalid cycle in declaration: %s refers to itself", objName) } return } err := check.newError(InvalidDeclCycle) if tname != nil { err.addf(obj, "invalid recursive type %s", objName) } else { err.addf(obj, "invalid cycle in declaration of %s", objName) } i := start for range cycle { err.addf(obj, "%s refers to", objName) i++ if i >= len(cycle) { i = 0 } obj = cycle[i] objName = name(obj) } err.addf(obj, "%s", objName) err.report() } // firstInSrc reports the index of the object with the "smallest" // source position in path. path must not be empty. func firstInSrc(path []Object) int { fst, pos := 0, path[0].Pos() for i, t := range path[1:] { if cmpPos(t.Pos(), pos) < 0 { fst, pos = i+1, t.Pos() } } return fst } type ( decl interface { node() ast.Node } importDecl struct{ spec *ast.ImportSpec } constDecl struct { spec *ast.ValueSpec iota int typ ast.Expr init []ast.Expr inherited bool } varDecl struct{ spec *ast.ValueSpec } typeDecl struct{ spec *ast.TypeSpec } funcDecl struct{ decl *ast.FuncDecl } ) func (d importDecl) node() ast.Node { return d.spec } func (d constDecl) node() ast.Node { return d.spec } func (d varDecl) node() ast.Node { return d.spec } func (d typeDecl) node() ast.Node { return d.spec } func (d funcDecl) node() ast.Node { return d.decl } func (check *Checker) walkDecls(decls []ast.Decl, f func(decl)) { for _, d := range decls { check.walkDecl(d, f) } } func (check *Checker) walkDecl(d ast.Decl, f func(decl)) { switch d := d.(type) { case *ast.BadDecl: // ignore case *ast.GenDecl: var last *ast.ValueSpec // last ValueSpec with type or init exprs seen for iota, s := range d.Specs { switch s := s.(type) { case *ast.ImportSpec: f(importDecl{s}) case *ast.ValueSpec: switch d.Tok { case token.CONST: // determine which initialization expressions to use inherited := true switch { case s.Type != nil || len(s.Values) > 0: last = s inherited = false case last == nil: last = new(ast.ValueSpec) // make sure last exists inherited = false } check.arityMatch(s, last) f(constDecl{spec: s, iota: iota, typ: last.Type, init: last.Values, inherited: inherited}) case token.VAR: check.arityMatch(s, nil) f(varDecl{s}) default: check.errorf(s, InvalidSyntaxTree, "invalid token %s", d.Tok) } case *ast.TypeSpec: f(typeDecl{s}) default: check.errorf(s, InvalidSyntaxTree, "unknown ast.Spec node %T", s) } } case *ast.FuncDecl: f(funcDecl{d}) default: check.errorf(d, InvalidSyntaxTree, "unknown ast.Decl node %T", d) } } func (check *Checker) constDecl(obj *Const, typ, init ast.Expr, inherited bool) { assert(obj.typ == nil) // use the correct value of iota defer func(iota constant.Value, errpos positioner) { check.iota = iota check.errpos = errpos }(check.iota, check.errpos) check.iota = obj.val check.errpos = nil // provide valid constant value under all circumstances obj.val = constant.MakeUnknown() // determine type, if any if typ != nil { t := check.typ(typ) if !isConstType(t) { // don't report an error if the type is an invalid C (defined) type // (go.dev/issue/22090) if isValid(under(t)) { check.errorf(typ, InvalidConstType, "invalid constant type %s", t) } obj.typ = Typ[Invalid] return } obj.typ = t } // check initialization var x operand if init != nil { if inherited { // The initialization expression is inherited from a previous // constant declaration, and (error) positions refer to that // expression and not the current constant declaration. Use // the constant identifier position for any errors during // init expression evaluation since that is all we have // (see issues go.dev/issue/42991, go.dev/issue/42992). check.errpos = atPos(obj.pos) } check.expr(nil, &x, init) } check.initConst(obj, &x) } func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init ast.Expr) { assert(obj.typ == nil) // determine type, if any if typ != nil { obj.typ = check.varType(typ) // We cannot spread the type to all lhs variables if there // are more than one since that would mark them as checked // (see Checker.objDecl) and the assignment of init exprs, // if any, would not be checked. // // TODO(gri) If we have no init expr, we should distribute // a given type otherwise we need to re-evaluate the type // expr for each lhs variable, leading to duplicate work. } // check initialization if init == nil { if typ == nil { // error reported before by arityMatch obj.typ = Typ[Invalid] } return } if lhs == nil || len(lhs) == 1 { assert(lhs == nil || lhs[0] == obj) var x operand check.expr(newTarget(obj.typ, obj.name), &x, init) check.initVar(obj, &x, "variable declaration") return } if debug { // obj must be one of lhs found := false for _, lhs := range lhs { if obj == lhs { found = true break } } if !found { panic("inconsistent lhs") } } // We have multiple variables on the lhs and one init expr. // Make sure all variables have been given the same type if // one was specified, otherwise they assume the type of the // init expression values (was go.dev/issue/15755). if typ != nil { for _, lhs := range lhs { lhs.typ = obj.typ } } check.initVars(lhs, []ast.Expr{init}, nil) } // isImportedConstraint reports whether typ is an imported type constraint. func (check *Checker) isImportedConstraint(typ Type) bool { named := asNamed(typ) if named == nil || named.obj.pkg == check.pkg || named.obj.pkg == nil { return false } u, _ := named.under().(*Interface) return u != nil && !u.IsMethodSet() } func (check *Checker) typeDecl(obj *TypeName, tdecl *ast.TypeSpec, def *TypeName) { assert(obj.typ == nil) // Only report a version error if we have not reported one already. versionErr := false var rhs Type check.later(func() { if t := asNamed(obj.typ); t != nil { // type may be invalid check.validType(t) } // If typ is local, an error was already reported where typ is specified/defined. _ = !versionErr && check.isImportedConstraint(rhs) && check.verifyVersionf(tdecl.Type, go1_18, "using type constraint %s", rhs) }).describef(obj, "validType(%s)", obj.Name()) // First type parameter, or nil. var tparam0 *ast.Field if tdecl.TypeParams.NumFields() > 0 { tparam0 = tdecl.TypeParams.List[0] } // alias declaration if tdecl.Assign.IsValid() { // Report highest version requirement first so that fixing a version issue // avoids possibly two -lang changes (first to Go 1.9 and then to Go 1.23). if !versionErr && tparam0 != nil && !check.verifyVersionf(tparam0, go1_23, "generic type alias") { versionErr = true } if !versionErr && !check.verifyVersionf(atPos(tdecl.Assign), go1_9, "type alias") { versionErr = true } if check.conf._EnableAlias { // TODO(gri) Should be able to use nil instead of Typ[Invalid] to mark // the alias as incomplete. Currently this causes problems // with certain cycles. Investigate. // // NOTE(adonovan): to avoid the Invalid being prematurely observed // by (e.g.) a var whose type is an unfinished cycle, // Unalias does not memoize if Invalid. Perhaps we should use a // special sentinel distinct from Invalid. alias := check.newAlias(obj, Typ[Invalid]) setDefType(def, alias) // handle type parameters even if not allowed (Alias type is supported) if tparam0 != nil { if !versionErr && !buildcfg.Experiment.AliasTypeParams { check.error(tdecl, UnsupportedFeature, "generic type alias requires GOEXPERIMENT=aliastypeparams") versionErr = true } check.openScope(tdecl, "type parameters") defer check.closeScope() check.collectTypeParams(&alias.tparams, tdecl.TypeParams) } rhs = check.definedType(tdecl.Type, obj) assert(rhs != nil) alias.fromRHS = rhs Unalias(alias) // resolve alias.actual } else { // With Go1.23, the default behavior is to use Alias nodes, // reflected by check.enableAlias. Signal non-default behavior. // // TODO(gri) Testing runs tests in both modes. Do we need to exclude // tracking of non-default behavior for tests? gotypesalias.IncNonDefault() if !versionErr && tparam0 != nil { check.error(tdecl, UnsupportedFeature, "generic type alias requires GODEBUG=gotypesalias=1 or unset") versionErr = true } check.brokenAlias(obj) rhs = check.typ(tdecl.Type) check.validAlias(obj, rhs) } return } // type definition or generic type declaration if !versionErr && tparam0 != nil && !check.verifyVersionf(tparam0, go1_18, "type parameter") { versionErr = true } named := check.newNamed(obj, nil, nil) setDefType(def, named) if tdecl.TypeParams != nil { check.openScope(tdecl, "type parameters") defer check.closeScope() check.collectTypeParams(&named.tparams, tdecl.TypeParams) } // determine underlying type of named rhs = check.definedType(tdecl.Type, obj) assert(rhs != nil) named.fromRHS = rhs // If the underlying type was not set while type-checking the right-hand // side, it is invalid and an error should have been reported elsewhere. if named.underlying == nil { named.underlying = Typ[Invalid] } // Disallow a lone type parameter as the RHS of a type declaration (go.dev/issue/45639). // We don't need this restriction anymore if we make the underlying type of a type // parameter its constraint interface: if the RHS is a lone type parameter, we will // use its underlying type (like we do for any RHS in a type declaration), and its // underlying type is an interface and the type declaration is well defined. if isTypeParam(rhs) { check.error(tdecl.Type, MisplacedTypeParam, "cannot use a type parameter as RHS in type declaration") named.underlying = Typ[Invalid] } } func (check *Checker) collectTypeParams(dst **TypeParamList, list *ast.FieldList) { var tparams []*TypeParam // Declare type parameters up-front, with empty interface as type bound. // The scope of type parameters starts at the beginning of the type parameter // list (so we can have mutually recursive parameterized interfaces). scopePos := list.Pos() for _, f := range list.List { tparams = check.declareTypeParams(tparams, f.Names, scopePos) } // Set the type parameters before collecting the type constraints because // the parameterized type may be used by the constraints (go.dev/issue/47887). // Example: type T[P T[P]] interface{} *dst = bindTParams(tparams) // Signal to cycle detection that we are in a type parameter list. // We can only be inside one type parameter list at any given time: // function closures may appear inside a type parameter list but they // cannot be generic, and their bodies are processed in delayed and // sequential fashion. Note that with each new declaration, we save // the existing environment and restore it when done; thus inTPList is // true exactly only when we are in a specific type parameter list. assert(!check.inTParamList) check.inTParamList = true defer func() { check.inTParamList = false }() index := 0 for _, f := range list.List { var bound Type // NOTE: we may be able to assert that f.Type != nil here, but this is not // an invariant of the AST, so we are cautious. if f.Type != nil { bound = check.bound(f.Type) if isTypeParam(bound) { // We may be able to allow this since it is now well-defined what // the underlying type and thus type set of a type parameter is. // But we may need some additional form of cycle detection within // type parameter lists. check.error(f.Type, MisplacedTypeParam, "cannot use a type parameter as constraint") bound = Typ[Invalid] } } else { bound = Typ[Invalid] } for i := range f.Names { tparams[index+i].bound = bound } index += len(f.Names) } } func (check *Checker) bound(x ast.Expr) Type { // A type set literal of the form ~T and A|B may only appear as constraint; // embed it in an implicit interface so that only interface type-checking // needs to take care of such type expressions. wrap := false switch op := x.(type) { case *ast.UnaryExpr: wrap = op.Op == token.TILDE case *ast.BinaryExpr: wrap = op.Op == token.OR } if wrap { x = &ast.InterfaceType{Methods: &ast.FieldList{List: []*ast.Field{{Type: x}}}} t := check.typ(x) // mark t as implicit interface if all went well if t, _ := t.(*Interface); t != nil { t.implicit = true } return t } return check.typ(x) } func (check *Checker) declareTypeParams(tparams []*TypeParam, names []*ast.Ident, scopePos token.Pos) []*TypeParam { // Use Typ[Invalid] for the type constraint to ensure that a type // is present even if the actual constraint has not been assigned // yet. // TODO(gri) Need to systematically review all uses of type parameter // constraints to make sure we don't rely on them if they // are not properly set yet. for _, name := range names { tname := NewTypeName(name.Pos(), check.pkg, name.Name, nil) tpar := check.newTypeParam(tname, Typ[Invalid]) // assigns type to tpar as a side-effect check.declare(check.scope, name, tname, scopePos) tparams = append(tparams, tpar) } if check.conf._Trace && len(names) > 0 { check.trace(names[0].Pos(), "type params = %v", tparams[len(tparams)-len(names):]) } return tparams } func (check *Checker) collectMethods(obj *TypeName) { // get associated methods // (Checker.collectObjects only collects methods with non-blank names; // Checker.resolveBaseTypeName ensures that obj is not an alias name // if it has attached methods.) methods := check.methods[obj] if methods == nil { return } delete(check.methods, obj) assert(!check.objMap[obj].tdecl.Assign.IsValid()) // don't use TypeName.IsAlias (requires fully set up object) // use an objset to check for name conflicts var mset objset // spec: "If the base type is a struct type, the non-blank method // and field names must be distinct." base := asNamed(obj.typ) // shouldn't fail but be conservative if base != nil { assert(base.TypeArgs().Len() == 0) // collectMethods should not be called on an instantiated type // See go.dev/issue/52529: we must delay the expansion of underlying here, as // base may not be fully set-up. check.later(func() { check.checkFieldUniqueness(base) }).describef(obj, "verifying field uniqueness for %v", base) // Checker.Files may be called multiple times; additional package files // may add methods to already type-checked types. Add pre-existing methods // so that we can detect redeclarations. for i := 0; i < base.NumMethods(); i++ { m := base.Method(i) assert(m.name != "_") assert(mset.insert(m) == nil) } } // add valid methods for _, m := range methods { // spec: "For a base type, the non-blank names of methods bound // to it must be unique." assert(m.name != "_") if alt := mset.insert(m); alt != nil { if alt.Pos().IsValid() { check.errorf(m, DuplicateMethod, "method %s.%s already declared at %v", obj.Name(), m.name, alt.Pos()) } else { check.errorf(m, DuplicateMethod, "method %s.%s already declared", obj.Name(), m.name) } continue } if base != nil { base.AddMethod(m) } } } func (check *Checker) checkFieldUniqueness(base *Named) { if t, _ := base.under().(*Struct); t != nil { var mset objset for i := 0; i < base.NumMethods(); i++ { m := base.Method(i) assert(m.name != "_") assert(mset.insert(m) == nil) } // Check that any non-blank field names of base are distinct from its // method names. for _, fld := range t.fields { if fld.name != "_" { if alt := mset.insert(fld); alt != nil { // Struct fields should already be unique, so we should only // encounter an alternate via collision with a method name. _ = alt.(*Func) // For historical consistency, we report the primary error on the // method, and the alt decl on the field. err := check.newError(DuplicateFieldAndMethod) err.addf(alt, "field and method with the same name %s", fld.name) err.addAltDecl(fld) err.report() } } } } } func (check *Checker) funcDecl(obj *Func, decl *declInfo) { assert(obj.typ == nil) // func declarations cannot use iota assert(check.iota == nil) sig := new(Signature) obj.typ = sig // guard against cycles // Avoid cycle error when referring to method while type-checking the signature. // This avoids a nuisance in the best case (non-parameterized receiver type) and // since the method is not a type, we get an error. If we have a parameterized // receiver type, instantiating the receiver type leads to the instantiation of // its methods, and we don't want a cycle error in that case. // TODO(gri) review if this is correct and/or whether we still need this? saved := obj.color_ obj.color_ = black fdecl := decl.fdecl check.funcType(sig, fdecl.Recv, fdecl.Type) obj.color_ = saved // Set the scope's extent to the complete "func (...) { ... }" // so that Scope.Innermost works correctly. sig.scope.pos = fdecl.Pos() sig.scope.end = fdecl.End() if fdecl.Type.TypeParams.NumFields() > 0 && fdecl.Body == nil { check.softErrorf(fdecl.Name, BadDecl, "generic function is missing function body") } // function body must be type-checked after global declarations // (functions implemented elsewhere have no body) if !check.conf.IgnoreFuncBodies && fdecl.Body != nil { check.later(func() { check.funcBody(decl, obj.name, sig, fdecl.Body, nil) }).describef(obj, "func %s", obj.name) } } func (check *Checker) declStmt(d ast.Decl) { pkg := check.pkg check.walkDecl(d, func(d decl) { switch d := d.(type) { case constDecl: top := len(check.delayed) // declare all constants lhs := make([]*Const, len(d.spec.Names)) for i, name := range d.spec.Names { obj := NewConst(name.Pos(), pkg, name.Name, nil, constant.MakeInt64(int64(d.iota))) lhs[i] = obj var init ast.Expr if i < len(d.init) { init = d.init[i] } check.constDecl(obj, d.typ, init, d.inherited) } // process function literals in init expressions before scope changes check.processDelayed(top) // spec: "The scope of a constant or variable identifier declared // inside a function begins at the end of the ConstSpec or VarSpec // (ShortVarDecl for short variable declarations) and ends at the // end of the innermost containing block." scopePos := d.spec.End() for i, name := range d.spec.Names { check.declare(check.scope, name, lhs[i], scopePos) } case varDecl: top := len(check.delayed) lhs0 := make([]*Var, len(d.spec.Names)) for i, name := range d.spec.Names { lhs0[i] = NewVar(name.Pos(), pkg, name.Name, nil) } // initialize all variables for i, obj := range lhs0 { var lhs []*Var var init ast.Expr switch len(d.spec.Values) { case len(d.spec.Names): // lhs and rhs match init = d.spec.Values[i] case 1: // rhs is expected to be a multi-valued expression lhs = lhs0 init = d.spec.Values[0] default: if i < len(d.spec.Values) { init = d.spec.Values[i] } } check.varDecl(obj, lhs, d.spec.Type, init) if len(d.spec.Values) == 1 { // If we have a single lhs variable we are done either way. // If we have a single rhs expression, it must be a multi- // valued expression, in which case handling the first lhs // variable will cause all lhs variables to have a type // assigned, and we are done as well. if debug { for _, obj := range lhs0 { assert(obj.typ != nil) } } break } } // process function literals in init expressions before scope changes check.processDelayed(top) // declare all variables // (only at this point are the variable scopes (parents) set) scopePos := d.spec.End() // see constant declarations for i, name := range d.spec.Names { // see constant declarations check.declare(check.scope, name, lhs0[i], scopePos) } case typeDecl: obj := NewTypeName(d.spec.Name.Pos(), pkg, d.spec.Name.Name, nil) // spec: "The scope of a type identifier declared inside a function // begins at the identifier in the TypeSpec and ends at the end of // the innermost containing block." scopePos := d.spec.Name.Pos() check.declare(check.scope, d.spec.Name, obj, scopePos) // mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl) obj.setColor(grey + color(check.push(obj))) check.typeDecl(obj, d.spec, nil) check.pop().setColor(black) default: check.errorf(d.node(), InvalidSyntaxTree, "unknown ast.Decl node %T", d.node()) } }) }