Source file src/internal/diff/diff.go

     1  // Copyright 2022 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package diff
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"sort"
    11  	"strings"
    12  )
    13  
    14  // A pair is a pair of values tracked for both the x and y side of a diff.
    15  // It is typically a pair of line indexes.
    16  type pair struct{ x, y int }
    17  
    18  // Diff returns an anchored diff of the two texts old and new
    19  // in the “unified diff” format. If old and new are identical,
    20  // Diff returns a nil slice (no output).
    21  //
    22  // Unix diff implementations typically look for a diff with
    23  // the smallest number of lines inserted and removed,
    24  // which can in the worst case take time quadratic in the
    25  // number of lines in the texts. As a result, many implementations
    26  // either can be made to run for a long time or cut off the search
    27  // after a predetermined amount of work.
    28  //
    29  // In contrast, this implementation looks for a diff with the
    30  // smallest number of “unique” lines inserted and removed,
    31  // where unique means a line that appears just once in both old and new.
    32  // We call this an “anchored diff” because the unique lines anchor
    33  // the chosen matching regions. An anchored diff is usually clearer
    34  // than a standard diff, because the algorithm does not try to
    35  // reuse unrelated blank lines or closing braces.
    36  // The algorithm also guarantees to run in O(n log n) time
    37  // instead of the standard O(n²) time.
    38  //
    39  // Some systems call this approach a “patience diff,” named for
    40  // the “patience sorting” algorithm, itself named for a solitaire card game.
    41  // We avoid that name for two reasons. First, the name has been used
    42  // for a few different variants of the algorithm, so it is imprecise.
    43  // Second, the name is frequently interpreted as meaning that you have
    44  // to wait longer (to be patient) for the diff, meaning that it is a slower algorithm,
    45  // when in fact the algorithm is faster than the standard one.
    46  func Diff(oldName string, old []byte, newName string, new []byte) []byte {
    47  	if bytes.Equal(old, new) {
    48  		return nil
    49  	}
    50  	x := lines(old)
    51  	y := lines(new)
    52  
    53  	// Print diff header.
    54  	var out bytes.Buffer
    55  	fmt.Fprintf(&out, "diff %s %s\n", oldName, newName)
    56  	fmt.Fprintf(&out, "--- %s\n", oldName)
    57  	fmt.Fprintf(&out, "+++ %s\n", newName)
    58  
    59  	// Loop over matches to consider,
    60  	// expanding each match to include surrounding lines,
    61  	// and then printing diff chunks.
    62  	// To avoid setup/teardown cases outside the loop,
    63  	// tgs returns a leading {0,0} and trailing {len(x), len(y)} pair
    64  	// in the sequence of matches.
    65  	var (
    66  		done  pair     // printed up to x[:done.x] and y[:done.y]
    67  		chunk pair     // start lines of current chunk
    68  		count pair     // number of lines from each side in current chunk
    69  		ctext []string // lines for current chunk
    70  	)
    71  	for _, m := range tgs(x, y) {
    72  		if m.x < done.x {
    73  			// Already handled scanning forward from earlier match.
    74  			continue
    75  		}
    76  
    77  		// Expand matching lines as far as possible,
    78  		// establishing that x[start.x:end.x] == y[start.y:end.y].
    79  		// Note that on the first (or last) iteration we may (or definitely do)
    80  		// have an empty match: start.x==end.x and start.y==end.y.
    81  		start := m
    82  		for start.x > done.x && start.y > done.y && x[start.x-1] == y[start.y-1] {
    83  			start.x--
    84  			start.y--
    85  		}
    86  		end := m
    87  		for end.x < len(x) && end.y < len(y) && x[end.x] == y[end.y] {
    88  			end.x++
    89  			end.y++
    90  		}
    91  
    92  		// Emit the mismatched lines before start into this chunk.
    93  		// (No effect on first sentinel iteration, when start = {0,0}.)
    94  		for _, s := range x[done.x:start.x] {
    95  			ctext = append(ctext, "-"+s)
    96  			count.x++
    97  		}
    98  		for _, s := range y[done.y:start.y] {
    99  			ctext = append(ctext, "+"+s)
   100  			count.y++
   101  		}
   102  
   103  		// If we're not at EOF and have too few common lines,
   104  		// the chunk includes all the common lines and continues.
   105  		const C = 3 // number of context lines
   106  		if (end.x < len(x) || end.y < len(y)) &&
   107  			(end.x-start.x < C || (len(ctext) > 0 && end.x-start.x < 2*C)) {
   108  			for _, s := range x[start.x:end.x] {
   109  				ctext = append(ctext, " "+s)
   110  				count.x++
   111  				count.y++
   112  			}
   113  			done = end
   114  			continue
   115  		}
   116  
   117  		// End chunk with common lines for context.
   118  		if len(ctext) > 0 {
   119  			n := end.x - start.x
   120  			if n > C {
   121  				n = C
   122  			}
   123  			for _, s := range x[start.x : start.x+n] {
   124  				ctext = append(ctext, " "+s)
   125  				count.x++
   126  				count.y++
   127  			}
   128  			done = pair{start.x + n, start.y + n}
   129  
   130  			// Format and emit chunk.
   131  			// Convert line numbers to 1-indexed.
   132  			// Special case: empty file shows up as 0,0 not 1,0.
   133  			if count.x > 0 {
   134  				chunk.x++
   135  			}
   136  			if count.y > 0 {
   137  				chunk.y++
   138  			}
   139  			fmt.Fprintf(&out, "@@ -%d,%d +%d,%d @@\n", chunk.x, count.x, chunk.y, count.y)
   140  			for _, s := range ctext {
   141  				out.WriteString(s)
   142  			}
   143  			count.x = 0
   144  			count.y = 0
   145  			ctext = ctext[:0]
   146  		}
   147  
   148  		// If we reached EOF, we're done.
   149  		if end.x >= len(x) && end.y >= len(y) {
   150  			break
   151  		}
   152  
   153  		// Otherwise start a new chunk.
   154  		chunk = pair{end.x - C, end.y - C}
   155  		for _, s := range x[chunk.x:end.x] {
   156  			ctext = append(ctext, " "+s)
   157  			count.x++
   158  			count.y++
   159  		}
   160  		done = end
   161  	}
   162  
   163  	return out.Bytes()
   164  }
   165  
   166  // lines returns the lines in the file x, including newlines.
   167  // If the file does not end in a newline, one is supplied
   168  // along with a warning about the missing newline.
   169  func lines(x []byte) []string {
   170  	l := strings.SplitAfter(string(x), "\n")
   171  	if l[len(l)-1] == "" {
   172  		l = l[:len(l)-1]
   173  	} else {
   174  		// Treat last line as having a message about the missing newline attached,
   175  		// using the same text as BSD/GNU diff (including the leading backslash).
   176  		l[len(l)-1] += "\n\\ No newline at end of file\n"
   177  	}
   178  	return l
   179  }
   180  
   181  // tgs returns the pairs of indexes of the longest common subsequence
   182  // of unique lines in x and y, where a unique line is one that appears
   183  // once in x and once in y.
   184  //
   185  // The longest common subsequence algorithm is as described in
   186  // Thomas G. Szymanski, “A Special Case of the Maximal Common
   187  // Subsequence Problem,” Princeton TR #170 (January 1975),
   188  // available at https://research.swtch.com/tgs170.pdf.
   189  func tgs(x, y []string) []pair {
   190  	// Count the number of times each string appears in a and b.
   191  	// We only care about 0, 1, many, counted as 0, -1, -2
   192  	// for the x side and 0, -4, -8 for the y side.
   193  	// Using negative numbers now lets us distinguish positive line numbers later.
   194  	m := make(map[string]int)
   195  	for _, s := range x {
   196  		if c := m[s]; c > -2 {
   197  			m[s] = c - 1
   198  		}
   199  	}
   200  	for _, s := range y {
   201  		if c := m[s]; c > -8 {
   202  			m[s] = c - 4
   203  		}
   204  	}
   205  
   206  	// Now unique strings can be identified by m[s] = -1+-4.
   207  	//
   208  	// Gather the indexes of those strings in x and y, building:
   209  	//	xi[i] = increasing indexes of unique strings in x.
   210  	//	yi[i] = increasing indexes of unique strings in y.
   211  	//	inv[i] = index j such that x[xi[i]] = y[yi[j]].
   212  	var xi, yi, inv []int
   213  	for i, s := range y {
   214  		if m[s] == -1+-4 {
   215  			m[s] = len(yi)
   216  			yi = append(yi, i)
   217  		}
   218  	}
   219  	for i, s := range x {
   220  		if j, ok := m[s]; ok && j >= 0 {
   221  			xi = append(xi, i)
   222  			inv = append(inv, j)
   223  		}
   224  	}
   225  
   226  	// Apply Algorithm A from Szymanski's paper.
   227  	// In those terms, A = J = inv and B = [0, n).
   228  	// We add sentinel pairs {0,0}, and {len(x),len(y)}
   229  	// to the returned sequence, to help the processing loop.
   230  	J := inv
   231  	n := len(xi)
   232  	T := make([]int, n)
   233  	L := make([]int, n)
   234  	for i := range T {
   235  		T[i] = n + 1
   236  	}
   237  	for i := 0; i < n; i++ {
   238  		k := sort.Search(n, func(k int) bool {
   239  			return T[k] >= J[i]
   240  		})
   241  		T[k] = J[i]
   242  		L[i] = k + 1
   243  	}
   244  	k := 0
   245  	for _, v := range L {
   246  		if k < v {
   247  			k = v
   248  		}
   249  	}
   250  	seq := make([]pair, 2+k)
   251  	seq[1+k] = pair{len(x), len(y)} // sentinel at end
   252  	lastj := n
   253  	for i := n - 1; i >= 0; i-- {
   254  		if L[i] == k && J[i] < lastj {
   255  			seq[k] = pair{xi[i], yi[J[i]]}
   256  			k--
   257  		}
   258  	}
   259  	seq[0] = pair{0, 0} // sentinel at start
   260  	return seq
   261  }
   262  

View as plain text