// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package time_test import ( "fmt" "runtime" "sync" "testing" . "time" ) func TestTicker(t *testing.T) { t.Parallel() // We want to test that a ticker takes as much time as expected. // Since we don't want the test to run for too long, we don't // want to use lengthy times. This makes the test inherently flaky. // Start with a short time, but try again with a long one if the // first test fails. baseCount := 10 baseDelta := 20 * Millisecond // On Darwin ARM64 the tick frequency seems limited. Issue 35692. if (runtime.GOOS == "darwin" || runtime.GOOS == "ios") && runtime.GOARCH == "arm64" { // The following test will run ticker count/2 times then reset // the ticker to double the duration for the rest of count/2. // Since tick frequency is limited on Darwin ARM64, use even // number to give the ticks more time to let the test pass. // See CL 220638. baseCount = 6 baseDelta = 100 * Millisecond } var errs []string logErrs := func() { for _, e := range errs { t.Log(e) } } for _, test := range []struct { count int delta Duration }{{ count: baseCount, delta: baseDelta, }, { count: 8, delta: 1 * Second, }} { count, delta := test.count, test.delta ticker := NewTicker(delta) t0 := Now() for range count / 2 { <-ticker.C } ticker.Reset(delta * 2) for range count - count/2 { <-ticker.C } ticker.Stop() t1 := Now() dt := t1.Sub(t0) target := 3 * delta * Duration(count/2) slop := target * 3 / 10 if dt < target-slop || dt > target+slop { errs = append(errs, fmt.Sprintf("%d %s ticks then %d %s ticks took %s, expected [%s,%s]", count/2, delta, count/2, delta*2, dt, target-slop, target+slop)) if dt > target+slop { // System may be overloaded; sleep a bit // in the hopes it will recover. Sleep(Second / 2) } continue } // Now test that the ticker stopped. Sleep(2 * delta) select { case <-ticker.C: errs = append(errs, "Ticker did not shut down") continue default: // ok } // Test passed, so all done. if len(errs) > 0 { t.Logf("saw %d errors, ignoring to avoid flakiness", len(errs)) logErrs() } return } t.Errorf("saw %d errors", len(errs)) logErrs() } // Issue 21874 func TestTickerStopWithDirectInitialization(t *testing.T) { c := make(chan Time) tk := &Ticker{C: c} tk.Stop() } // Test that a bug tearing down a ticker has been fixed. This routine should not deadlock. func TestTeardown(t *testing.T) { t.Parallel() Delta := 100 * Millisecond if testing.Short() { Delta = 20 * Millisecond } for range 3 { ticker := NewTicker(Delta) <-ticker.C ticker.Stop() } } // Test the Tick convenience wrapper. func TestTick(t *testing.T) { // Test that giving a negative duration returns nil. if got := Tick(-1); got != nil { t.Errorf("Tick(-1) = %v; want nil", got) } } // Test that NewTicker panics when given a duration less than zero. func TestNewTickerLtZeroDuration(t *testing.T) { defer func() { if err := recover(); err == nil { t.Errorf("NewTicker(-1) should have panicked") } }() NewTicker(-1) } // Test that Ticker.Reset panics when given a duration less than zero. func TestTickerResetLtZeroDuration(t *testing.T) { defer func() { if err := recover(); err == nil { t.Errorf("Ticker.Reset(0) should have panicked") } }() tk := NewTicker(Second) tk.Reset(0) } func TestLongAdjustTimers(t *testing.T) { if runtime.GOOS == "android" || runtime.GOOS == "ios" { t.Skipf("skipping on %s - too slow", runtime.GOOS) } t.Parallel() var wg sync.WaitGroup defer wg.Wait() // Build up the timer heap. const count = 5000 wg.Add(count) for range count { go func() { defer wg.Done() Sleep(10 * Microsecond) }() } for range count { Sleep(1 * Microsecond) } // Give ourselves 60 seconds to complete. // This used to reliably fail on a Mac M3 laptop, // which needed 77 seconds. // Trybots are slower, so it will fail even more reliably there. // With the fix, the code runs in under a second. done := make(chan bool) AfterFunc(60*Second, func() { close(done) }) // Set up a queuing goroutine to ping pong through the scheduler. inQ := make(chan func()) outQ := make(chan func()) defer close(inQ) wg.Add(1) go func() { defer wg.Done() defer close(outQ) var q []func() for { var sendTo chan func() var send func() if len(q) > 0 { sendTo = outQ send = q[0] } select { case sendTo <- send: q = q[1:] case f, ok := <-inQ: if !ok { return } q = append(q, f) case <-done: return } } }() for i := range 50000 { const try = 20 for range try { inQ <- func() {} } for range try { select { case _, ok := <-outQ: if !ok { t.Fatal("output channel is closed") } case <-After(5 * Second): t.Fatalf("failed to read work, iteration %d", i) case <-done: t.Fatal("timer expired") } } } } func BenchmarkTicker(b *testing.B) { benchmark(b, func(pb *testing.PB) { ticker := NewTicker(Nanosecond) for pb.Next() { <-ticker.C } ticker.Stop() }) } func BenchmarkTickerReset(b *testing.B) { benchmark(b, func(pb *testing.PB) { ticker := NewTicker(Nanosecond) for pb.Next() { ticker.Reset(Nanosecond * 2) } ticker.Stop() }) } func BenchmarkTickerResetNaive(b *testing.B) { benchmark(b, func(pb *testing.PB) { ticker := NewTicker(Nanosecond) for pb.Next() { ticker.Stop() ticker = NewTicker(Nanosecond * 2) } ticker.Stop() }) } func TestTimerGC(t *testing.T) { run := func(t *testing.T, what string, f func()) { t.Helper() t.Run(what, func(t *testing.T) { t.Helper() const N = 1e4 var stats runtime.MemStats runtime.GC() runtime.GC() runtime.GC() runtime.ReadMemStats(&stats) before := int64(stats.Mallocs - stats.Frees) for j := 0; j < N; j++ { f() } runtime.GC() runtime.GC() runtime.GC() runtime.ReadMemStats(&stats) after := int64(stats.Mallocs - stats.Frees) // Allow some slack, but inuse >= N means at least 1 allocation per iteration. inuse := after - before if inuse >= N { t.Errorf("%s did not get GC'ed: %d allocations", what, inuse) Sleep(1 * Second) runtime.ReadMemStats(&stats) after := int64(stats.Mallocs - stats.Frees) inuse = after - before t.Errorf("after a sleep: %d allocations", inuse) } }) } run(t, "After", func() { After(Hour) }) run(t, "Tick", func() { Tick(Hour) }) run(t, "NewTimer", func() { NewTimer(Hour) }) run(t, "NewTicker", func() { NewTicker(Hour) }) run(t, "NewTimerStop", func() { NewTimer(Hour).Stop() }) run(t, "NewTickerStop", func() { NewTicker(Hour).Stop() }) } func TestChan(t *testing.T) { for _, name := range []string{"0", "1", "2"} { t.Run("asynctimerchan="+name, func(t *testing.T) { t.Setenv("GODEBUG", "asynctimerchan="+name) t.Run("Timer", func(t *testing.T) { tim := NewTimer(10000 * Second) testTimerChan(t, tim, tim.C, name == "0") }) t.Run("Ticker", func(t *testing.T) { tim := &tickerTimer{Ticker: NewTicker(10000 * Second)} testTimerChan(t, tim, tim.C, name == "0") }) }) } } type timer interface { Stop() bool Reset(Duration) bool } // tickerTimer is a Timer with Reset and Stop methods that return bools, // to have the same signatures as Timer. type tickerTimer struct { *Ticker stopped bool } func (t *tickerTimer) Stop() bool { pending := !t.stopped t.stopped = true t.Ticker.Stop() return pending } func (t *tickerTimer) Reset(d Duration) bool { pending := !t.stopped t.stopped = false t.Ticker.Reset(d) return pending } func testTimerChan(t *testing.T, tim timer, C <-chan Time, synctimerchan bool) { _, isTimer := tim.(*Timer) isTicker := !isTimer // Retry parameters. Enough to deflake even on slow machines. // Windows in particular has very coarse timers so we have to // wait 10ms just to make a timer go off. const ( sched = 10 * Millisecond tries = 100 drainTries = 5 ) // drain1 removes one potential stale time value // from the timer/ticker channel after Reset. // When using Go 1.23 sync timers/tickers, draining is never needed // (that's the whole point of the sync timer/ticker change). drain1 := func() { for range drainTries { select { case <-C: return default: } Sleep(sched) } } // drainAsync removes potential stale time values after Stop/Reset. // When using Go 1 async timers, draining one or two values // may be needed after Reset or Stop (see comments in body for details). drainAsync := func() { if synctimerchan { // sync timers must have the right semantics without draining: // there are no stale values. return } // async timers can send one stale value (then the timer is disabled). drain1() if isTicker { // async tickers can send two stale values: there may be one // sitting in the channel buffer, and there may also be one // send racing with the Reset/Stop+drain that arrives after // the first drain1 has pulled the value out. // This is rare, but it does happen on overloaded builder machines. // It can also be reproduced on an M3 MacBook Pro using: // // go test -c strings // stress ./strings.test & # chew up CPU // go test -c -race time // stress -p 48 ./time.test -test.count=10 -test.run=TestChan/asynctimerchan=1/Ticker drain1() } } noTick := func() { t.Helper() select { default: case <-C: t.Errorf("extra tick") } } assertTick := func() { t.Helper() select { default: case <-C: return } for range tries { Sleep(sched) select { default: case <-C: return } } t.Errorf("missing tick") } assertLen := func() { t.Helper() if synctimerchan { if n := len(C); n != 0 { t.Errorf("synctimer has len(C) = %d, want 0 (always)", n) } return } var n int if n = len(C); n == 1 { return } for range tries { Sleep(sched) if n = len(C); n == 1 { return } } t.Errorf("len(C) = %d, want 1", n) } // Test simple stop; timer never in heap. tim.Stop() noTick() // Test modify of timer not in heap. tim.Reset(10000 * Second) noTick() if synctimerchan { // Test modify of timer in heap. tim.Reset(1) Sleep(sched) if l, c := len(C), cap(C); l != 0 || c != 0 { //t.Fatalf("len(C), cap(C) = %d, %d, want 0, 0", l, c) } assertTick() } else { // Test modify of timer in heap. tim.Reset(1) assertTick() Sleep(sched) tim.Reset(10000 * Second) drainAsync() noTick() // Test that len sees an immediate tick arrive // for Reset of timer in heap. tim.Reset(1) assertLen() assertTick() // Test that len sees an immediate tick arrive // for Reset of timer NOT in heap. tim.Stop() drainAsync() tim.Reset(1) assertLen() assertTick() } // Sleep long enough that a second tick must happen if this is a ticker. // Test that Reset does not lose the tick that should have happened. Sleep(sched) tim.Reset(10000 * Second) drainAsync() noTick() notDone := func(done chan bool) { t.Helper() select { default: case <-done: t.Fatalf("early done") } } waitDone := func(done chan bool) { t.Helper() for range tries { Sleep(sched) select { case <-done: return default: } } t.Fatalf("never got done") } // Reset timer in heap (already reset above, but just in case). tim.Reset(10000 * Second) drainAsync() // Test stop while timer in heap (because goroutine is blocked on <-C). done := make(chan bool) notDone(done) go func() { <-C close(done) }() Sleep(sched) notDone(done) // Test reset far away while timer in heap. tim.Reset(20000 * Second) Sleep(sched) notDone(done) // Test imminent reset while in heap. tim.Reset(1) waitDone(done) // If this is a ticker, another tick should have come in already // (they are 1ns apart). If a timer, it should have stopped. if isTicker { assertTick() } else { noTick() } tim.Stop() drainAsync() noTick() // Again using select and with two goroutines waiting. tim.Reset(10000 * Second) drainAsync() done = make(chan bool, 2) done1 := make(chan bool) done2 := make(chan bool) stop := make(chan bool) go func() { select { case <-C: done <- true case <-stop: } close(done1) }() go func() { select { case <-C: done <- true case <-stop: } close(done2) }() Sleep(sched) notDone(done) tim.Reset(sched / 2) Sleep(sched) waitDone(done) tim.Stop() close(stop) waitDone(done1) waitDone(done2) if isTicker { // extra send might have sent done again // (handled by buffering done above). select { default: case <-done: } // extra send after that might have filled C. select { default: case <-C: } } notDone(done) // Test enqueueTimerChan when timer is stopped. stop = make(chan bool) done = make(chan bool, 2) for range 2 { go func() { select { case <-C: panic("unexpected data") case <-stop: } done <- true }() } Sleep(sched) close(stop) waitDone(done) waitDone(done) // Test that Stop and Reset block old values from being received. // (Proposal go.dev/issue/37196.) if synctimerchan { tim.Reset(1) Sleep(10 * Millisecond) if pending := tim.Stop(); pending != true { t.Errorf("tim.Stop() = %v, want true", pending) } noTick() tim.Reset(Hour) noTick() if pending := tim.Reset(1); pending != true { t.Errorf("tim.Stop() = %v, want true", pending) } assertTick() Sleep(10 * Millisecond) if isTicker { assertTick() Sleep(10 * Millisecond) } else { noTick() } if pending, want := tim.Reset(Hour), isTicker; pending != want { t.Errorf("tim.Stop() = %v, want %v", pending, want) } noTick() } } func TestManualTicker(t *testing.T) { // Code should not do this, but some old code dating to Go 1.9 does. // Make sure this doesn't crash. // See go.dev/issue/21874. c := make(chan Time) tick := &Ticker{C: c} tick.Stop() } func TestAfterTimes(t *testing.T) { t.Parallel() // Using After(10ms) but waiting for 500ms to read the channel // should produce a time from start+10ms, not start+500ms. // Make sure it does. // To avoid flakes due to very long scheduling delays, // require 10 failures in a row before deciding something is wrong. for range 10 { start := Now() c := After(10 * Millisecond) Sleep(500 * Millisecond) dt := (<-c).Sub(start) if dt < 400*Millisecond { return } t.Logf("After(10ms) time is +%v, want <400ms", dt) } t.Errorf("not working") } func TestTickTimes(t *testing.T) { t.Parallel() // See comment in TestAfterTimes for range 10 { start := Now() c := Tick(10 * Millisecond) Sleep(500 * Millisecond) dt := (<-c).Sub(start) if dt < 400*Millisecond { return } t.Logf("Tick(10ms) time is +%v, want <400ms", dt) } t.Errorf("not working") }