Source file src/net/http/server.go
1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 7230 through 7235. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "crypto/tls" 14 "errors" 15 "fmt" 16 "internal/godebug" 17 "io" 18 "log" 19 "maps" 20 "math/rand" 21 "net" 22 "net/textproto" 23 "net/url" 24 urlpkg "net/url" 25 "path" 26 "runtime" 27 "slices" 28 "strconv" 29 "strings" 30 "sync" 31 "sync/atomic" 32 "time" 33 _ "unsafe" // for linkname 34 35 "golang.org/x/net/http/httpguts" 36 ) 37 38 // Errors used by the HTTP server. 39 var ( 40 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 41 // when the HTTP method or response code does not permit a 42 // body. 43 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 44 45 // ErrHijacked is returned by ResponseWriter.Write calls when 46 // the underlying connection has been hijacked using the 47 // Hijacker interface. A zero-byte write on a hijacked 48 // connection will return ErrHijacked without any other side 49 // effects. 50 ErrHijacked = errors.New("http: connection has been hijacked") 51 52 // ErrContentLength is returned by ResponseWriter.Write calls 53 // when a Handler set a Content-Length response header with a 54 // declared size and then attempted to write more bytes than 55 // declared. 56 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 57 58 // Deprecated: ErrWriteAfterFlush is no longer returned by 59 // anything in the net/http package. Callers should not 60 // compare errors against this variable. 61 ErrWriteAfterFlush = errors.New("unused") 62 ) 63 64 // A Handler responds to an HTTP request. 65 // 66 // [Handler.ServeHTTP] should write reply headers and data to the [ResponseWriter] 67 // and then return. Returning signals that the request is finished; it 68 // is not valid to use the [ResponseWriter] or read from the 69 // [Request.Body] after or concurrently with the completion of the 70 // ServeHTTP call. 71 // 72 // Depending on the HTTP client software, HTTP protocol version, and 73 // any intermediaries between the client and the Go server, it may not 74 // be possible to read from the [Request.Body] after writing to the 75 // [ResponseWriter]. Cautious handlers should read the [Request.Body] 76 // first, and then reply. 77 // 78 // Except for reading the body, handlers should not modify the 79 // provided Request. 80 // 81 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 82 // that the effect of the panic was isolated to the active request. 83 // It recovers the panic, logs a stack trace to the server error log, 84 // and either closes the network connection or sends an HTTP/2 85 // RST_STREAM, depending on the HTTP protocol. To abort a handler so 86 // the client sees an interrupted response but the server doesn't log 87 // an error, panic with the value [ErrAbortHandler]. 88 type Handler interface { 89 ServeHTTP(ResponseWriter, *Request) 90 } 91 92 // A ResponseWriter interface is used by an HTTP handler to 93 // construct an HTTP response. 94 // 95 // A ResponseWriter may not be used after [Handler.ServeHTTP] has returned. 96 type ResponseWriter interface { 97 // Header returns the header map that will be sent by 98 // [ResponseWriter.WriteHeader]. The [Header] map also is the mechanism with which 99 // [Handler] implementations can set HTTP trailers. 100 // 101 // Changing the header map after a call to [ResponseWriter.WriteHeader] (or 102 // [ResponseWriter.Write]) has no effect unless the HTTP status code was of the 103 // 1xx class or the modified headers are trailers. 104 // 105 // There are two ways to set Trailers. The preferred way is to 106 // predeclare in the headers which trailers you will later 107 // send by setting the "Trailer" header to the names of the 108 // trailer keys which will come later. In this case, those 109 // keys of the Header map are treated as if they were 110 // trailers. See the example. The second way, for trailer 111 // keys not known to the [Handler] until after the first [ResponseWriter.Write], 112 // is to prefix the [Header] map keys with the [TrailerPrefix] 113 // constant value. 114 // 115 // To suppress automatic response headers (such as "Date"), set 116 // their value to nil. 117 Header() Header 118 119 // Write writes the data to the connection as part of an HTTP reply. 120 // 121 // If [ResponseWriter.WriteHeader] has not yet been called, Write calls 122 // WriteHeader(http.StatusOK) before writing the data. If the Header 123 // does not contain a Content-Type line, Write adds a Content-Type set 124 // to the result of passing the initial 512 bytes of written data to 125 // [DetectContentType]. Additionally, if the total size of all written 126 // data is under a few KB and there are no Flush calls, the 127 // Content-Length header is added automatically. 128 // 129 // Depending on the HTTP protocol version and the client, calling 130 // Write or WriteHeader may prevent future reads on the 131 // Request.Body. For HTTP/1.x requests, handlers should read any 132 // needed request body data before writing the response. Once the 133 // headers have been flushed (due to either an explicit Flusher.Flush 134 // call or writing enough data to trigger a flush), the request body 135 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 136 // handlers to continue to read the request body while concurrently 137 // writing the response. However, such behavior may not be supported 138 // by all HTTP/2 clients. Handlers should read before writing if 139 // possible to maximize compatibility. 140 Write([]byte) (int, error) 141 142 // WriteHeader sends an HTTP response header with the provided 143 // status code. 144 // 145 // If WriteHeader is not called explicitly, the first call to Write 146 // will trigger an implicit WriteHeader(http.StatusOK). 147 // Thus explicit calls to WriteHeader are mainly used to 148 // send error codes or 1xx informational responses. 149 // 150 // The provided code must be a valid HTTP 1xx-5xx status code. 151 // Any number of 1xx headers may be written, followed by at most 152 // one 2xx-5xx header. 1xx headers are sent immediately, but 2xx-5xx 153 // headers may be buffered. Use the Flusher interface to send 154 // buffered data. The header map is cleared when 2xx-5xx headers are 155 // sent, but not with 1xx headers. 156 // 157 // The server will automatically send a 100 (Continue) header 158 // on the first read from the request body if the request has 159 // an "Expect: 100-continue" header. 160 WriteHeader(statusCode int) 161 } 162 163 // The Flusher interface is implemented by ResponseWriters that allow 164 // an HTTP handler to flush buffered data to the client. 165 // 166 // The default HTTP/1.x and HTTP/2 [ResponseWriter] implementations 167 // support [Flusher], but ResponseWriter wrappers may not. Handlers 168 // should always test for this ability at runtime. 169 // 170 // Note that even for ResponseWriters that support Flush, 171 // if the client is connected through an HTTP proxy, 172 // the buffered data may not reach the client until the response 173 // completes. 174 type Flusher interface { 175 // Flush sends any buffered data to the client. 176 Flush() 177 } 178 179 // The Hijacker interface is implemented by ResponseWriters that allow 180 // an HTTP handler to take over the connection. 181 // 182 // The default [ResponseWriter] for HTTP/1.x connections supports 183 // Hijacker, but HTTP/2 connections intentionally do not. 184 // ResponseWriter wrappers may also not support Hijacker. Handlers 185 // should always test for this ability at runtime. 186 type Hijacker interface { 187 // Hijack lets the caller take over the connection. 188 // After a call to Hijack the HTTP server library 189 // will not do anything else with the connection. 190 // 191 // It becomes the caller's responsibility to manage 192 // and close the connection. 193 // 194 // The returned net.Conn may have read or write deadlines 195 // already set, depending on the configuration of the 196 // Server. It is the caller's responsibility to set 197 // or clear those deadlines as needed. 198 // 199 // The returned bufio.Reader may contain unprocessed buffered 200 // data from the client. 201 // 202 // After a call to Hijack, the original Request.Body must not 203 // be used. The original Request's Context remains valid and 204 // is not canceled until the Request's ServeHTTP method 205 // returns. 206 Hijack() (net.Conn, *bufio.ReadWriter, error) 207 } 208 209 // The CloseNotifier interface is implemented by ResponseWriters which 210 // allow detecting when the underlying connection has gone away. 211 // 212 // This mechanism can be used to cancel long operations on the server 213 // if the client has disconnected before the response is ready. 214 // 215 // Deprecated: the CloseNotifier interface predates Go's context package. 216 // New code should use [Request.Context] instead. 217 type CloseNotifier interface { 218 // CloseNotify returns a channel that receives at most a 219 // single value (true) when the client connection has gone 220 // away. 221 // 222 // CloseNotify may wait to notify until Request.Body has been 223 // fully read. 224 // 225 // After the Handler has returned, there is no guarantee 226 // that the channel receives a value. 227 // 228 // If the protocol is HTTP/1.1 and CloseNotify is called while 229 // processing an idempotent request (such as GET) while 230 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 231 // pipelined request may cause a value to be sent on the 232 // returned channel. In practice HTTP/1.1 pipelining is not 233 // enabled in browsers and not seen often in the wild. If this 234 // is a problem, use HTTP/2 or only use CloseNotify on methods 235 // such as POST. 236 CloseNotify() <-chan bool 237 } 238 239 var ( 240 // ServerContextKey is a context key. It can be used in HTTP 241 // handlers with Context.Value to access the server that 242 // started the handler. The associated value will be of 243 // type *Server. 244 ServerContextKey = &contextKey{"http-server"} 245 246 // LocalAddrContextKey is a context key. It can be used in 247 // HTTP handlers with Context.Value to access the local 248 // address the connection arrived on. 249 // The associated value will be of type net.Addr. 250 LocalAddrContextKey = &contextKey{"local-addr"} 251 ) 252 253 // A conn represents the server side of an HTTP connection. 254 type conn struct { 255 // server is the server on which the connection arrived. 256 // Immutable; never nil. 257 server *Server 258 259 // cancelCtx cancels the connection-level context. 260 cancelCtx context.CancelFunc 261 262 // rwc is the underlying network connection. 263 // This is never wrapped by other types and is the value given out 264 // to CloseNotifier callers. It is usually of type *net.TCPConn or 265 // *tls.Conn. 266 rwc net.Conn 267 268 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 269 // inside the Listener's Accept goroutine, as some implementations block. 270 // It is populated immediately inside the (*conn).serve goroutine. 271 // This is the value of a Handler's (*Request).RemoteAddr. 272 remoteAddr string 273 274 // tlsState is the TLS connection state when using TLS. 275 // nil means not TLS. 276 tlsState *tls.ConnectionState 277 278 // werr is set to the first write error to rwc. 279 // It is set via checkConnErrorWriter{w}, where bufw writes. 280 werr error 281 282 // r is bufr's read source. It's a wrapper around rwc that provides 283 // io.LimitedReader-style limiting (while reading request headers) 284 // and functionality to support CloseNotifier. See *connReader docs. 285 r *connReader 286 287 // bufr reads from r. 288 bufr *bufio.Reader 289 290 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 291 bufw *bufio.Writer 292 293 // lastMethod is the method of the most recent request 294 // on this connection, if any. 295 lastMethod string 296 297 curReq atomic.Pointer[response] // (which has a Request in it) 298 299 curState atomic.Uint64 // packed (unixtime<<8|uint8(ConnState)) 300 301 // mu guards hijackedv 302 mu sync.Mutex 303 304 // hijackedv is whether this connection has been hijacked 305 // by a Handler with the Hijacker interface. 306 // It is guarded by mu. 307 hijackedv bool 308 } 309 310 func (c *conn) hijacked() bool { 311 c.mu.Lock() 312 defer c.mu.Unlock() 313 return c.hijackedv 314 } 315 316 // c.mu must be held. 317 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 318 if c.hijackedv { 319 return nil, nil, ErrHijacked 320 } 321 c.r.abortPendingRead() 322 323 c.hijackedv = true 324 rwc = c.rwc 325 rwc.SetDeadline(time.Time{}) 326 327 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 328 if c.r.hasByte { 329 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil { 330 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err) 331 } 332 } 333 c.setState(rwc, StateHijacked, runHooks) 334 return 335 } 336 337 // This should be >= 512 bytes for DetectContentType, 338 // but otherwise it's somewhat arbitrary. 339 const bufferBeforeChunkingSize = 2048 340 341 // chunkWriter writes to a response's conn buffer, and is the writer 342 // wrapped by the response.w buffered writer. 343 // 344 // chunkWriter also is responsible for finalizing the Header, including 345 // conditionally setting the Content-Type and setting a Content-Length 346 // in cases where the handler's final output is smaller than the buffer 347 // size. It also conditionally adds chunk headers, when in chunking mode. 348 // 349 // See the comment above (*response).Write for the entire write flow. 350 type chunkWriter struct { 351 res *response 352 353 // header is either nil or a deep clone of res.handlerHeader 354 // at the time of res.writeHeader, if res.writeHeader is 355 // called and extra buffering is being done to calculate 356 // Content-Type and/or Content-Length. 357 header Header 358 359 // wroteHeader tells whether the header's been written to "the 360 // wire" (or rather: w.conn.buf). this is unlike 361 // (*response).wroteHeader, which tells only whether it was 362 // logically written. 363 wroteHeader bool 364 365 // set by the writeHeader method: 366 chunking bool // using chunked transfer encoding for reply body 367 } 368 369 var ( 370 crlf = []byte("\r\n") 371 colonSpace = []byte(": ") 372 ) 373 374 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 375 if !cw.wroteHeader { 376 cw.writeHeader(p) 377 } 378 if cw.res.req.Method == "HEAD" { 379 // Eat writes. 380 return len(p), nil 381 } 382 if cw.chunking { 383 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 384 if err != nil { 385 cw.res.conn.rwc.Close() 386 return 387 } 388 } 389 n, err = cw.res.conn.bufw.Write(p) 390 if cw.chunking && err == nil { 391 _, err = cw.res.conn.bufw.Write(crlf) 392 } 393 if err != nil { 394 cw.res.conn.rwc.Close() 395 } 396 return 397 } 398 399 func (cw *chunkWriter) flush() error { 400 if !cw.wroteHeader { 401 cw.writeHeader(nil) 402 } 403 return cw.res.conn.bufw.Flush() 404 } 405 406 func (cw *chunkWriter) close() { 407 if !cw.wroteHeader { 408 cw.writeHeader(nil) 409 } 410 if cw.chunking { 411 bw := cw.res.conn.bufw // conn's bufio writer 412 // zero chunk to mark EOF 413 bw.WriteString("0\r\n") 414 if trailers := cw.res.finalTrailers(); trailers != nil { 415 trailers.Write(bw) // the writer handles noting errors 416 } 417 // final blank line after the trailers (whether 418 // present or not) 419 bw.WriteString("\r\n") 420 } 421 } 422 423 // A response represents the server side of an HTTP response. 424 type response struct { 425 conn *conn 426 req *Request // request for this response 427 reqBody io.ReadCloser 428 cancelCtx context.CancelFunc // when ServeHTTP exits 429 wroteHeader bool // a non-1xx header has been (logically) written 430 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 431 wantsClose bool // HTTP request has Connection "close" 432 433 // canWriteContinue is an atomic boolean that says whether or 434 // not a 100 Continue header can be written to the 435 // connection. 436 // writeContinueMu must be held while writing the header. 437 // These two fields together synchronize the body reader (the 438 // expectContinueReader, which wants to write 100 Continue) 439 // against the main writer. 440 writeContinueMu sync.Mutex 441 canWriteContinue atomic.Bool 442 443 w *bufio.Writer // buffers output in chunks to chunkWriter 444 cw chunkWriter 445 446 // handlerHeader is the Header that Handlers get access to, 447 // which may be retained and mutated even after WriteHeader. 448 // handlerHeader is copied into cw.header at WriteHeader 449 // time, and privately mutated thereafter. 450 handlerHeader Header 451 calledHeader bool // handler accessed handlerHeader via Header 452 453 written int64 // number of bytes written in body 454 contentLength int64 // explicitly-declared Content-Length; or -1 455 status int // status code passed to WriteHeader 456 457 // close connection after this reply. set on request and 458 // updated after response from handler if there's a 459 // "Connection: keep-alive" response header and a 460 // Content-Length. 461 closeAfterReply bool 462 463 // When fullDuplex is false (the default), we consume any remaining 464 // request body before starting to write a response. 465 fullDuplex bool 466 467 // requestBodyLimitHit is set by requestTooLarge when 468 // maxBytesReader hits its max size. It is checked in 469 // WriteHeader, to make sure we don't consume the 470 // remaining request body to try to advance to the next HTTP 471 // request. Instead, when this is set, we stop reading 472 // subsequent requests on this connection and stop reading 473 // input from it. 474 requestBodyLimitHit bool 475 476 // trailers are the headers to be sent after the handler 477 // finishes writing the body. This field is initialized from 478 // the Trailer response header when the response header is 479 // written. 480 trailers []string 481 482 handlerDone atomic.Bool // set true when the handler exits 483 484 // Buffers for Date, Content-Length, and status code 485 dateBuf [len(TimeFormat)]byte 486 clenBuf [10]byte 487 statusBuf [3]byte 488 489 // closeNotifyCh is the channel returned by CloseNotify. 490 // TODO(bradfitz): this is currently (for Go 1.8) always 491 // non-nil. Make this lazily-created again as it used to be? 492 closeNotifyCh chan bool 493 didCloseNotify atomic.Bool // atomic (only false->true winner should send) 494 } 495 496 func (c *response) SetReadDeadline(deadline time.Time) error { 497 return c.conn.rwc.SetReadDeadline(deadline) 498 } 499 500 func (c *response) SetWriteDeadline(deadline time.Time) error { 501 return c.conn.rwc.SetWriteDeadline(deadline) 502 } 503 504 func (c *response) EnableFullDuplex() error { 505 c.fullDuplex = true 506 return nil 507 } 508 509 // TrailerPrefix is a magic prefix for [ResponseWriter.Header] map keys 510 // that, if present, signals that the map entry is actually for 511 // the response trailers, and not the response headers. The prefix 512 // is stripped after the ServeHTTP call finishes and the values are 513 // sent in the trailers. 514 // 515 // This mechanism is intended only for trailers that are not known 516 // prior to the headers being written. If the set of trailers is fixed 517 // or known before the header is written, the normal Go trailers mechanism 518 // is preferred: 519 // 520 // https://pkg.go.dev/net/http#ResponseWriter 521 // https://pkg.go.dev/net/http#example-ResponseWriter-Trailers 522 const TrailerPrefix = "Trailer:" 523 524 // finalTrailers is called after the Handler exits and returns a non-nil 525 // value if the Handler set any trailers. 526 func (w *response) finalTrailers() Header { 527 var t Header 528 for k, vv := range w.handlerHeader { 529 if kk, found := strings.CutPrefix(k, TrailerPrefix); found { 530 if t == nil { 531 t = make(Header) 532 } 533 t[kk] = vv 534 } 535 } 536 for _, k := range w.trailers { 537 if t == nil { 538 t = make(Header) 539 } 540 for _, v := range w.handlerHeader[k] { 541 t.Add(k, v) 542 } 543 } 544 return t 545 } 546 547 // declareTrailer is called for each Trailer header when the 548 // response header is written. It notes that a header will need to be 549 // written in the trailers at the end of the response. 550 func (w *response) declareTrailer(k string) { 551 k = CanonicalHeaderKey(k) 552 if !httpguts.ValidTrailerHeader(k) { 553 // Forbidden by RFC 7230, section 4.1.2 554 return 555 } 556 w.trailers = append(w.trailers, k) 557 } 558 559 // requestTooLarge is called by maxBytesReader when too much input has 560 // been read from the client. 561 func (w *response) requestTooLarge() { 562 w.closeAfterReply = true 563 w.requestBodyLimitHit = true 564 if !w.wroteHeader { 565 w.Header().Set("Connection", "close") 566 } 567 } 568 569 // disableWriteContinue stops Request.Body.Read from sending an automatic 100-Continue. 570 // If a 100-Continue is being written, it waits for it to complete before continuing. 571 func (w *response) disableWriteContinue() { 572 w.writeContinueMu.Lock() 573 w.canWriteContinue.Store(false) 574 w.writeContinueMu.Unlock() 575 } 576 577 // writerOnly hides an io.Writer value's optional ReadFrom method 578 // from io.Copy. 579 type writerOnly struct { 580 io.Writer 581 } 582 583 // ReadFrom is here to optimize copying from an [*os.File] regular file 584 // to a [*net.TCPConn] with sendfile, or from a supported src type such 585 // as a *net.TCPConn on Linux with splice. 586 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 587 buf := getCopyBuf() 588 defer putCopyBuf(buf) 589 590 // Our underlying w.conn.rwc is usually a *TCPConn (with its 591 // own ReadFrom method). If not, just fall back to the normal 592 // copy method. 593 rf, ok := w.conn.rwc.(io.ReaderFrom) 594 if !ok { 595 return io.CopyBuffer(writerOnly{w}, src, buf) 596 } 597 598 // Copy the first sniffLen bytes before switching to ReadFrom. 599 // This ensures we don't start writing the response before the 600 // source is available (see golang.org/issue/5660) and provides 601 // enough bytes to perform Content-Type sniffing when required. 602 if !w.cw.wroteHeader { 603 n0, err := io.CopyBuffer(writerOnly{w}, io.LimitReader(src, sniffLen), buf) 604 n += n0 605 if err != nil || n0 < sniffLen { 606 return n, err 607 } 608 } 609 610 w.w.Flush() // get rid of any previous writes 611 w.cw.flush() // make sure Header is written; flush data to rwc 612 613 // Now that cw has been flushed, its chunking field is guaranteed initialized. 614 if !w.cw.chunking && w.bodyAllowed() { 615 n0, err := rf.ReadFrom(src) 616 n += n0 617 w.written += n0 618 return n, err 619 } 620 621 n0, err := io.CopyBuffer(writerOnly{w}, src, buf) 622 n += n0 623 return n, err 624 } 625 626 // debugServerConnections controls whether all server connections are wrapped 627 // with a verbose logging wrapper. 628 const debugServerConnections = false 629 630 // Create new connection from rwc. 631 func (srv *Server) newConn(rwc net.Conn) *conn { 632 c := &conn{ 633 server: srv, 634 rwc: rwc, 635 } 636 if debugServerConnections { 637 c.rwc = newLoggingConn("server", c.rwc) 638 } 639 return c 640 } 641 642 type readResult struct { 643 _ incomparable 644 n int 645 err error 646 b byte // byte read, if n == 1 647 } 648 649 // connReader is the io.Reader wrapper used by *conn. It combines a 650 // selectively-activated io.LimitedReader (to bound request header 651 // read sizes) with support for selectively keeping an io.Reader.Read 652 // call blocked in a background goroutine to wait for activity and 653 // trigger a CloseNotifier channel. 654 type connReader struct { 655 conn *conn 656 657 mu sync.Mutex // guards following 658 hasByte bool 659 byteBuf [1]byte 660 cond *sync.Cond 661 inRead bool 662 aborted bool // set true before conn.rwc deadline is set to past 663 remain int64 // bytes remaining 664 } 665 666 func (cr *connReader) lock() { 667 cr.mu.Lock() 668 if cr.cond == nil { 669 cr.cond = sync.NewCond(&cr.mu) 670 } 671 } 672 673 func (cr *connReader) unlock() { cr.mu.Unlock() } 674 675 func (cr *connReader) startBackgroundRead() { 676 cr.lock() 677 defer cr.unlock() 678 if cr.inRead { 679 panic("invalid concurrent Body.Read call") 680 } 681 if cr.hasByte { 682 return 683 } 684 cr.inRead = true 685 cr.conn.rwc.SetReadDeadline(time.Time{}) 686 go cr.backgroundRead() 687 } 688 689 func (cr *connReader) backgroundRead() { 690 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) 691 cr.lock() 692 if n == 1 { 693 cr.hasByte = true 694 // We were past the end of the previous request's body already 695 // (since we wouldn't be in a background read otherwise), so 696 // this is a pipelined HTTP request. Prior to Go 1.11 we used to 697 // send on the CloseNotify channel and cancel the context here, 698 // but the behavior was documented as only "may", and we only 699 // did that because that's how CloseNotify accidentally behaved 700 // in very early Go releases prior to context support. Once we 701 // added context support, people used a Handler's 702 // Request.Context() and passed it along. Having that context 703 // cancel on pipelined HTTP requests caused problems. 704 // Fortunately, almost nothing uses HTTP/1.x pipelining. 705 // Unfortunately, apt-get does, or sometimes does. 706 // New Go 1.11 behavior: don't fire CloseNotify or cancel 707 // contexts on pipelined requests. Shouldn't affect people, but 708 // fixes cases like Issue 23921. This does mean that a client 709 // closing their TCP connection after sending a pipelined 710 // request won't cancel the context, but we'll catch that on any 711 // write failure (in checkConnErrorWriter.Write). 712 // If the server never writes, yes, there are still contrived 713 // server & client behaviors where this fails to ever cancel the 714 // context, but that's kinda why HTTP/1.x pipelining died 715 // anyway. 716 } 717 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { 718 // Ignore this error. It's the expected error from 719 // another goroutine calling abortPendingRead. 720 } else if err != nil { 721 cr.handleReadError(err) 722 } 723 cr.aborted = false 724 cr.inRead = false 725 cr.unlock() 726 cr.cond.Broadcast() 727 } 728 729 func (cr *connReader) abortPendingRead() { 730 cr.lock() 731 defer cr.unlock() 732 if !cr.inRead { 733 return 734 } 735 cr.aborted = true 736 cr.conn.rwc.SetReadDeadline(aLongTimeAgo) 737 for cr.inRead { 738 cr.cond.Wait() 739 } 740 cr.conn.rwc.SetReadDeadline(time.Time{}) 741 } 742 743 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 744 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 745 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 746 747 // handleReadError is called whenever a Read from the client returns a 748 // non-nil error. 749 // 750 // The provided non-nil err is almost always io.EOF or a "use of 751 // closed network connection". In any case, the error is not 752 // particularly interesting, except perhaps for debugging during 753 // development. Any error means the connection is dead and we should 754 // down its context. 755 // 756 // It may be called from multiple goroutines. 757 func (cr *connReader) handleReadError(_ error) { 758 cr.conn.cancelCtx() 759 cr.closeNotify() 760 } 761 762 // may be called from multiple goroutines. 763 func (cr *connReader) closeNotify() { 764 res := cr.conn.curReq.Load() 765 if res != nil && !res.didCloseNotify.Swap(true) { 766 res.closeNotifyCh <- true 767 } 768 } 769 770 func (cr *connReader) Read(p []byte) (n int, err error) { 771 cr.lock() 772 if cr.inRead { 773 cr.unlock() 774 if cr.conn.hijacked() { 775 panic("invalid Body.Read call. After hijacked, the original Request must not be used") 776 } 777 panic("invalid concurrent Body.Read call") 778 } 779 if cr.hitReadLimit() { 780 cr.unlock() 781 return 0, io.EOF 782 } 783 if len(p) == 0 { 784 cr.unlock() 785 return 0, nil 786 } 787 if int64(len(p)) > cr.remain { 788 p = p[:cr.remain] 789 } 790 if cr.hasByte { 791 p[0] = cr.byteBuf[0] 792 cr.hasByte = false 793 cr.unlock() 794 return 1, nil 795 } 796 cr.inRead = true 797 cr.unlock() 798 n, err = cr.conn.rwc.Read(p) 799 800 cr.lock() 801 cr.inRead = false 802 if err != nil { 803 cr.handleReadError(err) 804 } 805 cr.remain -= int64(n) 806 cr.unlock() 807 808 cr.cond.Broadcast() 809 return n, err 810 } 811 812 var ( 813 bufioReaderPool sync.Pool 814 bufioWriter2kPool sync.Pool 815 bufioWriter4kPool sync.Pool 816 ) 817 818 const copyBufPoolSize = 32 * 1024 819 820 var copyBufPool = sync.Pool{New: func() any { return new([copyBufPoolSize]byte) }} 821 822 func getCopyBuf() []byte { 823 return copyBufPool.Get().(*[copyBufPoolSize]byte)[:] 824 } 825 func putCopyBuf(b []byte) { 826 if len(b) != copyBufPoolSize { 827 panic("trying to put back buffer of the wrong size in the copyBufPool") 828 } 829 copyBufPool.Put((*[copyBufPoolSize]byte)(b)) 830 } 831 832 func bufioWriterPool(size int) *sync.Pool { 833 switch size { 834 case 2 << 10: 835 return &bufioWriter2kPool 836 case 4 << 10: 837 return &bufioWriter4kPool 838 } 839 return nil 840 } 841 842 // newBufioReader should be an internal detail, 843 // but widely used packages access it using linkname. 844 // Notable members of the hall of shame include: 845 // - github.com/gobwas/ws 846 // 847 // Do not remove or change the type signature. 848 // See go.dev/issue/67401. 849 // 850 //go:linkname newBufioReader 851 func newBufioReader(r io.Reader) *bufio.Reader { 852 if v := bufioReaderPool.Get(); v != nil { 853 br := v.(*bufio.Reader) 854 br.Reset(r) 855 return br 856 } 857 // Note: if this reader size is ever changed, update 858 // TestHandlerBodyClose's assumptions. 859 return bufio.NewReader(r) 860 } 861 862 // putBufioReader should be an internal detail, 863 // but widely used packages access it using linkname. 864 // Notable members of the hall of shame include: 865 // - github.com/gobwas/ws 866 // 867 // Do not remove or change the type signature. 868 // See go.dev/issue/67401. 869 // 870 //go:linkname putBufioReader 871 func putBufioReader(br *bufio.Reader) { 872 br.Reset(nil) 873 bufioReaderPool.Put(br) 874 } 875 876 // newBufioWriterSize should be an internal detail, 877 // but widely used packages access it using linkname. 878 // Notable members of the hall of shame include: 879 // - github.com/gobwas/ws 880 // 881 // Do not remove or change the type signature. 882 // See go.dev/issue/67401. 883 // 884 //go:linkname newBufioWriterSize 885 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 886 pool := bufioWriterPool(size) 887 if pool != nil { 888 if v := pool.Get(); v != nil { 889 bw := v.(*bufio.Writer) 890 bw.Reset(w) 891 return bw 892 } 893 } 894 return bufio.NewWriterSize(w, size) 895 } 896 897 // putBufioWriter should be an internal detail, 898 // but widely used packages access it using linkname. 899 // Notable members of the hall of shame include: 900 // - github.com/gobwas/ws 901 // 902 // Do not remove or change the type signature. 903 // See go.dev/issue/67401. 904 // 905 //go:linkname putBufioWriter 906 func putBufioWriter(bw *bufio.Writer) { 907 bw.Reset(nil) 908 if pool := bufioWriterPool(bw.Available()); pool != nil { 909 pool.Put(bw) 910 } 911 } 912 913 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 914 // in an HTTP request. 915 // This can be overridden by setting [Server.MaxHeaderBytes]. 916 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 917 918 func (srv *Server) maxHeaderBytes() int { 919 if srv.MaxHeaderBytes > 0 { 920 return srv.MaxHeaderBytes 921 } 922 return DefaultMaxHeaderBytes 923 } 924 925 func (srv *Server) initialReadLimitSize() int64 { 926 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 927 } 928 929 // tlsHandshakeTimeout returns the time limit permitted for the TLS 930 // handshake, or zero for unlimited. 931 // 932 // It returns the minimum of any positive ReadHeaderTimeout, 933 // ReadTimeout, or WriteTimeout. 934 func (srv *Server) tlsHandshakeTimeout() time.Duration { 935 var ret time.Duration 936 for _, v := range [...]time.Duration{ 937 srv.ReadHeaderTimeout, 938 srv.ReadTimeout, 939 srv.WriteTimeout, 940 } { 941 if v <= 0 { 942 continue 943 } 944 if ret == 0 || v < ret { 945 ret = v 946 } 947 } 948 return ret 949 } 950 951 // wrapper around io.ReadCloser which on first read, sends an 952 // HTTP/1.1 100 Continue header 953 type expectContinueReader struct { 954 resp *response 955 readCloser io.ReadCloser 956 closed atomic.Bool 957 sawEOF atomic.Bool 958 } 959 960 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 961 if ecr.closed.Load() { 962 return 0, ErrBodyReadAfterClose 963 } 964 w := ecr.resp 965 if w.canWriteContinue.Load() { 966 w.writeContinueMu.Lock() 967 if w.canWriteContinue.Load() { 968 w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 969 w.conn.bufw.Flush() 970 w.canWriteContinue.Store(false) 971 } 972 w.writeContinueMu.Unlock() 973 } 974 n, err = ecr.readCloser.Read(p) 975 if err == io.EOF { 976 ecr.sawEOF.Store(true) 977 } 978 return 979 } 980 981 func (ecr *expectContinueReader) Close() error { 982 ecr.closed.Store(true) 983 return ecr.readCloser.Close() 984 } 985 986 // TimeFormat is the time format to use when generating times in HTTP 987 // headers. It is like [time.RFC1123] but hard-codes GMT as the time 988 // zone. The time being formatted must be in UTC for Format to 989 // generate the correct format. 990 // 991 // For parsing this time format, see [ParseTime]. 992 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 993 994 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 995 func appendTime(b []byte, t time.Time) []byte { 996 const days = "SunMonTueWedThuFriSat" 997 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 998 999 t = t.UTC() 1000 yy, mm, dd := t.Date() 1001 hh, mn, ss := t.Clock() 1002 day := days[3*t.Weekday():] 1003 mon := months[3*(mm-1):] 1004 1005 return append(b, 1006 day[0], day[1], day[2], ',', ' ', 1007 byte('0'+dd/10), byte('0'+dd%10), ' ', 1008 mon[0], mon[1], mon[2], ' ', 1009 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 1010 byte('0'+hh/10), byte('0'+hh%10), ':', 1011 byte('0'+mn/10), byte('0'+mn%10), ':', 1012 byte('0'+ss/10), byte('0'+ss%10), ' ', 1013 'G', 'M', 'T') 1014 } 1015 1016 var errTooLarge = errors.New("http: request too large") 1017 1018 // Read next request from connection. 1019 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 1020 if c.hijacked() { 1021 return nil, ErrHijacked 1022 } 1023 1024 var ( 1025 wholeReqDeadline time.Time // or zero if none 1026 hdrDeadline time.Time // or zero if none 1027 ) 1028 t0 := time.Now() 1029 if d := c.server.readHeaderTimeout(); d > 0 { 1030 hdrDeadline = t0.Add(d) 1031 } 1032 if d := c.server.ReadTimeout; d > 0 { 1033 wholeReqDeadline = t0.Add(d) 1034 } 1035 c.rwc.SetReadDeadline(hdrDeadline) 1036 if d := c.server.WriteTimeout; d > 0 { 1037 defer func() { 1038 c.rwc.SetWriteDeadline(time.Now().Add(d)) 1039 }() 1040 } 1041 1042 c.r.setReadLimit(c.server.initialReadLimitSize()) 1043 if c.lastMethod == "POST" { 1044 // RFC 7230 section 3 tolerance for old buggy clients. 1045 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 1046 c.bufr.Discard(numLeadingCRorLF(peek)) 1047 } 1048 req, err := readRequest(c.bufr) 1049 if err != nil { 1050 if c.r.hitReadLimit() { 1051 return nil, errTooLarge 1052 } 1053 return nil, err 1054 } 1055 1056 if !http1ServerSupportsRequest(req) { 1057 return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"} 1058 } 1059 1060 c.lastMethod = req.Method 1061 c.r.setInfiniteReadLimit() 1062 1063 hosts, haveHost := req.Header["Host"] 1064 isH2Upgrade := req.isH2Upgrade() 1065 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { 1066 return nil, badRequestError("missing required Host header") 1067 } 1068 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { 1069 return nil, badRequestError("malformed Host header") 1070 } 1071 for k, vv := range req.Header { 1072 if !httpguts.ValidHeaderFieldName(k) { 1073 return nil, badRequestError("invalid header name") 1074 } 1075 for _, v := range vv { 1076 if !httpguts.ValidHeaderFieldValue(v) { 1077 return nil, badRequestError("invalid header value") 1078 } 1079 } 1080 } 1081 delete(req.Header, "Host") 1082 1083 ctx, cancelCtx := context.WithCancel(ctx) 1084 req.ctx = ctx 1085 req.RemoteAddr = c.remoteAddr 1086 req.TLS = c.tlsState 1087 if body, ok := req.Body.(*body); ok { 1088 body.doEarlyClose = true 1089 } 1090 1091 // Adjust the read deadline if necessary. 1092 if !hdrDeadline.Equal(wholeReqDeadline) { 1093 c.rwc.SetReadDeadline(wholeReqDeadline) 1094 } 1095 1096 w = &response{ 1097 conn: c, 1098 cancelCtx: cancelCtx, 1099 req: req, 1100 reqBody: req.Body, 1101 handlerHeader: make(Header), 1102 contentLength: -1, 1103 closeNotifyCh: make(chan bool, 1), 1104 1105 // We populate these ahead of time so we're not 1106 // reading from req.Header after their Handler starts 1107 // and maybe mutates it (Issue 14940) 1108 wants10KeepAlive: req.wantsHttp10KeepAlive(), 1109 wantsClose: req.wantsClose(), 1110 } 1111 if isH2Upgrade { 1112 w.closeAfterReply = true 1113 } 1114 w.cw.res = w 1115 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 1116 return w, nil 1117 } 1118 1119 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 1120 // supports the given request. 1121 func http1ServerSupportsRequest(req *Request) bool { 1122 if req.ProtoMajor == 1 { 1123 return true 1124 } 1125 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 1126 // wire up their own HTTP/2 upgrades. 1127 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 1128 req.Method == "PRI" && req.RequestURI == "*" { 1129 return true 1130 } 1131 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 1132 // aren't encoded in ASCII anyway). 1133 return false 1134 } 1135 1136 func (w *response) Header() Header { 1137 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 1138 // Accessing the header between logically writing it 1139 // and physically writing it means we need to allocate 1140 // a clone to snapshot the logically written state. 1141 w.cw.header = w.handlerHeader.Clone() 1142 } 1143 w.calledHeader = true 1144 return w.handlerHeader 1145 } 1146 1147 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 1148 // consumed by a handler that the server will read from the client 1149 // in order to keep a connection alive. If there are more bytes 1150 // than this, the server, to be paranoid, instead sends a 1151 // "Connection close" response. 1152 // 1153 // This number is approximately what a typical machine's TCP buffer 1154 // size is anyway. (if we have the bytes on the machine, we might as 1155 // well read them) 1156 const maxPostHandlerReadBytes = 256 << 10 1157 1158 func checkWriteHeaderCode(code int) { 1159 // Issue 22880: require valid WriteHeader status codes. 1160 // For now we only enforce that it's three digits. 1161 // In the future we might block things over 599 (600 and above aren't defined 1162 // at https://httpwg.org/specs/rfc7231.html#status.codes). 1163 // But for now any three digits. 1164 // 1165 // We used to send "HTTP/1.1 000 0" on the wire in responses but there's 1166 // no equivalent bogus thing we can realistically send in HTTP/2, 1167 // so we'll consistently panic instead and help people find their bugs 1168 // early. (We can't return an error from WriteHeader even if we wanted to.) 1169 if code < 100 || code > 999 { 1170 panic(fmt.Sprintf("invalid WriteHeader code %v", code)) 1171 } 1172 } 1173 1174 // relevantCaller searches the call stack for the first function outside of net/http. 1175 // The purpose of this function is to provide more helpful error messages. 1176 func relevantCaller() runtime.Frame { 1177 pc := make([]uintptr, 16) 1178 n := runtime.Callers(1, pc) 1179 frames := runtime.CallersFrames(pc[:n]) 1180 var frame runtime.Frame 1181 for { 1182 frame, more := frames.Next() 1183 if !strings.HasPrefix(frame.Function, "net/http.") { 1184 return frame 1185 } 1186 if !more { 1187 break 1188 } 1189 } 1190 return frame 1191 } 1192 1193 func (w *response) WriteHeader(code int) { 1194 if w.conn.hijacked() { 1195 caller := relevantCaller() 1196 w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1197 return 1198 } 1199 if w.wroteHeader { 1200 caller := relevantCaller() 1201 w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1202 return 1203 } 1204 checkWriteHeaderCode(code) 1205 1206 if code < 101 || code > 199 { 1207 // Sending a 100 Continue or any non-1xx header disables the 1208 // automatically-sent 100 Continue from Request.Body.Read. 1209 w.disableWriteContinue() 1210 } 1211 1212 // Handle informational headers. 1213 // 1214 // We shouldn't send any further headers after 101 Switching Protocols, 1215 // so it takes the non-informational path. 1216 if code >= 100 && code <= 199 && code != StatusSwitchingProtocols { 1217 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1218 1219 // Per RFC 8297 we must not clear the current header map 1220 w.handlerHeader.WriteSubset(w.conn.bufw, excludedHeadersNoBody) 1221 w.conn.bufw.Write(crlf) 1222 w.conn.bufw.Flush() 1223 1224 return 1225 } 1226 1227 w.wroteHeader = true 1228 w.status = code 1229 1230 if w.calledHeader && w.cw.header == nil { 1231 w.cw.header = w.handlerHeader.Clone() 1232 } 1233 1234 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 1235 v, err := strconv.ParseInt(cl, 10, 64) 1236 if err == nil && v >= 0 { 1237 w.contentLength = v 1238 } else { 1239 w.conn.server.logf("http: invalid Content-Length of %q", cl) 1240 w.handlerHeader.Del("Content-Length") 1241 } 1242 } 1243 } 1244 1245 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 1246 // This type is used to avoid extra allocations from cloning and/or populating 1247 // the response Header map and all its 1-element slices. 1248 type extraHeader struct { 1249 contentType string 1250 connection string 1251 transferEncoding string 1252 date []byte // written if not nil 1253 contentLength []byte // written if not nil 1254 } 1255 1256 // Sorted the same as extraHeader.Write's loop. 1257 var extraHeaderKeys = [][]byte{ 1258 []byte("Content-Type"), 1259 []byte("Connection"), 1260 []byte("Transfer-Encoding"), 1261 } 1262 1263 var ( 1264 headerContentLength = []byte("Content-Length: ") 1265 headerDate = []byte("Date: ") 1266 ) 1267 1268 // Write writes the headers described in h to w. 1269 // 1270 // This method has a value receiver, despite the somewhat large size 1271 // of h, because it prevents an allocation. The escape analysis isn't 1272 // smart enough to realize this function doesn't mutate h. 1273 func (h extraHeader) Write(w *bufio.Writer) { 1274 if h.date != nil { 1275 w.Write(headerDate) 1276 w.Write(h.date) 1277 w.Write(crlf) 1278 } 1279 if h.contentLength != nil { 1280 w.Write(headerContentLength) 1281 w.Write(h.contentLength) 1282 w.Write(crlf) 1283 } 1284 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 1285 if v != "" { 1286 w.Write(extraHeaderKeys[i]) 1287 w.Write(colonSpace) 1288 w.WriteString(v) 1289 w.Write(crlf) 1290 } 1291 } 1292 } 1293 1294 // writeHeader finalizes the header sent to the client and writes it 1295 // to cw.res.conn.bufw. 1296 // 1297 // p is not written by writeHeader, but is the first chunk of the body 1298 // that will be written. It is sniffed for a Content-Type if none is 1299 // set explicitly. It's also used to set the Content-Length, if the 1300 // total body size was small and the handler has already finished 1301 // running. 1302 func (cw *chunkWriter) writeHeader(p []byte) { 1303 if cw.wroteHeader { 1304 return 1305 } 1306 cw.wroteHeader = true 1307 1308 w := cw.res 1309 keepAlivesEnabled := w.conn.server.doKeepAlives() 1310 isHEAD := w.req.Method == "HEAD" 1311 1312 // header is written out to w.conn.buf below. Depending on the 1313 // state of the handler, we either own the map or not. If we 1314 // don't own it, the exclude map is created lazily for 1315 // WriteSubset to remove headers. The setHeader struct holds 1316 // headers we need to add. 1317 header := cw.header 1318 owned := header != nil 1319 if !owned { 1320 header = w.handlerHeader 1321 } 1322 var excludeHeader map[string]bool 1323 delHeader := func(key string) { 1324 if owned { 1325 header.Del(key) 1326 return 1327 } 1328 if _, ok := header[key]; !ok { 1329 return 1330 } 1331 if excludeHeader == nil { 1332 excludeHeader = make(map[string]bool) 1333 } 1334 excludeHeader[key] = true 1335 } 1336 var setHeader extraHeader 1337 1338 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix. 1339 trailers := false 1340 for k := range cw.header { 1341 if strings.HasPrefix(k, TrailerPrefix) { 1342 if excludeHeader == nil { 1343 excludeHeader = make(map[string]bool) 1344 } 1345 excludeHeader[k] = true 1346 trailers = true 1347 } 1348 } 1349 for _, v := range cw.header["Trailer"] { 1350 trailers = true 1351 foreachHeaderElement(v, cw.res.declareTrailer) 1352 } 1353 1354 te := header.get("Transfer-Encoding") 1355 hasTE := te != "" 1356 1357 // If the handler is done but never sent a Content-Length 1358 // response header and this is our first (and last) write, set 1359 // it, even to zero. This helps HTTP/1.0 clients keep their 1360 // "keep-alive" connections alive. 1361 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1362 // it was a HEAD request, we don't know the difference between 1363 // 0 actual bytes and 0 bytes because the handler noticed it 1364 // was a HEAD request and chose not to write anything. So for 1365 // HEAD, the handler should either write the Content-Length or 1366 // write non-zero bytes. If it's actually 0 bytes and the 1367 // handler never looked at the Request.Method, we just don't 1368 // send a Content-Length header. 1369 // Further, we don't send an automatic Content-Length if they 1370 // set a Transfer-Encoding, because they're generally incompatible. 1371 if w.handlerDone.Load() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && !header.has("Content-Length") && (!isHEAD || len(p) > 0) { 1372 w.contentLength = int64(len(p)) 1373 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1374 } 1375 1376 // If this was an HTTP/1.0 request with keep-alive and we sent a 1377 // Content-Length back, we can make this a keep-alive response ... 1378 if w.wants10KeepAlive && keepAlivesEnabled { 1379 sentLength := header.get("Content-Length") != "" 1380 if sentLength && header.get("Connection") == "keep-alive" { 1381 w.closeAfterReply = false 1382 } 1383 } 1384 1385 // Check for an explicit (and valid) Content-Length header. 1386 hasCL := w.contentLength != -1 1387 1388 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1389 _, connectionHeaderSet := header["Connection"] 1390 if !connectionHeaderSet { 1391 setHeader.connection = "keep-alive" 1392 } 1393 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1394 w.closeAfterReply = true 1395 } 1396 1397 if header.get("Connection") == "close" || !keepAlivesEnabled { 1398 w.closeAfterReply = true 1399 } 1400 1401 // If the client wanted a 100-continue but we never sent it to 1402 // them (or, more strictly: we never finished reading their 1403 // request body), don't reuse this connection. 1404 // 1405 // This behavior was first added on the theory that we don't know 1406 // if the next bytes on the wire are going to be the remainder of 1407 // the request body or the subsequent request (see issue 11549), 1408 // but that's not correct: If we keep using the connection, 1409 // the client is required to send the request body whether we 1410 // asked for it or not. 1411 // 1412 // We probably do want to skip reusing the connection in most cases, 1413 // however. If the client is offering a large request body that we 1414 // don't intend to use, then it's better to close the connection 1415 // than to read the body. For now, assume that if we're sending 1416 // headers, the handler is done reading the body and we should 1417 // drop the connection if we haven't seen EOF. 1418 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.Load() { 1419 w.closeAfterReply = true 1420 } 1421 1422 // We do this by default because there are a number of clients that 1423 // send a full request before starting to read the response, and they 1424 // can deadlock if we start writing the response with unconsumed body 1425 // remaining. See Issue 15527 for some history. 1426 // 1427 // If full duplex mode has been enabled with ResponseController.EnableFullDuplex, 1428 // then leave the request body alone. 1429 // 1430 // We don't take this path when w.closeAfterReply is set. 1431 // We may not need to consume the request to get ready for the next one 1432 // (since we're closing the conn), but a client which sends a full request 1433 // before reading a response may deadlock in this case. 1434 // This behavior has been present since CL 5268043 (2011), however, 1435 // so it doesn't seem to be causing problems. 1436 if w.req.ContentLength != 0 && !w.closeAfterReply && !w.fullDuplex { 1437 var discard, tooBig bool 1438 1439 switch bdy := w.req.Body.(type) { 1440 case *expectContinueReader: 1441 // We only get here if we have already fully consumed the request body 1442 // (see above). 1443 case *body: 1444 bdy.mu.Lock() 1445 switch { 1446 case bdy.closed: 1447 if !bdy.sawEOF { 1448 // Body was closed in handler with non-EOF error. 1449 w.closeAfterReply = true 1450 } 1451 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1452 tooBig = true 1453 default: 1454 discard = true 1455 } 1456 bdy.mu.Unlock() 1457 default: 1458 discard = true 1459 } 1460 1461 if discard { 1462 _, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1463 switch err { 1464 case nil: 1465 // There must be even more data left over. 1466 tooBig = true 1467 case ErrBodyReadAfterClose: 1468 // Body was already consumed and closed. 1469 case io.EOF: 1470 // The remaining body was just consumed, close it. 1471 err = w.reqBody.Close() 1472 if err != nil { 1473 w.closeAfterReply = true 1474 } 1475 default: 1476 // Some other kind of error occurred, like a read timeout, or 1477 // corrupt chunked encoding. In any case, whatever remains 1478 // on the wire must not be parsed as another HTTP request. 1479 w.closeAfterReply = true 1480 } 1481 } 1482 1483 if tooBig { 1484 w.requestTooLarge() 1485 delHeader("Connection") 1486 setHeader.connection = "close" 1487 } 1488 } 1489 1490 code := w.status 1491 if bodyAllowedForStatus(code) { 1492 // If no content type, apply sniffing algorithm to body. 1493 _, haveType := header["Content-Type"] 1494 1495 // If the Content-Encoding was set and is non-blank, 1496 // we shouldn't sniff the body. See Issue 31753. 1497 ce := header.Get("Content-Encoding") 1498 hasCE := len(ce) > 0 1499 if !hasCE && !haveType && !hasTE && len(p) > 0 { 1500 setHeader.contentType = DetectContentType(p) 1501 } 1502 } else { 1503 for _, k := range suppressedHeaders(code) { 1504 delHeader(k) 1505 } 1506 } 1507 1508 if !header.has("Date") { 1509 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1510 } 1511 1512 if hasCL && hasTE && te != "identity" { 1513 // TODO: return an error if WriteHeader gets a return parameter 1514 // For now just ignore the Content-Length. 1515 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1516 te, w.contentLength) 1517 delHeader("Content-Length") 1518 hasCL = false 1519 } 1520 1521 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) || code == StatusNoContent { 1522 // Response has no body. 1523 delHeader("Transfer-Encoding") 1524 } else if hasCL { 1525 // Content-Length has been provided, so no chunking is to be done. 1526 delHeader("Transfer-Encoding") 1527 } else if w.req.ProtoAtLeast(1, 1) { 1528 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1529 // content-length has been provided. The connection must be closed after the 1530 // reply is written, and no chunking is to be done. This is the setup 1531 // recommended in the Server-Sent Events candidate recommendation 11, 1532 // section 8. 1533 if hasTE && te == "identity" { 1534 cw.chunking = false 1535 w.closeAfterReply = true 1536 delHeader("Transfer-Encoding") 1537 } else { 1538 // HTTP/1.1 or greater: use chunked transfer encoding 1539 // to avoid closing the connection at EOF. 1540 cw.chunking = true 1541 setHeader.transferEncoding = "chunked" 1542 if hasTE && te == "chunked" { 1543 // We will send the chunked Transfer-Encoding header later. 1544 delHeader("Transfer-Encoding") 1545 } 1546 } 1547 } else { 1548 // HTTP version < 1.1: cannot do chunked transfer 1549 // encoding and we don't know the Content-Length so 1550 // signal EOF by closing connection. 1551 w.closeAfterReply = true 1552 delHeader("Transfer-Encoding") // in case already set 1553 } 1554 1555 // Cannot use Content-Length with non-identity Transfer-Encoding. 1556 if cw.chunking { 1557 delHeader("Content-Length") 1558 } 1559 if !w.req.ProtoAtLeast(1, 0) { 1560 return 1561 } 1562 1563 // Only override the Connection header if it is not a successful 1564 // protocol switch response and if KeepAlives are not enabled. 1565 // See https://golang.org/issue/36381. 1566 delConnectionHeader := w.closeAfterReply && 1567 (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) && 1568 !isProtocolSwitchResponse(w.status, header) 1569 if delConnectionHeader { 1570 delHeader("Connection") 1571 if w.req.ProtoAtLeast(1, 1) { 1572 setHeader.connection = "close" 1573 } 1574 } 1575 1576 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1577 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1578 setHeader.Write(w.conn.bufw) 1579 w.conn.bufw.Write(crlf) 1580 } 1581 1582 // foreachHeaderElement splits v according to the "#rule" construction 1583 // in RFC 7230 section 7 and calls fn for each non-empty element. 1584 func foreachHeaderElement(v string, fn func(string)) { 1585 v = textproto.TrimString(v) 1586 if v == "" { 1587 return 1588 } 1589 if !strings.Contains(v, ",") { 1590 fn(v) 1591 return 1592 } 1593 for _, f := range strings.Split(v, ",") { 1594 if f = textproto.TrimString(f); f != "" { 1595 fn(f) 1596 } 1597 } 1598 } 1599 1600 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2) 1601 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0. 1602 // code is the response status code. 1603 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used. 1604 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) { 1605 if is11 { 1606 bw.WriteString("HTTP/1.1 ") 1607 } else { 1608 bw.WriteString("HTTP/1.0 ") 1609 } 1610 if text := StatusText(code); text != "" { 1611 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10)) 1612 bw.WriteByte(' ') 1613 bw.WriteString(text) 1614 bw.WriteString("\r\n") 1615 } else { 1616 // don't worry about performance 1617 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code) 1618 } 1619 } 1620 1621 // bodyAllowed reports whether a Write is allowed for this response type. 1622 // It's illegal to call this before the header has been flushed. 1623 func (w *response) bodyAllowed() bool { 1624 if !w.wroteHeader { 1625 panic("") 1626 } 1627 return bodyAllowedForStatus(w.status) 1628 } 1629 1630 // The Life Of A Write is like this: 1631 // 1632 // Handler starts. No header has been sent. The handler can either 1633 // write a header, or just start writing. Writing before sending a header 1634 // sends an implicitly empty 200 OK header. 1635 // 1636 // If the handler didn't declare a Content-Length up front, we either 1637 // go into chunking mode or, if the handler finishes running before 1638 // the chunking buffer size, we compute a Content-Length and send that 1639 // in the header instead. 1640 // 1641 // Likewise, if the handler didn't set a Content-Type, we sniff that 1642 // from the initial chunk of output. 1643 // 1644 // The Writers are wired together like: 1645 // 1646 // 1. *response (the ResponseWriter) -> 1647 // 2. (*response).w, a [*bufio.Writer] of bufferBeforeChunkingSize bytes -> 1648 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1649 // and which writes the chunk headers, if needed -> 1650 // 4. conn.bufw, a *bufio.Writer of default (4kB) bytes, writing to -> 1651 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1652 // and populates c.werr with it if so, but otherwise writes to -> 1653 // 6. the rwc, the [net.Conn]. 1654 // 1655 // TODO(bradfitz): short-circuit some of the buffering when the 1656 // initial header contains both a Content-Type and Content-Length. 1657 // Also short-circuit in (1) when the header's been sent and not in 1658 // chunking mode, writing directly to (4) instead, if (2) has no 1659 // buffered data. More generally, we could short-circuit from (1) to 1660 // (3) even in chunking mode if the write size from (1) is over some 1661 // threshold and nothing is in (2). The answer might be mostly making 1662 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1663 // with this instead. 1664 func (w *response) Write(data []byte) (n int, err error) { 1665 return w.write(len(data), data, "") 1666 } 1667 1668 func (w *response) WriteString(data string) (n int, err error) { 1669 return w.write(len(data), nil, data) 1670 } 1671 1672 // either dataB or dataS is non-zero. 1673 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1674 if w.conn.hijacked() { 1675 if lenData > 0 { 1676 caller := relevantCaller() 1677 w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1678 } 1679 return 0, ErrHijacked 1680 } 1681 1682 if w.canWriteContinue.Load() { 1683 // Body reader wants to write 100 Continue but hasn't yet. Tell it not to. 1684 w.disableWriteContinue() 1685 } 1686 1687 if !w.wroteHeader { 1688 w.WriteHeader(StatusOK) 1689 } 1690 if lenData == 0 { 1691 return 0, nil 1692 } 1693 if !w.bodyAllowed() { 1694 return 0, ErrBodyNotAllowed 1695 } 1696 1697 w.written += int64(lenData) // ignoring errors, for errorKludge 1698 if w.contentLength != -1 && w.written > w.contentLength { 1699 return 0, ErrContentLength 1700 } 1701 if dataB != nil { 1702 return w.w.Write(dataB) 1703 } else { 1704 return w.w.WriteString(dataS) 1705 } 1706 } 1707 1708 func (w *response) finishRequest() { 1709 w.handlerDone.Store(true) 1710 1711 if !w.wroteHeader { 1712 w.WriteHeader(StatusOK) 1713 } 1714 1715 w.w.Flush() 1716 putBufioWriter(w.w) 1717 w.cw.close() 1718 w.conn.bufw.Flush() 1719 1720 w.conn.r.abortPendingRead() 1721 1722 // Close the body (regardless of w.closeAfterReply) so we can 1723 // re-use its bufio.Reader later safely. 1724 w.reqBody.Close() 1725 1726 if w.req.MultipartForm != nil { 1727 w.req.MultipartForm.RemoveAll() 1728 } 1729 } 1730 1731 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1732 // It must only be called after the handler is done executing. 1733 func (w *response) shouldReuseConnection() bool { 1734 if w.closeAfterReply { 1735 // The request or something set while executing the 1736 // handler indicated we shouldn't reuse this 1737 // connection. 1738 return false 1739 } 1740 1741 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1742 // Did not write enough. Avoid getting out of sync. 1743 return false 1744 } 1745 1746 // There was some error writing to the underlying connection 1747 // during the request, so don't re-use this conn. 1748 if w.conn.werr != nil { 1749 return false 1750 } 1751 1752 if w.closedRequestBodyEarly() { 1753 return false 1754 } 1755 1756 return true 1757 } 1758 1759 func (w *response) closedRequestBodyEarly() bool { 1760 body, ok := w.req.Body.(*body) 1761 return ok && body.didEarlyClose() 1762 } 1763 1764 func (w *response) Flush() { 1765 w.FlushError() 1766 } 1767 1768 func (w *response) FlushError() error { 1769 if !w.wroteHeader { 1770 w.WriteHeader(StatusOK) 1771 } 1772 err := w.w.Flush() 1773 e2 := w.cw.flush() 1774 if err == nil { 1775 err = e2 1776 } 1777 return err 1778 } 1779 1780 func (c *conn) finalFlush() { 1781 if c.bufr != nil { 1782 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1783 // reader for a future connection. 1784 putBufioReader(c.bufr) 1785 c.bufr = nil 1786 } 1787 1788 if c.bufw != nil { 1789 c.bufw.Flush() 1790 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1791 // writer for a future connection. 1792 putBufioWriter(c.bufw) 1793 c.bufw = nil 1794 } 1795 } 1796 1797 // Close the connection. 1798 func (c *conn) close() { 1799 c.finalFlush() 1800 c.rwc.Close() 1801 } 1802 1803 // rstAvoidanceDelay is the amount of time we sleep after closing the 1804 // write side of a TCP connection before closing the entire socket. 1805 // By sleeping, we increase the chances that the client sees our FIN 1806 // and processes its final data before they process the subsequent RST 1807 // from closing a connection with known unread data. 1808 // This RST seems to occur mostly on BSD systems. (And Windows?) 1809 // This timeout is somewhat arbitrary (~latency around the planet), 1810 // and may be modified by tests. 1811 // 1812 // TODO(bcmills): This should arguably be a server configuration parameter, 1813 // not a hard-coded value. 1814 var rstAvoidanceDelay = 500 * time.Millisecond 1815 1816 type closeWriter interface { 1817 CloseWrite() error 1818 } 1819 1820 var _ closeWriter = (*net.TCPConn)(nil) 1821 1822 // closeWriteAndWait flushes any outstanding data and sends a FIN packet (if 1823 // client is connected via TCP), signaling that we're done. We then 1824 // pause for a bit, hoping the client processes it before any 1825 // subsequent RST. 1826 // 1827 // See https://golang.org/issue/3595 1828 func (c *conn) closeWriteAndWait() { 1829 c.finalFlush() 1830 if tcp, ok := c.rwc.(closeWriter); ok { 1831 tcp.CloseWrite() 1832 } 1833 1834 // When we return from closeWriteAndWait, the caller will fully close the 1835 // connection. If client is still writing to the connection, this will cause 1836 // the write to fail with ECONNRESET or similar. Unfortunately, many TCP 1837 // implementations will also drop unread packets from the client's read buffer 1838 // when a write fails, causing our final response to be truncated away too. 1839 // 1840 // As a result, https://www.rfc-editor.org/rfc/rfc7230#section-6.6 recommends 1841 // that “[t]he server … continues to read from the connection until it 1842 // receives a corresponding close by the client, or until the server is 1843 // reasonably certain that its own TCP stack has received the client's 1844 // acknowledgement of the packet(s) containing the server's last response.” 1845 // 1846 // Unfortunately, we have no straightforward way to be “reasonably certain” 1847 // that we have received the client's ACK, and at any rate we don't want to 1848 // allow a misbehaving client to soak up server connections indefinitely by 1849 // withholding an ACK, nor do we want to go through the complexity or overhead 1850 // of using low-level APIs to figure out when a TCP round-trip has completed. 1851 // 1852 // Instead, we declare that we are “reasonably certain” that we received the 1853 // ACK if maxRSTAvoidanceDelay has elapsed. 1854 time.Sleep(rstAvoidanceDelay) 1855 } 1856 1857 // validNextProto reports whether the proto is a valid ALPN protocol name. 1858 // Everything is valid except the empty string and built-in protocol types, 1859 // so that those can't be overridden with alternate implementations. 1860 func validNextProto(proto string) bool { 1861 switch proto { 1862 case "", "http/1.1", "http/1.0": 1863 return false 1864 } 1865 return true 1866 } 1867 1868 const ( 1869 runHooks = true 1870 skipHooks = false 1871 ) 1872 1873 func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) { 1874 srv := c.server 1875 switch state { 1876 case StateNew: 1877 srv.trackConn(c, true) 1878 case StateHijacked, StateClosed: 1879 srv.trackConn(c, false) 1880 } 1881 if state > 0xff || state < 0 { 1882 panic("internal error") 1883 } 1884 packedState := uint64(time.Now().Unix()<<8) | uint64(state) 1885 c.curState.Store(packedState) 1886 if !runHook { 1887 return 1888 } 1889 if hook := srv.ConnState; hook != nil { 1890 hook(nc, state) 1891 } 1892 } 1893 1894 func (c *conn) getState() (state ConnState, unixSec int64) { 1895 packedState := c.curState.Load() 1896 return ConnState(packedState & 0xff), int64(packedState >> 8) 1897 } 1898 1899 // badRequestError is a literal string (used by in the server in HTML, 1900 // unescaped) to tell the user why their request was bad. It should 1901 // be plain text without user info or other embedded errors. 1902 func badRequestError(e string) error { return statusError{StatusBadRequest, e} } 1903 1904 // statusError is an error used to respond to a request with an HTTP status. 1905 // The text should be plain text without user info or other embedded errors. 1906 type statusError struct { 1907 code int 1908 text string 1909 } 1910 1911 func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text } 1912 1913 // ErrAbortHandler is a sentinel panic value to abort a handler. 1914 // While any panic from ServeHTTP aborts the response to the client, 1915 // panicking with ErrAbortHandler also suppresses logging of a stack 1916 // trace to the server's error log. 1917 var ErrAbortHandler = errors.New("net/http: abort Handler") 1918 1919 // isCommonNetReadError reports whether err is a common error 1920 // encountered during reading a request off the network when the 1921 // client has gone away or had its read fail somehow. This is used to 1922 // determine which logs are interesting enough to log about. 1923 func isCommonNetReadError(err error) bool { 1924 if err == io.EOF { 1925 return true 1926 } 1927 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1928 return true 1929 } 1930 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" { 1931 return true 1932 } 1933 return false 1934 } 1935 1936 // Serve a new connection. 1937 func (c *conn) serve(ctx context.Context) { 1938 if ra := c.rwc.RemoteAddr(); ra != nil { 1939 c.remoteAddr = ra.String() 1940 } 1941 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) 1942 var inFlightResponse *response 1943 defer func() { 1944 if err := recover(); err != nil && err != ErrAbortHandler { 1945 const size = 64 << 10 1946 buf := make([]byte, size) 1947 buf = buf[:runtime.Stack(buf, false)] 1948 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1949 } 1950 if inFlightResponse != nil { 1951 inFlightResponse.cancelCtx() 1952 inFlightResponse.disableWriteContinue() 1953 } 1954 if !c.hijacked() { 1955 if inFlightResponse != nil { 1956 inFlightResponse.conn.r.abortPendingRead() 1957 inFlightResponse.reqBody.Close() 1958 } 1959 c.close() 1960 c.setState(c.rwc, StateClosed, runHooks) 1961 } 1962 }() 1963 1964 if tlsConn, ok := c.rwc.(*tls.Conn); ok { 1965 tlsTO := c.server.tlsHandshakeTimeout() 1966 if tlsTO > 0 { 1967 dl := time.Now().Add(tlsTO) 1968 c.rwc.SetReadDeadline(dl) 1969 c.rwc.SetWriteDeadline(dl) 1970 } 1971 if err := tlsConn.HandshakeContext(ctx); err != nil { 1972 // If the handshake failed due to the client not speaking 1973 // TLS, assume they're speaking plaintext HTTP and write a 1974 // 400 response on the TLS conn's underlying net.Conn. 1975 var reason string 1976 if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { 1977 io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n") 1978 re.Conn.Close() 1979 reason = "client sent an HTTP request to an HTTPS server" 1980 } else { 1981 reason = err.Error() 1982 } 1983 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), reason) 1984 return 1985 } 1986 // Restore Conn-level deadlines. 1987 if tlsTO > 0 { 1988 c.rwc.SetReadDeadline(time.Time{}) 1989 c.rwc.SetWriteDeadline(time.Time{}) 1990 } 1991 c.tlsState = new(tls.ConnectionState) 1992 *c.tlsState = tlsConn.ConnectionState() 1993 if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) { 1994 if fn := c.server.TLSNextProto[proto]; fn != nil { 1995 h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}} 1996 // Mark freshly created HTTP/2 as active and prevent any server state hooks 1997 // from being run on these connections. This prevents closeIdleConns from 1998 // closing such connections. See issue https://golang.org/issue/39776. 1999 c.setState(c.rwc, StateActive, skipHooks) 2000 fn(c.server, tlsConn, h) 2001 } 2002 return 2003 } 2004 } 2005 2006 // HTTP/1.x from here on. 2007 2008 ctx, cancelCtx := context.WithCancel(ctx) 2009 c.cancelCtx = cancelCtx 2010 defer cancelCtx() 2011 2012 c.r = &connReader{conn: c} 2013 c.bufr = newBufioReader(c.r) 2014 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 2015 2016 for { 2017 w, err := c.readRequest(ctx) 2018 if c.r.remain != c.server.initialReadLimitSize() { 2019 // If we read any bytes off the wire, we're active. 2020 c.setState(c.rwc, StateActive, runHooks) 2021 } 2022 if err != nil { 2023 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" 2024 2025 switch { 2026 case err == errTooLarge: 2027 // Their HTTP client may or may not be 2028 // able to read this if we're 2029 // responding to them and hanging up 2030 // while they're still writing their 2031 // request. Undefined behavior. 2032 const publicErr = "431 Request Header Fields Too Large" 2033 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 2034 c.closeWriteAndWait() 2035 return 2036 2037 case isUnsupportedTEError(err): 2038 // Respond as per RFC 7230 Section 3.3.1 which says, 2039 // A server that receives a request message with a 2040 // transfer coding it does not understand SHOULD 2041 // respond with 501 (Unimplemented). 2042 code := StatusNotImplemented 2043 2044 // We purposefully aren't echoing back the transfer-encoding's value, 2045 // so as to mitigate the risk of cross side scripting by an attacker. 2046 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) 2047 return 2048 2049 case isCommonNetReadError(err): 2050 return // don't reply 2051 2052 default: 2053 if v, ok := err.(statusError); ok { 2054 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text) 2055 return 2056 } 2057 const publicErr = "400 Bad Request" 2058 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 2059 return 2060 } 2061 } 2062 2063 // Expect 100 Continue support 2064 req := w.req 2065 if req.expectsContinue() { 2066 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 2067 // Wrap the Body reader with one that replies on the connection 2068 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 2069 w.canWriteContinue.Store(true) 2070 } 2071 } else if req.Header.get("Expect") != "" { 2072 w.sendExpectationFailed() 2073 return 2074 } 2075 2076 c.curReq.Store(w) 2077 2078 if requestBodyRemains(req.Body) { 2079 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) 2080 } else { 2081 w.conn.r.startBackgroundRead() 2082 } 2083 2084 // HTTP cannot have multiple simultaneous active requests.[*] 2085 // Until the server replies to this request, it can't read another, 2086 // so we might as well run the handler in this goroutine. 2087 // [*] Not strictly true: HTTP pipelining. We could let them all process 2088 // in parallel even if their responses need to be serialized. 2089 // But we're not going to implement HTTP pipelining because it 2090 // was never deployed in the wild and the answer is HTTP/2. 2091 inFlightResponse = w 2092 serverHandler{c.server}.ServeHTTP(w, w.req) 2093 inFlightResponse = nil 2094 w.cancelCtx() 2095 if c.hijacked() { 2096 return 2097 } 2098 w.finishRequest() 2099 c.rwc.SetWriteDeadline(time.Time{}) 2100 if !w.shouldReuseConnection() { 2101 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 2102 c.closeWriteAndWait() 2103 } 2104 return 2105 } 2106 c.setState(c.rwc, StateIdle, runHooks) 2107 c.curReq.Store(nil) 2108 2109 if !w.conn.server.doKeepAlives() { 2110 // We're in shutdown mode. We might've replied 2111 // to the user without "Connection: close" and 2112 // they might think they can send another 2113 // request, but such is life with HTTP/1.1. 2114 return 2115 } 2116 2117 if d := c.server.idleTimeout(); d > 0 { 2118 c.rwc.SetReadDeadline(time.Now().Add(d)) 2119 } else { 2120 c.rwc.SetReadDeadline(time.Time{}) 2121 } 2122 2123 // Wait for the connection to become readable again before trying to 2124 // read the next request. This prevents a ReadHeaderTimeout or 2125 // ReadTimeout from starting until the first bytes of the next request 2126 // have been received. 2127 if _, err := c.bufr.Peek(4); err != nil { 2128 return 2129 } 2130 2131 c.rwc.SetReadDeadline(time.Time{}) 2132 } 2133 } 2134 2135 func (w *response) sendExpectationFailed() { 2136 // TODO(bradfitz): let ServeHTTP handlers handle 2137 // requests with non-standard expectation[s]? Seems 2138 // theoretical at best, and doesn't fit into the 2139 // current ServeHTTP model anyway. We'd need to 2140 // make the ResponseWriter an optional 2141 // "ExpectReplier" interface or something. 2142 // 2143 // For now we'll just obey RFC 7231 5.1.1 which says 2144 // "A server that receives an Expect field-value other 2145 // than 100-continue MAY respond with a 417 (Expectation 2146 // Failed) status code to indicate that the unexpected 2147 // expectation cannot be met." 2148 w.Header().Set("Connection", "close") 2149 w.WriteHeader(StatusExpectationFailed) 2150 w.finishRequest() 2151 } 2152 2153 // Hijack implements the [Hijacker.Hijack] method. Our response is both a [ResponseWriter] 2154 // and a [Hijacker]. 2155 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 2156 if w.handlerDone.Load() { 2157 panic("net/http: Hijack called after ServeHTTP finished") 2158 } 2159 w.disableWriteContinue() 2160 if w.wroteHeader { 2161 w.cw.flush() 2162 } 2163 2164 c := w.conn 2165 c.mu.Lock() 2166 defer c.mu.Unlock() 2167 2168 // Release the bufioWriter that writes to the chunk writer, it is not 2169 // used after a connection has been hijacked. 2170 rwc, buf, err = c.hijackLocked() 2171 if err == nil { 2172 putBufioWriter(w.w) 2173 w.w = nil 2174 } 2175 return rwc, buf, err 2176 } 2177 2178 func (w *response) CloseNotify() <-chan bool { 2179 if w.handlerDone.Load() { 2180 panic("net/http: CloseNotify called after ServeHTTP finished") 2181 } 2182 return w.closeNotifyCh 2183 } 2184 2185 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 2186 switch v := rc.(type) { 2187 case *expectContinueReader: 2188 registerOnHitEOF(v.readCloser, fn) 2189 case *body: 2190 v.registerOnHitEOF(fn) 2191 default: 2192 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2193 } 2194 } 2195 2196 // requestBodyRemains reports whether future calls to Read 2197 // on rc might yield more data. 2198 func requestBodyRemains(rc io.ReadCloser) bool { 2199 if rc == NoBody { 2200 return false 2201 } 2202 switch v := rc.(type) { 2203 case *expectContinueReader: 2204 return requestBodyRemains(v.readCloser) 2205 case *body: 2206 return v.bodyRemains() 2207 default: 2208 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2209 } 2210 } 2211 2212 // The HandlerFunc type is an adapter to allow the use of 2213 // ordinary functions as HTTP handlers. If f is a function 2214 // with the appropriate signature, HandlerFunc(f) is a 2215 // [Handler] that calls f. 2216 type HandlerFunc func(ResponseWriter, *Request) 2217 2218 // ServeHTTP calls f(w, r). 2219 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 2220 f(w, r) 2221 } 2222 2223 // Helper handlers 2224 2225 // Error replies to the request with the specified error message and HTTP code. 2226 // It does not otherwise end the request; the caller should ensure no further 2227 // writes are done to w. 2228 // The error message should be plain text. 2229 // 2230 // Error deletes the Content-Length header, 2231 // sets Content-Type to “text/plain; charset=utf-8”, 2232 // and sets X-Content-Type-Options to “nosniff”. 2233 // This configures the header properly for the error message, 2234 // in case the caller had set it up expecting a successful output. 2235 func Error(w ResponseWriter, error string, code int) { 2236 h := w.Header() 2237 2238 // Delete the Content-Length header, which might be for some other content. 2239 // Assuming the error string fits in the writer's buffer, we'll figure 2240 // out the correct Content-Length for it later. 2241 // 2242 // We don't delete Content-Encoding, because some middleware sets 2243 // Content-Encoding: gzip and wraps the ResponseWriter to compress on-the-fly. 2244 // See https://go.dev/issue/66343. 2245 h.Del("Content-Length") 2246 2247 // There might be content type already set, but we reset it to 2248 // text/plain for the error message. 2249 h.Set("Content-Type", "text/plain; charset=utf-8") 2250 h.Set("X-Content-Type-Options", "nosniff") 2251 w.WriteHeader(code) 2252 fmt.Fprintln(w, error) 2253 } 2254 2255 // NotFound replies to the request with an HTTP 404 not found error. 2256 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 2257 2258 // NotFoundHandler returns a simple request handler 2259 // that replies to each request with a “404 page not found” reply. 2260 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 2261 2262 // StripPrefix returns a handler that serves HTTP requests by removing the 2263 // given prefix from the request URL's Path (and RawPath if set) and invoking 2264 // the handler h. StripPrefix handles a request for a path that doesn't begin 2265 // with prefix by replying with an HTTP 404 not found error. The prefix must 2266 // match exactly: if the prefix in the request contains escaped characters 2267 // the reply is also an HTTP 404 not found error. 2268 func StripPrefix(prefix string, h Handler) Handler { 2269 if prefix == "" { 2270 return h 2271 } 2272 return HandlerFunc(func(w ResponseWriter, r *Request) { 2273 p := strings.TrimPrefix(r.URL.Path, prefix) 2274 rp := strings.TrimPrefix(r.URL.RawPath, prefix) 2275 if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) { 2276 r2 := new(Request) 2277 *r2 = *r 2278 r2.URL = new(url.URL) 2279 *r2.URL = *r.URL 2280 r2.URL.Path = p 2281 r2.URL.RawPath = rp 2282 h.ServeHTTP(w, r2) 2283 } else { 2284 NotFound(w, r) 2285 } 2286 }) 2287 } 2288 2289 // Redirect replies to the request with a redirect to url, 2290 // which may be a path relative to the request path. 2291 // 2292 // The provided code should be in the 3xx range and is usually 2293 // [StatusMovedPermanently], [StatusFound] or [StatusSeeOther]. 2294 // 2295 // If the Content-Type header has not been set, [Redirect] sets it 2296 // to "text/html; charset=utf-8" and writes a small HTML body. 2297 // Setting the Content-Type header to any value, including nil, 2298 // disables that behavior. 2299 func Redirect(w ResponseWriter, r *Request, url string, code int) { 2300 if u, err := urlpkg.Parse(url); err == nil { 2301 // If url was relative, make its path absolute by 2302 // combining with request path. 2303 // The client would probably do this for us, 2304 // but doing it ourselves is more reliable. 2305 // See RFC 7231, section 7.1.2 2306 if u.Scheme == "" && u.Host == "" { 2307 oldpath := r.URL.Path 2308 if oldpath == "" { // should not happen, but avoid a crash if it does 2309 oldpath = "/" 2310 } 2311 2312 // no leading http://server 2313 if url == "" || url[0] != '/' { 2314 // make relative path absolute 2315 olddir, _ := path.Split(oldpath) 2316 url = olddir + url 2317 } 2318 2319 var query string 2320 if i := strings.Index(url, "?"); i != -1 { 2321 url, query = url[:i], url[i:] 2322 } 2323 2324 // clean up but preserve trailing slash 2325 trailing := strings.HasSuffix(url, "/") 2326 url = path.Clean(url) 2327 if trailing && !strings.HasSuffix(url, "/") { 2328 url += "/" 2329 } 2330 url += query 2331 } 2332 } 2333 2334 h := w.Header() 2335 2336 // RFC 7231 notes that a short HTML body is usually included in 2337 // the response because older user agents may not understand 301/307. 2338 // Do it only if the request didn't already have a Content-Type header. 2339 _, hadCT := h["Content-Type"] 2340 2341 h.Set("Location", hexEscapeNonASCII(url)) 2342 if !hadCT && (r.Method == "GET" || r.Method == "HEAD") { 2343 h.Set("Content-Type", "text/html; charset=utf-8") 2344 } 2345 w.WriteHeader(code) 2346 2347 // Shouldn't send the body for POST or HEAD; that leaves GET. 2348 if !hadCT && r.Method == "GET" { 2349 body := "<a href=\"" + htmlEscape(url) + "\">" + StatusText(code) + "</a>.\n" 2350 fmt.Fprintln(w, body) 2351 } 2352 } 2353 2354 var htmlReplacer = strings.NewReplacer( 2355 "&", "&", 2356 "<", "<", 2357 ">", ">", 2358 // """ is shorter than """. 2359 `"`, """, 2360 // "'" is shorter than "'" and apos was not in HTML until HTML5. 2361 "'", "'", 2362 ) 2363 2364 func htmlEscape(s string) string { 2365 return htmlReplacer.Replace(s) 2366 } 2367 2368 // Redirect to a fixed URL 2369 type redirectHandler struct { 2370 url string 2371 code int 2372 } 2373 2374 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 2375 Redirect(w, r, rh.url, rh.code) 2376 } 2377 2378 // RedirectHandler returns a request handler that redirects 2379 // each request it receives to the given url using the given 2380 // status code. 2381 // 2382 // The provided code should be in the 3xx range and is usually 2383 // [StatusMovedPermanently], [StatusFound] or [StatusSeeOther]. 2384 func RedirectHandler(url string, code int) Handler { 2385 return &redirectHandler{url, code} 2386 } 2387 2388 // ServeMux is an HTTP request multiplexer. 2389 // It matches the URL of each incoming request against a list of registered 2390 // patterns and calls the handler for the pattern that 2391 // most closely matches the URL. 2392 // 2393 // # Patterns 2394 // 2395 // Patterns can match the method, host and path of a request. 2396 // Some examples: 2397 // 2398 // - "/index.html" matches the path "/index.html" for any host and method. 2399 // - "GET /static/" matches a GET request whose path begins with "/static/". 2400 // - "example.com/" matches any request to the host "example.com". 2401 // - "example.com/{$}" matches requests with host "example.com" and path "/". 2402 // - "/b/{bucket}/o/{objectname...}" matches paths whose first segment is "b" 2403 // and whose third segment is "o". The name "bucket" denotes the second 2404 // segment and "objectname" denotes the remainder of the path. 2405 // 2406 // In general, a pattern looks like 2407 // 2408 // [METHOD ][HOST]/[PATH] 2409 // 2410 // All three parts are optional; "/" is a valid pattern. 2411 // If METHOD is present, it must be followed by at least one space or tab. 2412 // 2413 // Literal (that is, non-wildcard) parts of a pattern match 2414 // the corresponding parts of a request case-sensitively. 2415 // 2416 // A pattern with no method matches every method. A pattern 2417 // with the method GET matches both GET and HEAD requests. 2418 // Otherwise, the method must match exactly. 2419 // 2420 // A pattern with no host matches every host. 2421 // A pattern with a host matches URLs on that host only. 2422 // 2423 // A path can include wildcard segments of the form {NAME} or {NAME...}. 2424 // For example, "/b/{bucket}/o/{objectname...}". 2425 // The wildcard name must be a valid Go identifier. 2426 // Wildcards must be full path segments: they must be preceded by a slash and followed by 2427 // either a slash or the end of the string. 2428 // For example, "/b_{bucket}" is not a valid pattern. 2429 // 2430 // Normally a wildcard matches only a single path segment, 2431 // ending at the next literal slash (not %2F) in the request URL. 2432 // But if the "..." is present, then the wildcard matches the remainder of the URL path, including slashes. 2433 // (Therefore it is invalid for a "..." wildcard to appear anywhere but at the end of a pattern.) 2434 // The match for a wildcard can be obtained by calling [Request.PathValue] with the wildcard's name. 2435 // A trailing slash in a path acts as an anonymous "..." wildcard. 2436 // 2437 // The special wildcard {$} matches only the end of the URL. 2438 // For example, the pattern "/{$}" matches only the path "/", 2439 // whereas the pattern "/" matches every path. 2440 // 2441 // For matching, both pattern paths and incoming request paths are unescaped segment by segment. 2442 // So, for example, the path "/a%2Fb/100%25" is treated as having two segments, "a/b" and "100%". 2443 // The pattern "/a%2fb/" matches it, but the pattern "/a/b/" does not. 2444 // 2445 // # Precedence 2446 // 2447 // If two or more patterns match a request, then the most specific pattern takes precedence. 2448 // A pattern P1 is more specific than P2 if P1 matches a strict subset of P2’s requests; 2449 // that is, if P2 matches all the requests of P1 and more. 2450 // If neither is more specific, then the patterns conflict. 2451 // There is one exception to this rule, for backwards compatibility: 2452 // if two patterns would otherwise conflict and one has a host while the other does not, 2453 // then the pattern with the host takes precedence. 2454 // If a pattern passed to [ServeMux.Handle] or [ServeMux.HandleFunc] conflicts with 2455 // another pattern that is already registered, those functions panic. 2456 // 2457 // As an example of the general rule, "/images/thumbnails/" is more specific than "/images/", 2458 // so both can be registered. 2459 // The former matches paths beginning with "/images/thumbnails/" 2460 // and the latter will match any other path in the "/images/" subtree. 2461 // 2462 // As another example, consider the patterns "GET /" and "/index.html": 2463 // both match a GET request for "/index.html", but the former pattern 2464 // matches all other GET and HEAD requests, while the latter matches any 2465 // request for "/index.html" that uses a different method. 2466 // The patterns conflict. 2467 // 2468 // # Trailing-slash redirection 2469 // 2470 // Consider a [ServeMux] with a handler for a subtree, registered using a trailing slash or "..." wildcard. 2471 // If the ServeMux receives a request for the subtree root without a trailing slash, 2472 // it redirects the request by adding the trailing slash. 2473 // This behavior can be overridden with a separate registration for the path without 2474 // the trailing slash or "..." wildcard. For example, registering "/images/" causes ServeMux 2475 // to redirect a request for "/images" to "/images/", unless "/images" has 2476 // been registered separately. 2477 // 2478 // # Request sanitizing 2479 // 2480 // ServeMux also takes care of sanitizing the URL request path and the Host 2481 // header, stripping the port number and redirecting any request containing . or 2482 // .. segments or repeated slashes to an equivalent, cleaner URL. 2483 // 2484 // # Compatibility 2485 // 2486 // The pattern syntax and matching behavior of ServeMux changed significantly 2487 // in Go 1.22. To restore the old behavior, set the GODEBUG environment variable 2488 // to "httpmuxgo121=1". This setting is read once, at program startup; changes 2489 // during execution will be ignored. 2490 // 2491 // The backwards-incompatible changes include: 2492 // - Wildcards are just ordinary literal path segments in 1.21. 2493 // For example, the pattern "/{x}" will match only that path in 1.21, 2494 // but will match any one-segment path in 1.22. 2495 // - In 1.21, no pattern was rejected, unless it was empty or conflicted with an existing pattern. 2496 // In 1.22, syntactically invalid patterns will cause [ServeMux.Handle] and [ServeMux.HandleFunc] to panic. 2497 // For example, in 1.21, the patterns "/{" and "/a{x}" match themselves, 2498 // but in 1.22 they are invalid and will cause a panic when registered. 2499 // - In 1.22, each segment of a pattern is unescaped; this was not done in 1.21. 2500 // For example, in 1.22 the pattern "/%61" matches the path "/a" ("%61" being the URL escape sequence for "a"), 2501 // but in 1.21 it would match only the path "/%2561" (where "%25" is the escape for the percent sign). 2502 // - When matching patterns to paths, in 1.22 each segment of the path is unescaped; in 1.21, the entire path is unescaped. 2503 // This change mostly affects how paths with %2F escapes adjacent to slashes are treated. 2504 // See https://go.dev/issue/21955 for details. 2505 type ServeMux struct { 2506 mu sync.RWMutex 2507 tree routingNode 2508 index routingIndex 2509 patterns []*pattern // TODO(jba): remove if possible 2510 mux121 serveMux121 // used only when GODEBUG=httpmuxgo121=1 2511 } 2512 2513 // NewServeMux allocates and returns a new [ServeMux]. 2514 func NewServeMux() *ServeMux { 2515 return &ServeMux{} 2516 } 2517 2518 // DefaultServeMux is the default [ServeMux] used by [Serve]. 2519 var DefaultServeMux = &defaultServeMux 2520 2521 var defaultServeMux ServeMux 2522 2523 // cleanPath returns the canonical path for p, eliminating . and .. elements. 2524 func cleanPath(p string) string { 2525 if p == "" { 2526 return "/" 2527 } 2528 if p[0] != '/' { 2529 p = "/" + p 2530 } 2531 np := path.Clean(p) 2532 // path.Clean removes trailing slash except for root; 2533 // put the trailing slash back if necessary. 2534 if p[len(p)-1] == '/' && np != "/" { 2535 // Fast path for common case of p being the string we want: 2536 if len(p) == len(np)+1 && strings.HasPrefix(p, np) { 2537 np = p 2538 } else { 2539 np += "/" 2540 } 2541 } 2542 return np 2543 } 2544 2545 // stripHostPort returns h without any trailing ":<port>". 2546 func stripHostPort(h string) string { 2547 // If no port on host, return unchanged 2548 if !strings.Contains(h, ":") { 2549 return h 2550 } 2551 host, _, err := net.SplitHostPort(h) 2552 if err != nil { 2553 return h // on error, return unchanged 2554 } 2555 return host 2556 } 2557 2558 // Handler returns the handler to use for the given request, 2559 // consulting r.Method, r.Host, and r.URL.Path. It always returns 2560 // a non-nil handler. If the path is not in its canonical form, the 2561 // handler will be an internally-generated handler that redirects 2562 // to the canonical path. If the host contains a port, it is ignored 2563 // when matching handlers. 2564 // 2565 // The path and host are used unchanged for CONNECT requests. 2566 // 2567 // Handler also returns the registered pattern that matches the 2568 // request or, in the case of internally-generated redirects, 2569 // the path that will match after following the redirect. 2570 // 2571 // If there is no registered handler that applies to the request, 2572 // Handler returns a “page not found” handler and an empty pattern. 2573 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 2574 if use121 { 2575 return mux.mux121.findHandler(r) 2576 } 2577 h, p, _, _ := mux.findHandler(r) 2578 return h, p 2579 } 2580 2581 // findHandler finds a handler for a request. 2582 // If there is a matching handler, it returns it and the pattern that matched. 2583 // Otherwise it returns a Redirect or NotFound handler with the path that would match 2584 // after the redirect. 2585 func (mux *ServeMux) findHandler(r *Request) (h Handler, patStr string, _ *pattern, matches []string) { 2586 var n *routingNode 2587 host := r.URL.Host 2588 escapedPath := r.URL.EscapedPath() 2589 path := escapedPath 2590 // CONNECT requests are not canonicalized. 2591 if r.Method == "CONNECT" { 2592 // If r.URL.Path is /tree and its handler is not registered, 2593 // the /tree -> /tree/ redirect applies to CONNECT requests 2594 // but the path canonicalization does not. 2595 _, _, u := mux.matchOrRedirect(host, r.Method, path, r.URL) 2596 if u != nil { 2597 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path, nil, nil 2598 } 2599 // Redo the match, this time with r.Host instead of r.URL.Host. 2600 // Pass a nil URL to skip the trailing-slash redirect logic. 2601 n, matches, _ = mux.matchOrRedirect(r.Host, r.Method, path, nil) 2602 } else { 2603 // All other requests have any port stripped and path cleaned 2604 // before passing to mux.handler. 2605 host = stripHostPort(r.Host) 2606 path = cleanPath(path) 2607 2608 // If the given path is /tree and its handler is not registered, 2609 // redirect for /tree/. 2610 var u *url.URL 2611 n, matches, u = mux.matchOrRedirect(host, r.Method, path, r.URL) 2612 if u != nil { 2613 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path, nil, nil 2614 } 2615 if path != escapedPath { 2616 // Redirect to cleaned path. 2617 patStr := "" 2618 if n != nil { 2619 patStr = n.pattern.String() 2620 } 2621 u := &url.URL{Path: path, RawQuery: r.URL.RawQuery} 2622 return RedirectHandler(u.String(), StatusMovedPermanently), patStr, nil, nil 2623 } 2624 } 2625 if n == nil { 2626 // We didn't find a match with the request method. To distinguish between 2627 // Not Found and Method Not Allowed, see if there is another pattern that 2628 // matches except for the method. 2629 allowedMethods := mux.matchingMethods(host, path) 2630 if len(allowedMethods) > 0 { 2631 return HandlerFunc(func(w ResponseWriter, r *Request) { 2632 w.Header().Set("Allow", strings.Join(allowedMethods, ", ")) 2633 Error(w, StatusText(StatusMethodNotAllowed), StatusMethodNotAllowed) 2634 }), "", nil, nil 2635 } 2636 return NotFoundHandler(), "", nil, nil 2637 } 2638 return n.handler, n.pattern.String(), n.pattern, matches 2639 } 2640 2641 // matchOrRedirect looks up a node in the tree that matches the host, method and path. 2642 // 2643 // If the url argument is non-nil, handler also deals with trailing-slash 2644 // redirection: when a path doesn't match exactly, the match is tried again 2645 // after appending "/" to the path. If that second match succeeds, the last 2646 // return value is the URL to redirect to. 2647 func (mux *ServeMux) matchOrRedirect(host, method, path string, u *url.URL) (_ *routingNode, matches []string, redirectTo *url.URL) { 2648 mux.mu.RLock() 2649 defer mux.mu.RUnlock() 2650 2651 n, matches := mux.tree.match(host, method, path) 2652 // If we have an exact match, or we were asked not to try trailing-slash redirection, 2653 // or the URL already has a trailing slash, then we're done. 2654 if !exactMatch(n, path) && u != nil && !strings.HasSuffix(path, "/") { 2655 // If there is an exact match with a trailing slash, then redirect. 2656 path += "/" 2657 n2, _ := mux.tree.match(host, method, path) 2658 if exactMatch(n2, path) { 2659 return nil, nil, &url.URL{Path: cleanPath(u.Path) + "/", RawQuery: u.RawQuery} 2660 } 2661 } 2662 return n, matches, nil 2663 } 2664 2665 // exactMatch reports whether the node's pattern exactly matches the path. 2666 // As a special case, if the node is nil, exactMatch return false. 2667 // 2668 // Before wildcards were introduced, it was clear that an exact match meant 2669 // that the pattern and path were the same string. The only other possibility 2670 // was that a trailing-slash pattern, like "/", matched a path longer than 2671 // it, like "/a". 2672 // 2673 // With wildcards, we define an inexact match as any one where a multi wildcard 2674 // matches a non-empty string. All other matches are exact. 2675 // For example, these are all exact matches: 2676 // 2677 // pattern path 2678 // /a /a 2679 // /{x} /a 2680 // /a/{$} /a/ 2681 // /a/ /a/ 2682 // 2683 // The last case has a multi wildcard (implicitly), but the match is exact because 2684 // the wildcard matches the empty string. 2685 // 2686 // Examples of matches that are not exact: 2687 // 2688 // pattern path 2689 // / /a 2690 // /a/{x...} /a/b 2691 func exactMatch(n *routingNode, path string) bool { 2692 if n == nil { 2693 return false 2694 } 2695 // We can't directly implement the definition (empty match for multi 2696 // wildcard) because we don't record a match for anonymous multis. 2697 2698 // If there is no multi, the match is exact. 2699 if !n.pattern.lastSegment().multi { 2700 return true 2701 } 2702 2703 // If the path doesn't end in a trailing slash, then the multi match 2704 // is non-empty. 2705 if len(path) > 0 && path[len(path)-1] != '/' { 2706 return false 2707 } 2708 // Only patterns ending in {$} or a multi wildcard can 2709 // match a path with a trailing slash. 2710 // For the match to be exact, the number of pattern 2711 // segments should be the same as the number of slashes in the path. 2712 // E.g. "/a/b/{$}" and "/a/b/{...}" exactly match "/a/b/", but "/a/" does not. 2713 return len(n.pattern.segments) == strings.Count(path, "/") 2714 } 2715 2716 // matchingMethods return a sorted list of all methods that would match with the given host and path. 2717 func (mux *ServeMux) matchingMethods(host, path string) []string { 2718 // Hold the read lock for the entire method so that the two matches are done 2719 // on the same set of registered patterns. 2720 mux.mu.RLock() 2721 defer mux.mu.RUnlock() 2722 ms := map[string]bool{} 2723 mux.tree.matchingMethods(host, path, ms) 2724 // matchOrRedirect will try appending a trailing slash if there is no match. 2725 if !strings.HasSuffix(path, "/") { 2726 mux.tree.matchingMethods(host, path+"/", ms) 2727 } 2728 return slices.Sorted(maps.Keys(ms)) 2729 } 2730 2731 // ServeHTTP dispatches the request to the handler whose 2732 // pattern most closely matches the request URL. 2733 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2734 if r.RequestURI == "*" { 2735 if r.ProtoAtLeast(1, 1) { 2736 w.Header().Set("Connection", "close") 2737 } 2738 w.WriteHeader(StatusBadRequest) 2739 return 2740 } 2741 var h Handler 2742 if use121 { 2743 h, _ = mux.mux121.findHandler(r) 2744 } else { 2745 h, r.Pattern, r.pat, r.matches = mux.findHandler(r) 2746 } 2747 h.ServeHTTP(w, r) 2748 } 2749 2750 // The four functions below all call ServeMux.register so that callerLocation 2751 // always refers to user code. 2752 2753 // Handle registers the handler for the given pattern. 2754 // If the given pattern conflicts, with one that is already registered, Handle 2755 // panics. 2756 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2757 if use121 { 2758 mux.mux121.handle(pattern, handler) 2759 } else { 2760 mux.register(pattern, handler) 2761 } 2762 } 2763 2764 // HandleFunc registers the handler function for the given pattern. 2765 // If the given pattern conflicts, with one that is already registered, HandleFunc 2766 // panics. 2767 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2768 if use121 { 2769 mux.mux121.handleFunc(pattern, handler) 2770 } else { 2771 mux.register(pattern, HandlerFunc(handler)) 2772 } 2773 } 2774 2775 // Handle registers the handler for the given pattern in [DefaultServeMux]. 2776 // The documentation for [ServeMux] explains how patterns are matched. 2777 func Handle(pattern string, handler Handler) { 2778 if use121 { 2779 DefaultServeMux.mux121.handle(pattern, handler) 2780 } else { 2781 DefaultServeMux.register(pattern, handler) 2782 } 2783 } 2784 2785 // HandleFunc registers the handler function for the given pattern in [DefaultServeMux]. 2786 // The documentation for [ServeMux] explains how patterns are matched. 2787 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2788 if use121 { 2789 DefaultServeMux.mux121.handleFunc(pattern, handler) 2790 } else { 2791 DefaultServeMux.register(pattern, HandlerFunc(handler)) 2792 } 2793 } 2794 2795 func (mux *ServeMux) register(pattern string, handler Handler) { 2796 if err := mux.registerErr(pattern, handler); err != nil { 2797 panic(err) 2798 } 2799 } 2800 2801 func (mux *ServeMux) registerErr(patstr string, handler Handler) error { 2802 if patstr == "" { 2803 return errors.New("http: invalid pattern") 2804 } 2805 if handler == nil { 2806 return errors.New("http: nil handler") 2807 } 2808 if f, ok := handler.(HandlerFunc); ok && f == nil { 2809 return errors.New("http: nil handler") 2810 } 2811 2812 pat, err := parsePattern(patstr) 2813 if err != nil { 2814 return fmt.Errorf("parsing %q: %w", patstr, err) 2815 } 2816 2817 // Get the caller's location, for better conflict error messages. 2818 // Skip register and whatever calls it. 2819 _, file, line, ok := runtime.Caller(3) 2820 if !ok { 2821 pat.loc = "unknown location" 2822 } else { 2823 pat.loc = fmt.Sprintf("%s:%d", file, line) 2824 } 2825 2826 mux.mu.Lock() 2827 defer mux.mu.Unlock() 2828 // Check for conflict. 2829 if err := mux.index.possiblyConflictingPatterns(pat, func(pat2 *pattern) error { 2830 if pat.conflictsWith(pat2) { 2831 d := describeConflict(pat, pat2) 2832 return fmt.Errorf("pattern %q (registered at %s) conflicts with pattern %q (registered at %s):\n%s", 2833 pat, pat.loc, pat2, pat2.loc, d) 2834 } 2835 return nil 2836 }); err != nil { 2837 return err 2838 } 2839 mux.tree.addPattern(pat, handler) 2840 mux.index.addPattern(pat) 2841 mux.patterns = append(mux.patterns, pat) 2842 return nil 2843 } 2844 2845 // Serve accepts incoming HTTP connections on the listener l, 2846 // creating a new service goroutine for each. The service goroutines 2847 // read requests and then call handler to reply to them. 2848 // 2849 // The handler is typically nil, in which case [DefaultServeMux] is used. 2850 // 2851 // HTTP/2 support is only enabled if the Listener returns [*tls.Conn] 2852 // connections and they were configured with "h2" in the TLS 2853 // Config.NextProtos. 2854 // 2855 // Serve always returns a non-nil error. 2856 func Serve(l net.Listener, handler Handler) error { 2857 srv := &Server{Handler: handler} 2858 return srv.Serve(l) 2859 } 2860 2861 // ServeTLS accepts incoming HTTPS connections on the listener l, 2862 // creating a new service goroutine for each. The service goroutines 2863 // read requests and then call handler to reply to them. 2864 // 2865 // The handler is typically nil, in which case [DefaultServeMux] is used. 2866 // 2867 // Additionally, files containing a certificate and matching private key 2868 // for the server must be provided. If the certificate is signed by a 2869 // certificate authority, the certFile should be the concatenation 2870 // of the server's certificate, any intermediates, and the CA's certificate. 2871 // 2872 // ServeTLS always returns a non-nil error. 2873 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error { 2874 srv := &Server{Handler: handler} 2875 return srv.ServeTLS(l, certFile, keyFile) 2876 } 2877 2878 // A Server defines parameters for running an HTTP server. 2879 // The zero value for Server is a valid configuration. 2880 type Server struct { 2881 // Addr optionally specifies the TCP address for the server to listen on, 2882 // in the form "host:port". If empty, ":http" (port 80) is used. 2883 // The service names are defined in RFC 6335 and assigned by IANA. 2884 // See net.Dial for details of the address format. 2885 Addr string 2886 2887 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2888 2889 // DisableGeneralOptionsHandler, if true, passes "OPTIONS *" requests to the Handler, 2890 // otherwise responds with 200 OK and Content-Length: 0. 2891 DisableGeneralOptionsHandler bool 2892 2893 // TLSConfig optionally provides a TLS configuration for use 2894 // by ServeTLS and ListenAndServeTLS. Note that this value is 2895 // cloned by ServeTLS and ListenAndServeTLS, so it's not 2896 // possible to modify the configuration with methods like 2897 // tls.Config.SetSessionTicketKeys. To use 2898 // SetSessionTicketKeys, use Server.Serve with a TLS Listener 2899 // instead. 2900 TLSConfig *tls.Config 2901 2902 // ReadTimeout is the maximum duration for reading the entire 2903 // request, including the body. A zero or negative value means 2904 // there will be no timeout. 2905 // 2906 // Because ReadTimeout does not let Handlers make per-request 2907 // decisions on each request body's acceptable deadline or 2908 // upload rate, most users will prefer to use 2909 // ReadHeaderTimeout. It is valid to use them both. 2910 ReadTimeout time.Duration 2911 2912 // ReadHeaderTimeout is the amount of time allowed to read 2913 // request headers. The connection's read deadline is reset 2914 // after reading the headers and the Handler can decide what 2915 // is considered too slow for the body. If zero, the value of 2916 // ReadTimeout is used. If negative, or if zero and ReadTimeout 2917 // is zero or negative, there is no timeout. 2918 ReadHeaderTimeout time.Duration 2919 2920 // WriteTimeout is the maximum duration before timing out 2921 // writes of the response. It is reset whenever a new 2922 // request's header is read. Like ReadTimeout, it does not 2923 // let Handlers make decisions on a per-request basis. 2924 // A zero or negative value means there will be no timeout. 2925 WriteTimeout time.Duration 2926 2927 // IdleTimeout is the maximum amount of time to wait for the 2928 // next request when keep-alives are enabled. If zero, the value 2929 // of ReadTimeout is used. If negative, or if zero and ReadTimeout 2930 // is zero or negative, there is no timeout. 2931 IdleTimeout time.Duration 2932 2933 // MaxHeaderBytes controls the maximum number of bytes the 2934 // server will read parsing the request header's keys and 2935 // values, including the request line. It does not limit the 2936 // size of the request body. 2937 // If zero, DefaultMaxHeaderBytes is used. 2938 MaxHeaderBytes int 2939 2940 // TLSNextProto optionally specifies a function to take over 2941 // ownership of the provided TLS connection when an ALPN 2942 // protocol upgrade has occurred. The map key is the protocol 2943 // name negotiated. The Handler argument should be used to 2944 // handle HTTP requests and will initialize the Request's TLS 2945 // and RemoteAddr if not already set. The connection is 2946 // automatically closed when the function returns. 2947 // If TLSNextProto is not nil, HTTP/2 support is not enabled 2948 // automatically. 2949 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2950 2951 // ConnState specifies an optional callback function that is 2952 // called when a client connection changes state. See the 2953 // ConnState type and associated constants for details. 2954 ConnState func(net.Conn, ConnState) 2955 2956 // ErrorLog specifies an optional logger for errors accepting 2957 // connections, unexpected behavior from handlers, and 2958 // underlying FileSystem errors. 2959 // If nil, logging is done via the log package's standard logger. 2960 ErrorLog *log.Logger 2961 2962 // BaseContext optionally specifies a function that returns 2963 // the base context for incoming requests on this server. 2964 // The provided Listener is the specific Listener that's 2965 // about to start accepting requests. 2966 // If BaseContext is nil, the default is context.Background(). 2967 // If non-nil, it must return a non-nil context. 2968 BaseContext func(net.Listener) context.Context 2969 2970 // ConnContext optionally specifies a function that modifies 2971 // the context used for a new connection c. The provided ctx 2972 // is derived from the base context and has a ServerContextKey 2973 // value. 2974 ConnContext func(ctx context.Context, c net.Conn) context.Context 2975 2976 inShutdown atomic.Bool // true when server is in shutdown 2977 2978 disableKeepAlives atomic.Bool 2979 nextProtoOnce sync.Once // guards setupHTTP2_* init 2980 nextProtoErr error // result of http2.ConfigureServer if used 2981 2982 mu sync.Mutex 2983 listeners map[*net.Listener]struct{} 2984 activeConn map[*conn]struct{} 2985 onShutdown []func() 2986 2987 listenerGroup sync.WaitGroup 2988 } 2989 2990 // Close immediately closes all active net.Listeners and any 2991 // connections in state [StateNew], [StateActive], or [StateIdle]. For a 2992 // graceful shutdown, use [Server.Shutdown]. 2993 // 2994 // Close does not attempt to close (and does not even know about) 2995 // any hijacked connections, such as WebSockets. 2996 // 2997 // Close returns any error returned from closing the [Server]'s 2998 // underlying Listener(s). 2999 func (srv *Server) Close() error { 3000 srv.inShutdown.Store(true) 3001 srv.mu.Lock() 3002 defer srv.mu.Unlock() 3003 err := srv.closeListenersLocked() 3004 3005 // Unlock srv.mu while waiting for listenerGroup. 3006 // The group Add and Done calls are made with srv.mu held, 3007 // to avoid adding a new listener in the window between 3008 // us setting inShutdown above and waiting here. 3009 srv.mu.Unlock() 3010 srv.listenerGroup.Wait() 3011 srv.mu.Lock() 3012 3013 for c := range srv.activeConn { 3014 c.rwc.Close() 3015 delete(srv.activeConn, c) 3016 } 3017 return err 3018 } 3019 3020 // shutdownPollIntervalMax is the max polling interval when checking 3021 // quiescence during Server.Shutdown. Polling starts with a small 3022 // interval and backs off to the max. 3023 // Ideally we could find a solution that doesn't involve polling, 3024 // but which also doesn't have a high runtime cost (and doesn't 3025 // involve any contentious mutexes), but that is left as an 3026 // exercise for the reader. 3027 const shutdownPollIntervalMax = 500 * time.Millisecond 3028 3029 // Shutdown gracefully shuts down the server without interrupting any 3030 // active connections. Shutdown works by first closing all open 3031 // listeners, then closing all idle connections, and then waiting 3032 // indefinitely for connections to return to idle and then shut down. 3033 // If the provided context expires before the shutdown is complete, 3034 // Shutdown returns the context's error, otherwise it returns any 3035 // error returned from closing the [Server]'s underlying Listener(s). 3036 // 3037 // When Shutdown is called, [Serve], [ListenAndServe], and 3038 // [ListenAndServeTLS] immediately return [ErrServerClosed]. Make sure the 3039 // program doesn't exit and waits instead for Shutdown to return. 3040 // 3041 // Shutdown does not attempt to close nor wait for hijacked 3042 // connections such as WebSockets. The caller of Shutdown should 3043 // separately notify such long-lived connections of shutdown and wait 3044 // for them to close, if desired. See [Server.RegisterOnShutdown] for a way to 3045 // register shutdown notification functions. 3046 // 3047 // Once Shutdown has been called on a server, it may not be reused; 3048 // future calls to methods such as Serve will return ErrServerClosed. 3049 func (srv *Server) Shutdown(ctx context.Context) error { 3050 srv.inShutdown.Store(true) 3051 3052 srv.mu.Lock() 3053 lnerr := srv.closeListenersLocked() 3054 for _, f := range srv.onShutdown { 3055 go f() 3056 } 3057 srv.mu.Unlock() 3058 srv.listenerGroup.Wait() 3059 3060 pollIntervalBase := time.Millisecond 3061 nextPollInterval := func() time.Duration { 3062 // Add 10% jitter. 3063 interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10))) 3064 // Double and clamp for next time. 3065 pollIntervalBase *= 2 3066 if pollIntervalBase > shutdownPollIntervalMax { 3067 pollIntervalBase = shutdownPollIntervalMax 3068 } 3069 return interval 3070 } 3071 3072 timer := time.NewTimer(nextPollInterval()) 3073 defer timer.Stop() 3074 for { 3075 if srv.closeIdleConns() { 3076 return lnerr 3077 } 3078 select { 3079 case <-ctx.Done(): 3080 return ctx.Err() 3081 case <-timer.C: 3082 timer.Reset(nextPollInterval()) 3083 } 3084 } 3085 } 3086 3087 // RegisterOnShutdown registers a function to call on [Server.Shutdown]. 3088 // This can be used to gracefully shutdown connections that have 3089 // undergone ALPN protocol upgrade or that have been hijacked. 3090 // This function should start protocol-specific graceful shutdown, 3091 // but should not wait for shutdown to complete. 3092 func (srv *Server) RegisterOnShutdown(f func()) { 3093 srv.mu.Lock() 3094 srv.onShutdown = append(srv.onShutdown, f) 3095 srv.mu.Unlock() 3096 } 3097 3098 // closeIdleConns closes all idle connections and reports whether the 3099 // server is quiescent. 3100 func (s *Server) closeIdleConns() bool { 3101 s.mu.Lock() 3102 defer s.mu.Unlock() 3103 quiescent := true 3104 for c := range s.activeConn { 3105 st, unixSec := c.getState() 3106 // Issue 22682: treat StateNew connections as if 3107 // they're idle if we haven't read the first request's 3108 // header in over 5 seconds. 3109 if st == StateNew && unixSec < time.Now().Unix()-5 { 3110 st = StateIdle 3111 } 3112 if st != StateIdle || unixSec == 0 { 3113 // Assume unixSec == 0 means it's a very new 3114 // connection, without state set yet. 3115 quiescent = false 3116 continue 3117 } 3118 c.rwc.Close() 3119 delete(s.activeConn, c) 3120 } 3121 return quiescent 3122 } 3123 3124 func (s *Server) closeListenersLocked() error { 3125 var err error 3126 for ln := range s.listeners { 3127 if cerr := (*ln).Close(); cerr != nil && err == nil { 3128 err = cerr 3129 } 3130 } 3131 return err 3132 } 3133 3134 // A ConnState represents the state of a client connection to a server. 3135 // It's used by the optional [Server.ConnState] hook. 3136 type ConnState int 3137 3138 const ( 3139 // StateNew represents a new connection that is expected to 3140 // send a request immediately. Connections begin at this 3141 // state and then transition to either StateActive or 3142 // StateClosed. 3143 StateNew ConnState = iota 3144 3145 // StateActive represents a connection that has read 1 or more 3146 // bytes of a request. The Server.ConnState hook for 3147 // StateActive fires before the request has entered a handler 3148 // and doesn't fire again until the request has been 3149 // handled. After the request is handled, the state 3150 // transitions to StateClosed, StateHijacked, or StateIdle. 3151 // For HTTP/2, StateActive fires on the transition from zero 3152 // to one active request, and only transitions away once all 3153 // active requests are complete. That means that ConnState 3154 // cannot be used to do per-request work; ConnState only notes 3155 // the overall state of the connection. 3156 StateActive 3157 3158 // StateIdle represents a connection that has finished 3159 // handling a request and is in the keep-alive state, waiting 3160 // for a new request. Connections transition from StateIdle 3161 // to either StateActive or StateClosed. 3162 StateIdle 3163 3164 // StateHijacked represents a hijacked connection. 3165 // This is a terminal state. It does not transition to StateClosed. 3166 StateHijacked 3167 3168 // StateClosed represents a closed connection. 3169 // This is a terminal state. Hijacked connections do not 3170 // transition to StateClosed. 3171 StateClosed 3172 ) 3173 3174 var stateName = map[ConnState]string{ 3175 StateNew: "new", 3176 StateActive: "active", 3177 StateIdle: "idle", 3178 StateHijacked: "hijacked", 3179 StateClosed: "closed", 3180 } 3181 3182 func (c ConnState) String() string { 3183 return stateName[c] 3184 } 3185 3186 // serverHandler delegates to either the server's Handler or 3187 // DefaultServeMux and also handles "OPTIONS *" requests. 3188 type serverHandler struct { 3189 srv *Server 3190 } 3191 3192 // ServeHTTP should be an internal detail, 3193 // but widely used packages access it using linkname. 3194 // Notable members of the hall of shame include: 3195 // - github.com/erda-project/erda-infra 3196 // 3197 // Do not remove or change the type signature. 3198 // See go.dev/issue/67401. 3199 // 3200 //go:linkname badServeHTTP net/http.serverHandler.ServeHTTP 3201 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 3202 handler := sh.srv.Handler 3203 if handler == nil { 3204 handler = DefaultServeMux 3205 } 3206 if !sh.srv.DisableGeneralOptionsHandler && req.RequestURI == "*" && req.Method == "OPTIONS" { 3207 handler = globalOptionsHandler{} 3208 } 3209 3210 handler.ServeHTTP(rw, req) 3211 } 3212 3213 func badServeHTTP(serverHandler, ResponseWriter, *Request) 3214 3215 // AllowQuerySemicolons returns a handler that serves requests by converting any 3216 // unescaped semicolons in the URL query to ampersands, and invoking the handler h. 3217 // 3218 // This restores the pre-Go 1.17 behavior of splitting query parameters on both 3219 // semicolons and ampersands. (See golang.org/issue/25192). Note that this 3220 // behavior doesn't match that of many proxies, and the mismatch can lead to 3221 // security issues. 3222 // 3223 // AllowQuerySemicolons should be invoked before [Request.ParseForm] is called. 3224 func AllowQuerySemicolons(h Handler) Handler { 3225 return HandlerFunc(func(w ResponseWriter, r *Request) { 3226 if strings.Contains(r.URL.RawQuery, ";") { 3227 r2 := new(Request) 3228 *r2 = *r 3229 r2.URL = new(url.URL) 3230 *r2.URL = *r.URL 3231 r2.URL.RawQuery = strings.ReplaceAll(r.URL.RawQuery, ";", "&") 3232 h.ServeHTTP(w, r2) 3233 } else { 3234 h.ServeHTTP(w, r) 3235 } 3236 }) 3237 } 3238 3239 // ListenAndServe listens on the TCP network address srv.Addr and then 3240 // calls [Serve] to handle requests on incoming connections. 3241 // Accepted connections are configured to enable TCP keep-alives. 3242 // 3243 // If srv.Addr is blank, ":http" is used. 3244 // 3245 // ListenAndServe always returns a non-nil error. After [Server.Shutdown] or [Server.Close], 3246 // the returned error is [ErrServerClosed]. 3247 func (srv *Server) ListenAndServe() error { 3248 if srv.shuttingDown() { 3249 return ErrServerClosed 3250 } 3251 addr := srv.Addr 3252 if addr == "" { 3253 addr = ":http" 3254 } 3255 ln, err := net.Listen("tcp", addr) 3256 if err != nil { 3257 return err 3258 } 3259 return srv.Serve(ln) 3260 } 3261 3262 var testHookServerServe func(*Server, net.Listener) // used if non-nil 3263 3264 // shouldConfigureHTTP2ForServe reports whether Server.Serve should configure 3265 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 3266 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 3267 if srv.TLSConfig == nil { 3268 // Compatibility with Go 1.6: 3269 // If there's no TLSConfig, it's possible that the user just 3270 // didn't set it on the http.Server, but did pass it to 3271 // tls.NewListener and passed that listener to Serve. 3272 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 3273 // in case the listener returns an "h2" *tls.Conn. 3274 return true 3275 } 3276 // The user specified a TLSConfig on their http.Server. 3277 // In this, case, only configure HTTP/2 if their tls.Config 3278 // explicitly mentions "h2". Otherwise http2.ConfigureServer 3279 // would modify the tls.Config to add it, but they probably already 3280 // passed this tls.Config to tls.NewListener. And if they did, 3281 // it's too late anyway to fix it. It would only be potentially racy. 3282 // See Issue 15908. 3283 return slices.Contains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 3284 } 3285 3286 // ErrServerClosed is returned by the [Server.Serve], [ServeTLS], [ListenAndServe], 3287 // and [ListenAndServeTLS] methods after a call to [Server.Shutdown] or [Server.Close]. 3288 var ErrServerClosed = errors.New("http: Server closed") 3289 3290 // Serve accepts incoming connections on the Listener l, creating a 3291 // new service goroutine for each. The service goroutines read requests and 3292 // then call srv.Handler to reply to them. 3293 // 3294 // HTTP/2 support is only enabled if the Listener returns [*tls.Conn] 3295 // connections and they were configured with "h2" in the TLS 3296 // Config.NextProtos. 3297 // 3298 // Serve always returns a non-nil error and closes l. 3299 // After [Server.Shutdown] or [Server.Close], the returned error is [ErrServerClosed]. 3300 func (srv *Server) Serve(l net.Listener) error { 3301 if fn := testHookServerServe; fn != nil { 3302 fn(srv, l) // call hook with unwrapped listener 3303 } 3304 3305 origListener := l 3306 l = &onceCloseListener{Listener: l} 3307 defer l.Close() 3308 3309 if err := srv.setupHTTP2_Serve(); err != nil { 3310 return err 3311 } 3312 3313 if !srv.trackListener(&l, true) { 3314 return ErrServerClosed 3315 } 3316 defer srv.trackListener(&l, false) 3317 3318 baseCtx := context.Background() 3319 if srv.BaseContext != nil { 3320 baseCtx = srv.BaseContext(origListener) 3321 if baseCtx == nil { 3322 panic("BaseContext returned a nil context") 3323 } 3324 } 3325 3326 var tempDelay time.Duration // how long to sleep on accept failure 3327 3328 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 3329 for { 3330 rw, err := l.Accept() 3331 if err != nil { 3332 if srv.shuttingDown() { 3333 return ErrServerClosed 3334 } 3335 if ne, ok := err.(net.Error); ok && ne.Temporary() { 3336 if tempDelay == 0 { 3337 tempDelay = 5 * time.Millisecond 3338 } else { 3339 tempDelay *= 2 3340 } 3341 if max := 1 * time.Second; tempDelay > max { 3342 tempDelay = max 3343 } 3344 srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay) 3345 time.Sleep(tempDelay) 3346 continue 3347 } 3348 return err 3349 } 3350 connCtx := ctx 3351 if cc := srv.ConnContext; cc != nil { 3352 connCtx = cc(connCtx, rw) 3353 if connCtx == nil { 3354 panic("ConnContext returned nil") 3355 } 3356 } 3357 tempDelay = 0 3358 c := srv.newConn(rw) 3359 c.setState(c.rwc, StateNew, runHooks) // before Serve can return 3360 go c.serve(connCtx) 3361 } 3362 } 3363 3364 // ServeTLS accepts incoming connections on the Listener l, creating a 3365 // new service goroutine for each. The service goroutines perform TLS 3366 // setup and then read requests, calling srv.Handler to reply to them. 3367 // 3368 // Files containing a certificate and matching private key for the 3369 // server must be provided if neither the [Server]'s 3370 // TLSConfig.Certificates, TLSConfig.GetCertificate nor 3371 // config.GetConfigForClient are populated. 3372 // If the certificate is signed by a certificate authority, the 3373 // certFile should be the concatenation of the server's certificate, 3374 // any intermediates, and the CA's certificate. 3375 // 3376 // ServeTLS always returns a non-nil error. After [Server.Shutdown] or [Server.Close], the 3377 // returned error is [ErrServerClosed]. 3378 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error { 3379 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 3380 // before we clone it and create the TLS Listener. 3381 if err := srv.setupHTTP2_ServeTLS(); err != nil { 3382 return err 3383 } 3384 3385 config := cloneTLSConfig(srv.TLSConfig) 3386 if !slices.Contains(config.NextProtos, "http/1.1") { 3387 config.NextProtos = append(config.NextProtos, "http/1.1") 3388 } 3389 3390 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil || config.GetConfigForClient != nil 3391 if !configHasCert || certFile != "" || keyFile != "" { 3392 var err error 3393 config.Certificates = make([]tls.Certificate, 1) 3394 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 3395 if err != nil { 3396 return err 3397 } 3398 } 3399 3400 tlsListener := tls.NewListener(l, config) 3401 return srv.Serve(tlsListener) 3402 } 3403 3404 // trackListener adds or removes a net.Listener to the set of tracked 3405 // listeners. 3406 // 3407 // We store a pointer to interface in the map set, in case the 3408 // net.Listener is not comparable. This is safe because we only call 3409 // trackListener via Serve and can track+defer untrack the same 3410 // pointer to local variable there. We never need to compare a 3411 // Listener from another caller. 3412 // 3413 // It reports whether the server is still up (not Shutdown or Closed). 3414 func (s *Server) trackListener(ln *net.Listener, add bool) bool { 3415 s.mu.Lock() 3416 defer s.mu.Unlock() 3417 if s.listeners == nil { 3418 s.listeners = make(map[*net.Listener]struct{}) 3419 } 3420 if add { 3421 if s.shuttingDown() { 3422 return false 3423 } 3424 s.listeners[ln] = struct{}{} 3425 s.listenerGroup.Add(1) 3426 } else { 3427 delete(s.listeners, ln) 3428 s.listenerGroup.Done() 3429 } 3430 return true 3431 } 3432 3433 func (s *Server) trackConn(c *conn, add bool) { 3434 s.mu.Lock() 3435 defer s.mu.Unlock() 3436 if s.activeConn == nil { 3437 s.activeConn = make(map[*conn]struct{}) 3438 } 3439 if add { 3440 s.activeConn[c] = struct{}{} 3441 } else { 3442 delete(s.activeConn, c) 3443 } 3444 } 3445 3446 func (s *Server) idleTimeout() time.Duration { 3447 if s.IdleTimeout != 0 { 3448 return s.IdleTimeout 3449 } 3450 return s.ReadTimeout 3451 } 3452 3453 func (s *Server) readHeaderTimeout() time.Duration { 3454 if s.ReadHeaderTimeout != 0 { 3455 return s.ReadHeaderTimeout 3456 } 3457 return s.ReadTimeout 3458 } 3459 3460 func (s *Server) doKeepAlives() bool { 3461 return !s.disableKeepAlives.Load() && !s.shuttingDown() 3462 } 3463 3464 func (s *Server) shuttingDown() bool { 3465 return s.inShutdown.Load() 3466 } 3467 3468 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 3469 // By default, keep-alives are always enabled. Only very 3470 // resource-constrained environments or servers in the process of 3471 // shutting down should disable them. 3472 func (srv *Server) SetKeepAlivesEnabled(v bool) { 3473 if v { 3474 srv.disableKeepAlives.Store(false) 3475 return 3476 } 3477 srv.disableKeepAlives.Store(true) 3478 3479 // Close idle HTTP/1 conns: 3480 srv.closeIdleConns() 3481 3482 // TODO: Issue 26303: close HTTP/2 conns as soon as they become idle. 3483 } 3484 3485 func (s *Server) logf(format string, args ...any) { 3486 if s.ErrorLog != nil { 3487 s.ErrorLog.Printf(format, args...) 3488 } else { 3489 log.Printf(format, args...) 3490 } 3491 } 3492 3493 // logf prints to the ErrorLog of the *Server associated with request r 3494 // via ServerContextKey. If there's no associated server, or if ErrorLog 3495 // is nil, logging is done via the log package's standard logger. 3496 func logf(r *Request, format string, args ...any) { 3497 s, _ := r.Context().Value(ServerContextKey).(*Server) 3498 if s != nil && s.ErrorLog != nil { 3499 s.ErrorLog.Printf(format, args...) 3500 } else { 3501 log.Printf(format, args...) 3502 } 3503 } 3504 3505 // ListenAndServe listens on the TCP network address addr and then calls 3506 // [Serve] with handler to handle requests on incoming connections. 3507 // Accepted connections are configured to enable TCP keep-alives. 3508 // 3509 // The handler is typically nil, in which case [DefaultServeMux] is used. 3510 // 3511 // ListenAndServe always returns a non-nil error. 3512 func ListenAndServe(addr string, handler Handler) error { 3513 server := &Server{Addr: addr, Handler: handler} 3514 return server.ListenAndServe() 3515 } 3516 3517 // ListenAndServeTLS acts identically to [ListenAndServe], except that it 3518 // expects HTTPS connections. Additionally, files containing a certificate and 3519 // matching private key for the server must be provided. If the certificate 3520 // is signed by a certificate authority, the certFile should be the concatenation 3521 // of the server's certificate, any intermediates, and the CA's certificate. 3522 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 3523 server := &Server{Addr: addr, Handler: handler} 3524 return server.ListenAndServeTLS(certFile, keyFile) 3525 } 3526 3527 // ListenAndServeTLS listens on the TCP network address srv.Addr and 3528 // then calls [ServeTLS] to handle requests on incoming TLS connections. 3529 // Accepted connections are configured to enable TCP keep-alives. 3530 // 3531 // Filenames containing a certificate and matching private key for the 3532 // server must be provided if neither the [Server]'s TLSConfig.Certificates 3533 // nor TLSConfig.GetCertificate are populated. If the certificate is 3534 // signed by a certificate authority, the certFile should be the 3535 // concatenation of the server's certificate, any intermediates, and 3536 // the CA's certificate. 3537 // 3538 // If srv.Addr is blank, ":https" is used. 3539 // 3540 // ListenAndServeTLS always returns a non-nil error. After [Server.Shutdown] or 3541 // [Server.Close], the returned error is [ErrServerClosed]. 3542 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 3543 if srv.shuttingDown() { 3544 return ErrServerClosed 3545 } 3546 addr := srv.Addr 3547 if addr == "" { 3548 addr = ":https" 3549 } 3550 3551 ln, err := net.Listen("tcp", addr) 3552 if err != nil { 3553 return err 3554 } 3555 3556 defer ln.Close() 3557 3558 return srv.ServeTLS(ln, certFile, keyFile) 3559 } 3560 3561 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on 3562 // srv and reports whether there was an error setting it up. If it is 3563 // not configured for policy reasons, nil is returned. 3564 func (srv *Server) setupHTTP2_ServeTLS() error { 3565 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 3566 return srv.nextProtoErr 3567 } 3568 3569 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 3570 // configures HTTP/2 on srv using a more conservative policy than 3571 // setupHTTP2_ServeTLS because Serve is called after tls.Listen, 3572 // and may be called concurrently. See shouldConfigureHTTP2ForServe. 3573 // 3574 // The tests named TestTransportAutomaticHTTP2* and 3575 // TestConcurrentServerServe in server_test.go demonstrate some 3576 // of the supported use cases and motivations. 3577 func (srv *Server) setupHTTP2_Serve() error { 3578 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 3579 return srv.nextProtoErr 3580 } 3581 3582 func (srv *Server) onceSetNextProtoDefaults_Serve() { 3583 if srv.shouldConfigureHTTP2ForServe() { 3584 srv.onceSetNextProtoDefaults() 3585 } 3586 } 3587 3588 var http2server = godebug.New("http2server") 3589 3590 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 3591 // configured otherwise. (by setting srv.TLSNextProto non-nil) 3592 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 3593 func (srv *Server) onceSetNextProtoDefaults() { 3594 if omitBundledHTTP2 { 3595 return 3596 } 3597 if http2server.Value() == "0" { 3598 http2server.IncNonDefault() 3599 return 3600 } 3601 // Enable HTTP/2 by default if the user hasn't otherwise 3602 // configured their TLSNextProto map. 3603 if srv.TLSNextProto == nil { 3604 conf := &http2Server{} 3605 srv.nextProtoErr = http2ConfigureServer(srv, conf) 3606 } 3607 } 3608 3609 // TimeoutHandler returns a [Handler] that runs h with the given time limit. 3610 // 3611 // The new Handler calls h.ServeHTTP to handle each request, but if a 3612 // call runs for longer than its time limit, the handler responds with 3613 // a 503 Service Unavailable error and the given message in its body. 3614 // (If msg is empty, a suitable default message will be sent.) 3615 // After such a timeout, writes by h to its [ResponseWriter] will return 3616 // [ErrHandlerTimeout]. 3617 // 3618 // TimeoutHandler supports the [Pusher] interface but does not support 3619 // the [Hijacker] or [Flusher] interfaces. 3620 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 3621 return &timeoutHandler{ 3622 handler: h, 3623 body: msg, 3624 dt: dt, 3625 } 3626 } 3627 3628 // ErrHandlerTimeout is returned on [ResponseWriter] Write calls 3629 // in handlers which have timed out. 3630 var ErrHandlerTimeout = errors.New("http: Handler timeout") 3631 3632 type timeoutHandler struct { 3633 handler Handler 3634 body string 3635 dt time.Duration 3636 3637 // When set, no context will be created and this context will 3638 // be used instead. 3639 testContext context.Context 3640 } 3641 3642 func (h *timeoutHandler) errorBody() string { 3643 if h.body != "" { 3644 return h.body 3645 } 3646 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 3647 } 3648 3649 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 3650 ctx := h.testContext 3651 if ctx == nil { 3652 var cancelCtx context.CancelFunc 3653 ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) 3654 defer cancelCtx() 3655 } 3656 r = r.WithContext(ctx) 3657 done := make(chan struct{}) 3658 tw := &timeoutWriter{ 3659 w: w, 3660 h: make(Header), 3661 req: r, 3662 } 3663 panicChan := make(chan any, 1) 3664 go func() { 3665 defer func() { 3666 if p := recover(); p != nil { 3667 panicChan <- p 3668 } 3669 }() 3670 h.handler.ServeHTTP(tw, r) 3671 close(done) 3672 }() 3673 select { 3674 case p := <-panicChan: 3675 panic(p) 3676 case <-done: 3677 tw.mu.Lock() 3678 defer tw.mu.Unlock() 3679 dst := w.Header() 3680 for k, vv := range tw.h { 3681 dst[k] = vv 3682 } 3683 if !tw.wroteHeader { 3684 tw.code = StatusOK 3685 } 3686 w.WriteHeader(tw.code) 3687 w.Write(tw.wbuf.Bytes()) 3688 case <-ctx.Done(): 3689 tw.mu.Lock() 3690 defer tw.mu.Unlock() 3691 switch err := ctx.Err(); err { 3692 case context.DeadlineExceeded: 3693 w.WriteHeader(StatusServiceUnavailable) 3694 io.WriteString(w, h.errorBody()) 3695 tw.err = ErrHandlerTimeout 3696 default: 3697 w.WriteHeader(StatusServiceUnavailable) 3698 tw.err = err 3699 } 3700 } 3701 } 3702 3703 type timeoutWriter struct { 3704 w ResponseWriter 3705 h Header 3706 wbuf bytes.Buffer 3707 req *Request 3708 3709 mu sync.Mutex 3710 err error 3711 wroteHeader bool 3712 code int 3713 } 3714 3715 var _ Pusher = (*timeoutWriter)(nil) 3716 3717 // Push implements the [Pusher] interface. 3718 func (tw *timeoutWriter) Push(target string, opts *PushOptions) error { 3719 if pusher, ok := tw.w.(Pusher); ok { 3720 return pusher.Push(target, opts) 3721 } 3722 return ErrNotSupported 3723 } 3724 3725 func (tw *timeoutWriter) Header() Header { return tw.h } 3726 3727 func (tw *timeoutWriter) Write(p []byte) (int, error) { 3728 tw.mu.Lock() 3729 defer tw.mu.Unlock() 3730 if tw.err != nil { 3731 return 0, tw.err 3732 } 3733 if !tw.wroteHeader { 3734 tw.writeHeaderLocked(StatusOK) 3735 } 3736 return tw.wbuf.Write(p) 3737 } 3738 3739 func (tw *timeoutWriter) writeHeaderLocked(code int) { 3740 checkWriteHeaderCode(code) 3741 3742 switch { 3743 case tw.err != nil: 3744 return 3745 case tw.wroteHeader: 3746 if tw.req != nil { 3747 caller := relevantCaller() 3748 logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 3749 } 3750 default: 3751 tw.wroteHeader = true 3752 tw.code = code 3753 } 3754 } 3755 3756 func (tw *timeoutWriter) WriteHeader(code int) { 3757 tw.mu.Lock() 3758 defer tw.mu.Unlock() 3759 tw.writeHeaderLocked(code) 3760 } 3761 3762 // onceCloseListener wraps a net.Listener, protecting it from 3763 // multiple Close calls. 3764 type onceCloseListener struct { 3765 net.Listener 3766 once sync.Once 3767 closeErr error 3768 } 3769 3770 func (oc *onceCloseListener) Close() error { 3771 oc.once.Do(oc.close) 3772 return oc.closeErr 3773 } 3774 3775 func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() } 3776 3777 // globalOptionsHandler responds to "OPTIONS *" requests. 3778 type globalOptionsHandler struct{} 3779 3780 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 3781 w.Header().Set("Content-Length", "0") 3782 if r.ContentLength != 0 { 3783 // Read up to 4KB of OPTIONS body (as mentioned in the 3784 // spec as being reserved for future use), but anything 3785 // over that is considered a waste of server resources 3786 // (or an attack) and we abort and close the connection, 3787 // courtesy of MaxBytesReader's EOF behavior. 3788 mb := MaxBytesReader(w, r.Body, 4<<10) 3789 io.Copy(io.Discard, mb) 3790 } 3791 } 3792 3793 // initALPNRequest is an HTTP handler that initializes certain 3794 // uninitialized fields in its *Request. Such partially-initialized 3795 // Requests come from ALPN protocol handlers. 3796 type initALPNRequest struct { 3797 ctx context.Context 3798 c *tls.Conn 3799 h serverHandler 3800 } 3801 3802 // BaseContext is an exported but unadvertised [http.Handler] method 3803 // recognized by x/net/http2 to pass down a context; the TLSNextProto 3804 // API predates context support so we shoehorn through the only 3805 // interface we have available. 3806 func (h initALPNRequest) BaseContext() context.Context { return h.ctx } 3807 3808 func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 3809 if req.TLS == nil { 3810 req.TLS = &tls.ConnectionState{} 3811 *req.TLS = h.c.ConnectionState() 3812 } 3813 if req.Body == nil { 3814 req.Body = NoBody 3815 } 3816 if req.RemoteAddr == "" { 3817 req.RemoteAddr = h.c.RemoteAddr().String() 3818 } 3819 h.h.ServeHTTP(rw, req) 3820 } 3821 3822 // loggingConn is used for debugging. 3823 type loggingConn struct { 3824 name string 3825 net.Conn 3826 } 3827 3828 var ( 3829 uniqNameMu sync.Mutex 3830 uniqNameNext = make(map[string]int) 3831 ) 3832 3833 func newLoggingConn(baseName string, c net.Conn) net.Conn { 3834 uniqNameMu.Lock() 3835 defer uniqNameMu.Unlock() 3836 uniqNameNext[baseName]++ 3837 return &loggingConn{ 3838 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 3839 Conn: c, 3840 } 3841 } 3842 3843 func (c *loggingConn) Write(p []byte) (n int, err error) { 3844 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 3845 n, err = c.Conn.Write(p) 3846 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 3847 return 3848 } 3849 3850 func (c *loggingConn) Read(p []byte) (n int, err error) { 3851 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 3852 n, err = c.Conn.Read(p) 3853 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 3854 return 3855 } 3856 3857 func (c *loggingConn) Close() (err error) { 3858 log.Printf("%s.Close() = ...", c.name) 3859 err = c.Conn.Close() 3860 log.Printf("%s.Close() = %v", c.name, err) 3861 return 3862 } 3863 3864 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 3865 // It only contains one field (and a pointer field at that), so it 3866 // fits in an interface value without an extra allocation. 3867 type checkConnErrorWriter struct { 3868 c *conn 3869 } 3870 3871 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 3872 n, err = w.c.rwc.Write(p) 3873 if err != nil && w.c.werr == nil { 3874 w.c.werr = err 3875 w.c.cancelCtx() 3876 } 3877 return 3878 } 3879 3880 func numLeadingCRorLF(v []byte) (n int) { 3881 for _, b := range v { 3882 if b == '\r' || b == '\n' { 3883 n++ 3884 continue 3885 } 3886 break 3887 } 3888 return 3889 } 3890 3891 // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header 3892 // looks like it might've been a misdirected plaintext HTTP request. 3893 func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool { 3894 switch string(hdr[:]) { 3895 case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO": 3896 return true 3897 } 3898 return false 3899 } 3900 3901 // MaxBytesHandler returns a [Handler] that runs h with its [ResponseWriter] and [Request.Body] wrapped by a MaxBytesReader. 3902 func MaxBytesHandler(h Handler, n int64) Handler { 3903 return HandlerFunc(func(w ResponseWriter, r *Request) { 3904 r2 := *r 3905 r2.Body = MaxBytesReader(w, r.Body, n) 3906 h.ServeHTTP(w, &r2) 3907 }) 3908 } 3909