// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflectdata import ( "encoding/binary" "fmt" "internal/abi" "internal/buildcfg" "os" "slices" "sort" "strings" "sync" "cmd/compile/internal/base" "cmd/compile/internal/bitvec" "cmd/compile/internal/compare" "cmd/compile/internal/ir" "cmd/compile/internal/objw" "cmd/compile/internal/rttype" "cmd/compile/internal/staticdata" "cmd/compile/internal/typebits" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/gcprog" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/src" ) type ptabEntry struct { s *types.Sym t *types.Type } // runtime interface and reflection data structures var ( // protects signatset and signatslice signatmu sync.Mutex // Tracking which types need runtime type descriptor signatset = make(map[*types.Type]struct{}) // Queue of types wait to be generated runtime type descriptor signatslice []typeAndStr gcsymmu sync.Mutex // protects gcsymset and gcsymslice gcsymset = make(map[*types.Type]struct{}) ) type typeSig struct { name *types.Sym isym *obj.LSym tsym *obj.LSym type_ *types.Type mtype *types.Type } func commonSize() int { return int(rttype.Type.Size()) } // Sizeof(runtime._type{}) func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{}) if t.Sym() == nil && len(methods(t)) == 0 { return 0 } return int(rttype.UncommonType.Size()) } func makefield(name string, t *types.Type) *types.Field { sym := (*types.Pkg)(nil).Lookup(name) return types.NewField(src.NoXPos, sym, t) } // methods returns the methods of the non-interface type t, sorted by name. // Generates stub functions as needed. func methods(t *types.Type) []*typeSig { if t.HasShape() { // Shape types have no methods. return nil } // method type mt := types.ReceiverBaseType(t) if mt == nil { return nil } typecheck.CalcMethods(mt) // make list of methods for t, // generating code if necessary. var ms []*typeSig for _, f := range mt.AllMethods() { if f.Sym == nil { base.Fatalf("method with no sym on %v", mt) } if !f.IsMethod() { base.Fatalf("non-method on %v method %v %v", mt, f.Sym, f) } if f.Type.Recv() == nil { base.Fatalf("receiver with no type on %v method %v %v", mt, f.Sym, f) } if f.Nointerface() && !t.IsFullyInstantiated() { // Skip creating method wrappers if f is nointerface. But, if // t is an instantiated type, we still have to call // methodWrapper, because methodWrapper generates the actual // generic method on the type as well. continue } // get receiver type for this particular method. // if pointer receiver but non-pointer t and // this is not an embedded pointer inside a struct, // method does not apply. if !types.IsMethodApplicable(t, f) { continue } sig := &typeSig{ name: f.Sym, isym: methodWrapper(t, f, true), tsym: methodWrapper(t, f, false), type_: typecheck.NewMethodType(f.Type, t), mtype: typecheck.NewMethodType(f.Type, nil), } if f.Nointerface() { // In the case of a nointerface method on an instantiated // type, don't actually append the typeSig. continue } ms = append(ms, sig) } return ms } // imethods returns the methods of the interface type t, sorted by name. func imethods(t *types.Type) []*typeSig { var methods []*typeSig for _, f := range t.AllMethods() { if f.Type.Kind() != types.TFUNC || f.Sym == nil { continue } if f.Sym.IsBlank() { base.Fatalf("unexpected blank symbol in interface method set") } if n := len(methods); n > 0 { last := methods[n-1] if !last.name.Less(f.Sym) { base.Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym) } } sig := &typeSig{ name: f.Sym, mtype: f.Type, type_: typecheck.NewMethodType(f.Type, nil), } methods = append(methods, sig) // NOTE(rsc): Perhaps an oversight that // IfaceType.Method is not in the reflect data. // Generate the method body, so that compiled // code can refer to it. methodWrapper(t, f, false) } return methods } func dimportpath(p *types.Pkg) { if p.Pathsym != nil { return } if p == types.LocalPkg && base.Ctxt.Pkgpath == "" { panic("missing pkgpath") } // If we are compiling the runtime package, there are two runtime packages around // -- localpkg and Pkgs.Runtime. We don't want to produce import path symbols for // both of them, so just produce one for localpkg. if base.Ctxt.Pkgpath == "runtime" && p == ir.Pkgs.Runtime { return } s := base.Ctxt.Lookup("type:.importpath." + p.Prefix + ".") ot := dnameData(s, 0, p.Path, "", nil, false, false) objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA) s.Set(obj.AttrContentAddressable, true) p.Pathsym = s } func dgopkgpath(c rttype.Cursor, pkg *types.Pkg) { c = c.Field("Bytes") if pkg == nil { c.WritePtr(nil) return } dimportpath(pkg) c.WritePtr(pkg.Pathsym) } // dgopkgpathOff writes an offset relocation to the pkg path symbol to c. func dgopkgpathOff(c rttype.Cursor, pkg *types.Pkg) { if pkg == nil { c.WriteInt32(0) return } dimportpath(pkg) c.WriteSymPtrOff(pkg.Pathsym, false) } // dnameField dumps a reflect.name for a struct field. func dnameField(c rttype.Cursor, spkg *types.Pkg, ft *types.Field) { if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg { base.Fatalf("package mismatch for %v", ft.Sym) } nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name), ft.Embedded != 0) c.Field("Bytes").WritePtr(nsym) } // dnameData writes the contents of a reflect.name into s at offset ot. func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported, embedded bool) int { if len(name) >= 1<<29 { base.Fatalf("name too long: %d %s...", len(name), name[:1024]) } if len(tag) >= 1<<29 { base.Fatalf("tag too long: %d %s...", len(tag), tag[:1024]) } var nameLen [binary.MaxVarintLen64]byte nameLenLen := binary.PutUvarint(nameLen[:], uint64(len(name))) var tagLen [binary.MaxVarintLen64]byte tagLenLen := binary.PutUvarint(tagLen[:], uint64(len(tag))) // Encode name and tag. See reflect/type.go for details. var bits byte l := 1 + nameLenLen + len(name) if exported { bits |= 1 << 0 } if len(tag) > 0 { l += tagLenLen + len(tag) bits |= 1 << 1 } if pkg != nil { bits |= 1 << 2 } if embedded { bits |= 1 << 3 } b := make([]byte, l) b[0] = bits copy(b[1:], nameLen[:nameLenLen]) copy(b[1+nameLenLen:], name) if len(tag) > 0 { tb := b[1+nameLenLen+len(name):] copy(tb, tagLen[:tagLenLen]) copy(tb[tagLenLen:], tag) } ot = int(s.WriteBytes(base.Ctxt, int64(ot), b)) if pkg != nil { c := rttype.NewCursor(s, int64(ot), types.Types[types.TUINT32]) dgopkgpathOff(c, pkg) ot += 4 } return ot } var dnameCount int // dname creates a reflect.name for a struct field or method. func dname(name, tag string, pkg *types.Pkg, exported, embedded bool) *obj.LSym { // Write out data as "type:." to signal two things to the // linker, first that when dynamically linking, the symbol // should be moved to a relro section, and second that the // contents should not be decoded as a type. sname := "type:.namedata." if pkg == nil { // In the common case, share data with other packages. if name == "" { if exported { sname += "-noname-exported." + tag } else { sname += "-noname-unexported." + tag } } else { if exported { sname += name + "." + tag } else { sname += name + "-" + tag } } } else { // TODO(mdempsky): We should be able to share these too (except // maybe when dynamic linking). sname = fmt.Sprintf("%s%s.%d", sname, types.LocalPkg.Prefix, dnameCount) dnameCount++ } if embedded { sname += ".embedded" } s := base.Ctxt.Lookup(sname) if len(s.P) > 0 { return s } ot := dnameData(s, 0, name, tag, pkg, exported, embedded) objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA) s.Set(obj.AttrContentAddressable, true) return s } // dextratype dumps the fields of a runtime.uncommontype. // dataAdd is the offset in bytes after the header where the // backing array of the []method field should be written. func dextratype(lsym *obj.LSym, off int64, t *types.Type, dataAdd int) { m := methods(t) if t.Sym() == nil && len(m) == 0 { base.Fatalf("extra requested of type with no extra info %v", t) } noff := types.RoundUp(off, int64(types.PtrSize)) if noff != off { base.Fatalf("unexpected alignment in dextratype for %v", t) } for _, a := range m { writeType(a.type_) } c := rttype.NewCursor(lsym, off, rttype.UncommonType) dgopkgpathOff(c.Field("PkgPath"), typePkg(t)) dataAdd += uncommonSize(t) mcount := len(m) if mcount != int(uint16(mcount)) { base.Fatalf("too many methods on %v: %d", t, mcount) } xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) }) if dataAdd != int(uint32(dataAdd)) { base.Fatalf("methods are too far away on %v: %d", t, dataAdd) } c.Field("Mcount").WriteUint16(uint16(mcount)) c.Field("Xcount").WriteUint16(uint16(xcount)) c.Field("Moff").WriteUint32(uint32(dataAdd)) // Note: there is an unused uint32 field here. // Write the backing array for the []method field. array := rttype.NewArrayCursor(lsym, off+int64(dataAdd), rttype.Method, mcount) for i, a := range m { exported := types.IsExported(a.name.Name) var pkg *types.Pkg if !exported && a.name.Pkg != typePkg(t) { pkg = a.name.Pkg } nsym := dname(a.name.Name, "", pkg, exported, false) e := array.Elem(i) e.Field("Name").WriteSymPtrOff(nsym, false) dmethodptrOff(e.Field("Mtyp"), writeType(a.mtype)) dmethodptrOff(e.Field("Ifn"), a.isym) dmethodptrOff(e.Field("Tfn"), a.tsym) } } func typePkg(t *types.Type) *types.Pkg { tsym := t.Sym() if tsym == nil { switch t.Kind() { case types.TARRAY, types.TSLICE, types.TPTR, types.TCHAN: if t.Elem() != nil { tsym = t.Elem().Sym() } } } if tsym != nil && tsym.Pkg != types.BuiltinPkg { return tsym.Pkg } return nil } func dmethodptrOff(c rttype.Cursor, x *obj.LSym) { c.WriteInt32(0) c.Reloc(obj.Reloc{Type: objabi.R_METHODOFF, Sym: x}) } var kinds = []abi.Kind{ types.TINT: abi.Int, types.TUINT: abi.Uint, types.TINT8: abi.Int8, types.TUINT8: abi.Uint8, types.TINT16: abi.Int16, types.TUINT16: abi.Uint16, types.TINT32: abi.Int32, types.TUINT32: abi.Uint32, types.TINT64: abi.Int64, types.TUINT64: abi.Uint64, types.TUINTPTR: abi.Uintptr, types.TFLOAT32: abi.Float32, types.TFLOAT64: abi.Float64, types.TBOOL: abi.Bool, types.TSTRING: abi.String, types.TPTR: abi.Pointer, types.TSTRUCT: abi.Struct, types.TINTER: abi.Interface, types.TCHAN: abi.Chan, types.TMAP: abi.Map, types.TARRAY: abi.Array, types.TSLICE: abi.Slice, types.TFUNC: abi.Func, types.TCOMPLEX64: abi.Complex64, types.TCOMPLEX128: abi.Complex128, types.TUNSAFEPTR: abi.UnsafePointer, } var ( memhashvarlen *obj.LSym memequalvarlen *obj.LSym ) // dcommontype dumps the contents of a reflect.rtype (runtime._type) to c. func dcommontype(c rttype.Cursor, t *types.Type) { types.CalcSize(t) eqfunc := geneq(t) sptrWeak := true var sptr *obj.LSym if !t.IsPtr() || t.IsPtrElem() { tptr := types.NewPtr(t) if t.Sym() != nil || methods(tptr) != nil { sptrWeak = false } sptr = writeType(tptr) } gcsym, useGCProg, ptrdata := dgcsym(t, true) delete(gcsymset, t) // ../../../../reflect/type.go:/^type.rtype // actual type structure // type rtype struct { // size uintptr // ptrdata uintptr // hash uint32 // tflag tflag // align uint8 // fieldAlign uint8 // kind uint8 // equal func(unsafe.Pointer, unsafe.Pointer) bool // gcdata *byte // str nameOff // ptrToThis typeOff // } c.Field("Size_").WriteUintptr(uint64(t.Size())) c.Field("PtrBytes").WriteUintptr(uint64(ptrdata)) c.Field("Hash").WriteUint32(types.TypeHash(t)) var tflag abi.TFlag if uncommonSize(t) != 0 { tflag |= abi.TFlagUncommon } if t.Sym() != nil && t.Sym().Name != "" { tflag |= abi.TFlagNamed } if compare.IsRegularMemory(t) { tflag |= abi.TFlagRegularMemory } exported := false p := t.NameString() // If we're writing out type T, // we are very likely to write out type *T as well. // Use the string "*T"[1:] for "T", so that the two // share storage. This is a cheap way to reduce the // amount of space taken up by reflect strings. if !strings.HasPrefix(p, "*") { p = "*" + p tflag |= abi.TFlagExtraStar if t.Sym() != nil { exported = types.IsExported(t.Sym().Name) } } else { if t.Elem() != nil && t.Elem().Sym() != nil { exported = types.IsExported(t.Elem().Sym().Name) } } if tflag != abi.TFlag(uint8(tflag)) { // this should optimize away completely panic("Unexpected change in size of abi.TFlag") } c.Field("TFlag").WriteUint8(uint8(tflag)) // runtime (and common sense) expects alignment to be a power of two. i := int(uint8(t.Alignment())) if i == 0 { i = 1 } if i&(i-1) != 0 { base.Fatalf("invalid alignment %d for %v", uint8(t.Alignment()), t) } c.Field("Align_").WriteUint8(uint8(t.Alignment())) c.Field("FieldAlign_").WriteUint8(uint8(t.Alignment())) kind := kinds[t.Kind()] if types.IsDirectIface(t) { kind |= abi.KindDirectIface } if useGCProg { kind |= abi.KindGCProg } c.Field("Kind_").WriteUint8(uint8(kind)) c.Field("Equal").WritePtr(eqfunc) c.Field("GCData").WritePtr(gcsym) nsym := dname(p, "", nil, exported, false) c.Field("Str").WriteSymPtrOff(nsym, false) c.Field("PtrToThis").WriteSymPtrOff(sptr, sptrWeak) } // TrackSym returns the symbol for tracking use of field/method f, assumed // to be a member of struct/interface type t. func TrackSym(t *types.Type, f *types.Field) *obj.LSym { return base.PkgLinksym("go:track", t.LinkString()+"."+f.Sym.Name, obj.ABI0) } func TypeSymPrefix(prefix string, t *types.Type) *types.Sym { p := prefix + "." + t.LinkString() s := types.TypeSymLookup(p) // This function is for looking up type-related generated functions // (e.g. eq and hash). Make sure they are indeed generated. signatmu.Lock() NeedRuntimeType(t) signatmu.Unlock() //print("algsym: %s -> %+S\n", p, s); return s } func TypeSym(t *types.Type) *types.Sym { if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() { base.Fatalf("TypeSym %v", t) } if t.Kind() == types.TFUNC && t.Recv() != nil { base.Fatalf("misuse of method type: %v", t) } s := types.TypeSym(t) signatmu.Lock() NeedRuntimeType(t) signatmu.Unlock() return s } func TypeLinksymPrefix(prefix string, t *types.Type) *obj.LSym { return TypeSymPrefix(prefix, t).Linksym() } func TypeLinksymLookup(name string) *obj.LSym { return types.TypeSymLookup(name).Linksym() } func TypeLinksym(t *types.Type) *obj.LSym { lsym := TypeSym(t).Linksym() signatmu.Lock() if lsym.Extra == nil { ti := lsym.NewTypeInfo() ti.Type = t } signatmu.Unlock() return lsym } // TypePtrAt returns an expression that evaluates to the // *runtime._type value for t. func TypePtrAt(pos src.XPos, t *types.Type) *ir.AddrExpr { return typecheck.LinksymAddr(pos, TypeLinksym(t), types.Types[types.TUINT8]) } // ITabLsym returns the LSym representing the itab for concrete type typ implementing // interface iface. A dummy tab will be created in the unusual case where typ doesn't // implement iface. Normally, this wouldn't happen, because the typechecker would // have reported a compile-time error. This situation can only happen when the // destination type of a type assert or a type in a type switch is parameterized, so // it may sometimes, but not always, be a type that can't implement the specified // interface. func ITabLsym(typ, iface *types.Type) *obj.LSym { s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString()) lsym := s.Linksym() if !existed { writeITab(lsym, typ, iface, true) } return lsym } // ITabAddrAt returns an expression that evaluates to the // *runtime.itab value for concrete type typ implementing interface // iface. func ITabAddrAt(pos src.XPos, typ, iface *types.Type) *ir.AddrExpr { s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString()) lsym := s.Linksym() if !existed { writeITab(lsym, typ, iface, false) } return typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8]) } // needkeyupdate reports whether map updates with t as a key // need the key to be updated. func needkeyupdate(t *types.Type) bool { switch t.Kind() { case types.TBOOL, types.TINT, types.TUINT, types.TINT8, types.TUINT8, types.TINT16, types.TUINT16, types.TINT32, types.TUINT32, types.TINT64, types.TUINT64, types.TUINTPTR, types.TPTR, types.TUNSAFEPTR, types.TCHAN: return false case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, // floats and complex can be +0/-0 types.TINTER, types.TSTRING: // strings might have smaller backing stores return true case types.TARRAY: return needkeyupdate(t.Elem()) case types.TSTRUCT: for _, t1 := range t.Fields() { if needkeyupdate(t1.Type) { return true } } return false default: base.Fatalf("bad type for map key: %v", t) return true } } // hashMightPanic reports whether the hash of a map key of type t might panic. func hashMightPanic(t *types.Type) bool { switch t.Kind() { case types.TINTER: return true case types.TARRAY: return hashMightPanic(t.Elem()) case types.TSTRUCT: for _, t1 := range t.Fields() { if hashMightPanic(t1.Type) { return true } } return false default: return false } } // formalType replaces predeclared aliases with real types. // They've been separate internally to make error messages // better, but we have to merge them in the reflect tables. func formalType(t *types.Type) *types.Type { switch t { case types.AnyType, types.ByteType, types.RuneType: return types.Types[t.Kind()] } return t } func writeType(t *types.Type) *obj.LSym { t = formalType(t) if t.IsUntyped() { base.Fatalf("writeType %v", t) } s := types.TypeSym(t) lsym := s.Linksym() // special case (look for runtime below): // when compiling package runtime, // emit the type structures for int, float, etc. tbase := t if t.IsPtr() && t.Sym() == nil && t.Elem().Sym() != nil { tbase = t.Elem() } if tbase.Kind() == types.TFORW { base.Fatalf("unresolved defined type: %v", tbase) } // This is a fake type we generated for our builtin pseudo-runtime // package. We'll emit a description for the real type while // compiling package runtime, so we don't need or want to emit one // from this fake type. if sym := tbase.Sym(); sym != nil && sym.Pkg == ir.Pkgs.Runtime { return lsym } if s.Siggen() { return lsym } s.SetSiggen(true) if !NeedEmit(tbase) { if i := typecheck.BaseTypeIndex(t); i >= 0 { lsym.Pkg = tbase.Sym().Pkg.Prefix lsym.SymIdx = int32(i) lsym.Set(obj.AttrIndexed, true) } // TODO(mdempsky): Investigate whether this still happens. // If we know we don't need to emit code for a type, // we should have a link-symbol index for it. // See also TODO in NeedEmit. return lsym } // Type layout Written by Marker // +--------------------------------+ - 0 // | abi/internal.Type | dcommontype // +--------------------------------+ - A // | additional type-dependent | code in the switch below // | fields, e.g. | // | abi/internal.ArrayType.Len | // +--------------------------------+ - B // | internal/abi.UncommonType | dextratype // | This section is optional, | // | if type has a name or methods | // +--------------------------------+ - C // | variable-length data | code in the switch below // | referenced by | // | type-dependent fields, e.g. | // | abi/internal.StructType.Fields | // | dataAdd = size of this section | // +--------------------------------+ - D // | method list, if any | dextratype // +--------------------------------+ - E // UncommonType section is included if we have a name or a method. extra := t.Sym() != nil || len(methods(t)) != 0 // Decide the underlying type of the descriptor, and remember // the size we need for variable-length data. var rt *types.Type dataAdd := 0 switch t.Kind() { default: rt = rttype.Type case types.TARRAY: rt = rttype.ArrayType case types.TSLICE: rt = rttype.SliceType case types.TCHAN: rt = rttype.ChanType case types.TFUNC: rt = rttype.FuncType dataAdd = (t.NumRecvs() + t.NumParams() + t.NumResults()) * types.PtrSize case types.TINTER: rt = rttype.InterfaceType dataAdd = len(imethods(t)) * int(rttype.IMethod.Size()) case types.TMAP: if buildcfg.Experiment.SwissMap { rt = rttype.SwissMapType } else { rt = rttype.OldMapType } case types.TPTR: rt = rttype.PtrType // TODO: use rttype.Type for Elem() is ANY? case types.TSTRUCT: rt = rttype.StructType dataAdd = t.NumFields() * int(rttype.StructField.Size()) } // Compute offsets of each section. B := rt.Size() C := B if extra { C = B + rttype.UncommonType.Size() } D := C + int64(dataAdd) E := D + int64(len(methods(t)))*rttype.Method.Size() // Write the runtime._type c := rttype.NewCursor(lsym, 0, rt) if rt == rttype.Type { dcommontype(c, t) } else { dcommontype(c.Field("Type"), t) } // Write additional type-specific data // (Both the fixed size and variable-sized sections.) switch t.Kind() { case types.TARRAY: // internal/abi.ArrayType s1 := writeType(t.Elem()) t2 := types.NewSlice(t.Elem()) s2 := writeType(t2) c.Field("Elem").WritePtr(s1) c.Field("Slice").WritePtr(s2) c.Field("Len").WriteUintptr(uint64(t.NumElem())) case types.TSLICE: // internal/abi.SliceType s1 := writeType(t.Elem()) c.Field("Elem").WritePtr(s1) case types.TCHAN: // internal/abi.ChanType s1 := writeType(t.Elem()) c.Field("Elem").WritePtr(s1) c.Field("Dir").WriteInt(int64(t.ChanDir())) case types.TFUNC: // internal/abi.FuncType for _, t1 := range t.RecvParamsResults() { writeType(t1.Type) } inCount := t.NumRecvs() + t.NumParams() outCount := t.NumResults() if t.IsVariadic() { outCount |= 1 << 15 } c.Field("InCount").WriteUint16(uint16(inCount)) c.Field("OutCount").WriteUint16(uint16(outCount)) // Array of rtype pointers follows funcType. typs := t.RecvParamsResults() array := rttype.NewArrayCursor(lsym, C, types.Types[types.TUNSAFEPTR], len(typs)) for i, t1 := range typs { array.Elem(i).WritePtr(writeType(t1.Type)) } case types.TINTER: // internal/abi.InterfaceType m := imethods(t) n := len(m) for _, a := range m { writeType(a.type_) } var tpkg *types.Pkg if t.Sym() != nil && t != types.Types[t.Kind()] && t != types.ErrorType { tpkg = t.Sym().Pkg } dgopkgpath(c.Field("PkgPath"), tpkg) c.Field("Methods").WriteSlice(lsym, C, int64(n), int64(n)) array := rttype.NewArrayCursor(lsym, C, rttype.IMethod, n) for i, a := range m { exported := types.IsExported(a.name.Name) var pkg *types.Pkg if !exported && a.name.Pkg != tpkg { pkg = a.name.Pkg } nsym := dname(a.name.Name, "", pkg, exported, false) e := array.Elem(i) e.Field("Name").WriteSymPtrOff(nsym, false) e.Field("Typ").WriteSymPtrOff(writeType(a.type_), false) } case types.TMAP: if buildcfg.Experiment.SwissMap { writeSwissMapType(t, lsym, c) } else { writeOldMapType(t, lsym, c) } case types.TPTR: // internal/abi.PtrType if t.Elem().Kind() == types.TANY { base.Fatalf("bad pointer base type") } s1 := writeType(t.Elem()) c.Field("Elem").WritePtr(s1) case types.TSTRUCT: // internal/abi.StructType fields := t.Fields() for _, t1 := range fields { writeType(t1.Type) } // All non-exported struct field names within a struct // type must originate from a single package. By // identifying and recording that package within the // struct type descriptor, we can omit that // information from the field descriptors. var spkg *types.Pkg for _, f := range fields { if !types.IsExported(f.Sym.Name) { spkg = f.Sym.Pkg break } } dgopkgpath(c.Field("PkgPath"), spkg) c.Field("Fields").WriteSlice(lsym, C, int64(len(fields)), int64(len(fields))) array := rttype.NewArrayCursor(lsym, C, rttype.StructField, len(fields)) for i, f := range fields { e := array.Elem(i) dnameField(e.Field("Name"), spkg, f) e.Field("Typ").WritePtr(writeType(f.Type)) e.Field("Offset").WriteUintptr(uint64(f.Offset)) } } // Write the extra info, if any. if extra { dextratype(lsym, B, t, dataAdd) } // Note: DUPOK is required to ensure that we don't end up with more // than one type descriptor for a given type, if the type descriptor // can be defined in multiple packages, that is, unnamed types, // instantiated types and shape types. dupok := 0 if tbase.Sym() == nil || tbase.IsFullyInstantiated() || tbase.HasShape() { dupok = obj.DUPOK } objw.Global(lsym, int32(E), int16(dupok|obj.RODATA)) // The linker will leave a table of all the typelinks for // types in the binary, so the runtime can find them. // // When buildmode=shared, all types are in typelinks so the // runtime can deduplicate type pointers. keep := base.Ctxt.Flag_dynlink if !keep && t.Sym() == nil { // For an unnamed type, we only need the link if the type can // be created at run time by reflect.PointerTo and similar // functions. If the type exists in the program, those // functions must return the existing type structure rather // than creating a new one. switch t.Kind() { case types.TPTR, types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRUCT: keep = true } } // Do not put Noalg types in typelinks. See issue #22605. if types.TypeHasNoAlg(t) { keep = false } lsym.Set(obj.AttrMakeTypelink, keep) return lsym } // InterfaceMethodOffset returns the offset of the i-th method in the interface // type descriptor, ityp. func InterfaceMethodOffset(ityp *types.Type, i int64) int64 { // interface type descriptor layout is struct { // _type // commonSize // pkgpath // 1 word // []imethod // 3 words (pointing to [...]imethod below) // uncommontype // uncommonSize // [...]imethod // } // The size of imethod is 8. return int64(commonSize()+4*types.PtrSize+uncommonSize(ityp)) + i*8 } // NeedRuntimeType ensures that a runtime type descriptor is emitted for t. func NeedRuntimeType(t *types.Type) { if _, ok := signatset[t]; !ok { signatset[t] = struct{}{} signatslice = append(signatslice, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()}) } } func WriteRuntimeTypes() { // Process signatslice. Use a loop, as writeType adds // entries to signatslice while it is being processed. for len(signatslice) > 0 { signats := signatslice // Sort for reproducible builds. slices.SortFunc(signats, typesStrCmp) for _, ts := range signats { t := ts.t writeType(t) if t.Sym() != nil { writeType(types.NewPtr(t)) } } signatslice = signatslice[len(signats):] } } func WriteGCSymbols() { // Emit GC data symbols. gcsyms := make([]typeAndStr, 0, len(gcsymset)) for t := range gcsymset { gcsyms = append(gcsyms, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()}) } slices.SortFunc(gcsyms, typesStrCmp) for _, ts := range gcsyms { dgcsym(ts.t, true) } } // writeITab writes the itab for concrete type typ implementing interface iface. If // allowNonImplement is true, allow the case where typ does not implement iface, and just // create a dummy itab with zeroed-out method entries. func writeITab(lsym *obj.LSym, typ, iface *types.Type, allowNonImplement bool) { // TODO(mdempsky): Fix methodWrapper, geneq, and genhash (and maybe // others) to stop clobbering these. oldpos, oldfn := base.Pos, ir.CurFunc defer func() { base.Pos, ir.CurFunc = oldpos, oldfn }() if typ == nil || (typ.IsPtr() && typ.Elem() == nil) || typ.IsUntyped() || iface == nil || !iface.IsInterface() || iface.IsEmptyInterface() { base.Fatalf("writeITab(%v, %v)", typ, iface) } sigs := iface.AllMethods() entries := make([]*obj.LSym, 0, len(sigs)) // both sigs and methods are sorted by name, // so we can find the intersection in a single pass for _, m := range methods(typ) { if m.name == sigs[0].Sym { entries = append(entries, m.isym) if m.isym == nil { panic("NO ISYM") } sigs = sigs[1:] if len(sigs) == 0 { break } } } completeItab := len(sigs) == 0 if !allowNonImplement && !completeItab { base.Fatalf("incomplete itab") } // dump empty itab symbol into i.sym // type itab struct { // inter *interfacetype // _type *_type // hash uint32 // copy of _type.hash. Used for type switches. // _ [4]byte // fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. // } c := rttype.NewCursor(lsym, 0, rttype.ITab) c.Field("Inter").WritePtr(writeType(iface)) c.Field("Type").WritePtr(writeType(typ)) c.Field("Hash").WriteUint32(types.TypeHash(typ)) // copy of type hash var delta int64 c = c.Field("Fun") if !completeItab { // If typ doesn't implement iface, make method entries be zero. c.Elem(0).WriteUintptr(0) } else { var a rttype.ArrayCursor a, delta = c.ModifyArray(len(entries)) for i, fn := range entries { a.Elem(i).WritePtrWeak(fn) // method pointer for each method } } // Nothing writes static itabs, so they are read only. objw.Global(lsym, int32(rttype.ITab.Size()+delta), int16(obj.DUPOK|obj.RODATA)) lsym.Set(obj.AttrContentAddressable, true) } func WritePluginTable() { ptabs := typecheck.Target.PluginExports if len(ptabs) == 0 { return } lsym := base.Ctxt.Lookup("go:plugin.tabs") ot := 0 for _, p := range ptabs { // Dump ptab symbol into go.pluginsym package. // // type ptab struct { // name nameOff // typ typeOff // pointer to symbol // } nsym := dname(p.Sym().Name, "", nil, true, false) t := p.Type() if p.Class != ir.PFUNC { t = types.NewPtr(t) } tsym := writeType(t) ot = objw.SymPtrOff(lsym, ot, nsym) ot = objw.SymPtrOff(lsym, ot, tsym) // Plugin exports symbols as interfaces. Mark their types // as UsedInIface. tsym.Set(obj.AttrUsedInIface, true) } objw.Global(lsym, int32(ot), int16(obj.RODATA)) lsym = base.Ctxt.Lookup("go:plugin.exports") ot = 0 for _, p := range ptabs { ot = objw.SymPtr(lsym, ot, p.Linksym(), 0) } objw.Global(lsym, int32(ot), int16(obj.RODATA)) } // writtenByWriteBasicTypes reports whether typ is written by WriteBasicTypes. // WriteBasicTypes always writes pointer types; any pointer has been stripped off typ already. func writtenByWriteBasicTypes(typ *types.Type) bool { if typ.Sym() == nil && typ.Kind() == types.TFUNC { // func(error) string if typ.NumRecvs() == 0 && typ.NumParams() == 1 && typ.NumResults() == 1 && typ.Param(0).Type == types.ErrorType && typ.Result(0).Type == types.Types[types.TSTRING] { return true } } // Now we have left the basic types plus any and error, plus slices of them. // Strip the slice. if typ.Sym() == nil && typ.IsSlice() { typ = typ.Elem() } // Basic types. sym := typ.Sym() if sym != nil && (sym.Pkg == types.BuiltinPkg || sym.Pkg == types.UnsafePkg) { return true } // any or error return (sym == nil && typ.IsEmptyInterface()) || typ == types.ErrorType } func WriteBasicTypes() { // do basic types if compiling package runtime. // they have to be in at least one package, // and runtime is always loaded implicitly, // so this is as good as any. // another possible choice would be package main, // but using runtime means fewer copies in object files. // The code here needs to be in sync with writtenByWriteBasicTypes above. if base.Ctxt.Pkgpath != "runtime" { return } // Note: always write NewPtr(t) because NeedEmit's caller strips the pointer. var list []*types.Type for i := types.Kind(1); i <= types.TBOOL; i++ { list = append(list, types.Types[i]) } list = append(list, types.Types[types.TSTRING], types.Types[types.TUNSAFEPTR], types.AnyType, types.ErrorType) for _, t := range list { writeType(types.NewPtr(t)) writeType(types.NewPtr(types.NewSlice(t))) } // emit type for func(error) string, // which is the type of an auto-generated wrapper. writeType(types.NewPtr(types.NewSignature(nil, []*types.Field{ types.NewField(base.Pos, nil, types.ErrorType), }, []*types.Field{ types.NewField(base.Pos, nil, types.Types[types.TSTRING]), }))) } type typeAndStr struct { t *types.Type short string // "short" here means TypeSymName regular string } func typesStrCmp(a, b typeAndStr) int { // put named types before unnamed types if a.t.Sym() != nil && b.t.Sym() == nil { return -1 } if a.t.Sym() == nil && b.t.Sym() != nil { return +1 } if r := strings.Compare(a.short, b.short); r != 0 { return r } // When the only difference between the types is whether // they refer to byte or uint8, such as **byte vs **uint8, // the types' NameStrings can be identical. // To preserve deterministic sort ordering, sort these by String(). // // TODO(mdempsky): This all seems suspect. Using LinkString would // avoid naming collisions, and there shouldn't be a reason to care // about "byte" vs "uint8": they share the same runtime type // descriptor anyway. if r := strings.Compare(a.regular, b.regular); r != 0 { return r } // Identical anonymous interfaces defined in different locations // will be equal for the above checks, but different in DWARF output. // Sort by source position to ensure deterministic order. // See issues 27013 and 30202. if a.t.Kind() == types.TINTER && len(a.t.AllMethods()) > 0 { if a.t.AllMethods()[0].Pos.Before(b.t.AllMethods()[0].Pos) { return -1 } return +1 } return 0 } // GCSym returns a data symbol containing GC information for type t, along // with a boolean reporting whether the UseGCProg bit should be set in the // type kind, and the ptrdata field to record in the reflect type information. // GCSym may be called in concurrent backend, so it does not emit the symbol // content. func GCSym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) { // Record that we need to emit the GC symbol. gcsymmu.Lock() if _, ok := gcsymset[t]; !ok { gcsymset[t] = struct{}{} } gcsymmu.Unlock() return dgcsym(t, false) } // dgcsym returns a data symbol containing GC information for type t, along // with a boolean reporting whether the UseGCProg bit should be set in the // type kind, and the ptrdata field to record in the reflect type information. // When write is true, it writes the symbol data. func dgcsym(t *types.Type, write bool) (lsym *obj.LSym, useGCProg bool, ptrdata int64) { ptrdata = types.PtrDataSize(t) if ptrdata/int64(types.PtrSize) <= abi.MaxPtrmaskBytes*8 { lsym = dgcptrmask(t, write) return } useGCProg = true lsym, ptrdata = dgcprog(t, write) return } // dgcptrmask emits and returns the symbol containing a pointer mask for type t. func dgcptrmask(t *types.Type, write bool) *obj.LSym { // Bytes we need for the ptrmask. n := (types.PtrDataSize(t)/int64(types.PtrSize) + 7) / 8 // Runtime wants ptrmasks padded to a multiple of uintptr in size. n = (n + int64(types.PtrSize) - 1) &^ (int64(types.PtrSize) - 1) ptrmask := make([]byte, n) fillptrmask(t, ptrmask) p := fmt.Sprintf("runtime.gcbits.%x", ptrmask) lsym := base.Ctxt.Lookup(p) if write && !lsym.OnList() { for i, x := range ptrmask { objw.Uint8(lsym, i, x) } objw.Global(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL) lsym.Set(obj.AttrContentAddressable, true) } return lsym } // fillptrmask fills in ptrmask with 1s corresponding to the // word offsets in t that hold pointers. // ptrmask is assumed to fit at least types.PtrDataSize(t)/PtrSize bits. func fillptrmask(t *types.Type, ptrmask []byte) { for i := range ptrmask { ptrmask[i] = 0 } if !t.HasPointers() { return } vec := bitvec.New(8 * int32(len(ptrmask))) typebits.Set(t, 0, vec) nptr := types.PtrDataSize(t) / int64(types.PtrSize) for i := int64(0); i < nptr; i++ { if vec.Get(int32(i)) { ptrmask[i/8] |= 1 << (uint(i) % 8) } } } // dgcprog emits and returns the symbol containing a GC program for type t // along with the size of the data described by the program (in the range // [types.PtrDataSize(t), t.Width]). // In practice, the size is types.PtrDataSize(t) except for non-trivial arrays. // For non-trivial arrays, the program describes the full t.Width size. func dgcprog(t *types.Type, write bool) (*obj.LSym, int64) { types.CalcSize(t) if t.Size() == types.BADWIDTH { base.Fatalf("dgcprog: %v badwidth", t) } lsym := TypeLinksymPrefix(".gcprog", t) var p gcProg p.init(lsym, write) p.emit(t, 0) offset := p.w.BitIndex() * int64(types.PtrSize) p.end() if ptrdata := types.PtrDataSize(t); offset < ptrdata || offset > t.Size() { base.Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Size()) } return lsym, offset } type gcProg struct { lsym *obj.LSym symoff int w gcprog.Writer write bool } func (p *gcProg) init(lsym *obj.LSym, write bool) { p.lsym = lsym p.write = write && !lsym.OnList() p.symoff = 4 // first 4 bytes hold program length if !write { p.w.Init(func(byte) {}) return } p.w.Init(p.writeByte) if base.Debug.GCProg > 0 { fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym) p.w.Debug(os.Stderr) } } func (p *gcProg) writeByte(x byte) { p.symoff = objw.Uint8(p.lsym, p.symoff, x) } func (p *gcProg) end() { p.w.End() if !p.write { return } objw.Uint32(p.lsym, 0, uint32(p.symoff-4)) objw.Global(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL) p.lsym.Set(obj.AttrContentAddressable, true) if base.Debug.GCProg > 0 { fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym) } } func (p *gcProg) emit(t *types.Type, offset int64) { types.CalcSize(t) if !t.HasPointers() { return } if t.Size() == int64(types.PtrSize) { p.w.Ptr(offset / int64(types.PtrSize)) return } switch t.Kind() { default: base.Fatalf("gcProg.emit: unexpected type %v", t) case types.TSTRING: p.w.Ptr(offset / int64(types.PtrSize)) case types.TINTER: // Note: the first word isn't a pointer. See comment in typebits.Set p.w.Ptr(offset/int64(types.PtrSize) + 1) case types.TSLICE: p.w.Ptr(offset / int64(types.PtrSize)) case types.TARRAY: if t.NumElem() == 0 { // should have been handled by haspointers check above base.Fatalf("gcProg.emit: empty array") } // Flatten array-of-array-of-array to just a big array by multiplying counts. count := t.NumElem() elem := t.Elem() for elem.IsArray() { count *= elem.NumElem() elem = elem.Elem() } if !p.w.ShouldRepeat(elem.Size()/int64(types.PtrSize), count) { // Cheaper to just emit the bits. for i := int64(0); i < count; i++ { p.emit(elem, offset+i*elem.Size()) } return } p.emit(elem, offset) p.w.ZeroUntil((offset + elem.Size()) / int64(types.PtrSize)) p.w.Repeat(elem.Size()/int64(types.PtrSize), count-1) case types.TSTRUCT: for _, t1 := range t.Fields() { p.emit(t1.Type, offset+t1.Offset) } } } // ZeroAddr returns the address of a symbol with at least // size bytes of zeros. func ZeroAddr(size int64) ir.Node { if size >= 1<<31 { base.Fatalf("map elem too big %d", size) } if ZeroSize < size { ZeroSize = size } lsym := base.PkgLinksym("go:map", "zero", obj.ABI0) x := ir.NewLinksymExpr(base.Pos, lsym, types.Types[types.TUINT8]) return typecheck.Expr(typecheck.NodAddr(x)) } // NeedEmit reports whether typ is a type that we need to emit code // for (e.g., runtime type descriptors, method wrappers). func NeedEmit(typ *types.Type) bool { // TODO(mdempsky): Export data should keep track of which anonymous // and instantiated types were emitted, so at least downstream // packages can skip re-emitting them. // // Perhaps we can just generalize the linker-symbol indexing to // track the index of arbitrary types, not just defined types, and // use its presence to detect this. The same idea would work for // instantiated generic functions too. switch sym := typ.Sym(); { case writtenByWriteBasicTypes(typ): return base.Ctxt.Pkgpath == "runtime" case sym == nil: // Anonymous type; possibly never seen before or ever again. // Need to emit to be safe (however, see TODO above). return true case sym.Pkg == types.LocalPkg: // Local defined type; our responsibility. return true case typ.IsFullyInstantiated(): // Instantiated type; possibly instantiated with unique type arguments. // Need to emit to be safe (however, see TODO above). return true case typ.HasShape(): // Shape type; need to emit even though it lives in the .shape package. // TODO: make sure the linker deduplicates them (see dupok in writeType above). return true default: // Should have been emitted by an imported package. return false } } // Generate a wrapper function to convert from // a receiver of type T to a receiver of type U. // That is, // // func (t T) M() { // ... // } // // already exists; this function generates // // func (u U) M() { // u.M() // } // // where the types T and U are such that u.M() is valid // and calls the T.M method. // The resulting function is for use in method tables. // // rcvr - U // method - M func (t T)(), a TFIELD type struct // // Also wraps methods on instantiated generic types for use in itab entries. // For an instantiated generic type G[int], we generate wrappers like: // G[int] pointer shaped: // // func (x G[int]) f(arg) { // .inst.G[int].f(dictionary, x, arg) // } // // G[int] not pointer shaped: // // func (x *G[int]) f(arg) { // .inst.G[int].f(dictionary, *x, arg) // } // // These wrappers are always fully stenciled. func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSym { if forItab && !types.IsDirectIface(rcvr) { rcvr = rcvr.PtrTo() } newnam := ir.MethodSym(rcvr, method.Sym) lsym := newnam.Linksym() // Unified IR creates its own wrappers. return lsym } var ZeroSize int64 // MarkTypeUsedInInterface marks that type t is converted to an interface. // This information is used in the linker in dead method elimination. func MarkTypeUsedInInterface(t *types.Type, from *obj.LSym) { if t.HasShape() { // Shape types shouldn't be put in interfaces, so we shouldn't ever get here. base.Fatalf("shape types have no methods %+v", t) } MarkTypeSymUsedInInterface(TypeLinksym(t), from) } func MarkTypeSymUsedInInterface(tsym *obj.LSym, from *obj.LSym) { // Emit a marker relocation. The linker will know the type is converted // to an interface if "from" is reachable. from.AddRel(base.Ctxt, obj.Reloc{Type: objabi.R_USEIFACE, Sym: tsym}) } // MarkUsedIfaceMethod marks that an interface method is used in the current // function. n is OCALLINTER node. func MarkUsedIfaceMethod(n *ir.CallExpr) { // skip unnamed functions (func _()) if ir.CurFunc.LSym == nil { return } dot := n.Fun.(*ir.SelectorExpr) ityp := dot.X.Type() if ityp.HasShape() { // Here we're calling a method on a generic interface. Something like: // // type I[T any] interface { foo() T } // func f[T any](x I[T]) { // ... = x.foo() // } // f[int](...) // f[string](...) // // In this case, in f we're calling foo on a generic interface. // Which method could that be? Normally we could match the method // both by name and by type. But in this case we don't really know // the type of the method we're calling. It could be func()int // or func()string. So we match on just the function name, instead // of both the name and the type used for the non-generic case below. // TODO: instantiations at least know the shape of the instantiated // type, and the linker could do more complicated matching using // some sort of fuzzy shape matching. For now, only use the name // of the method for matching. ir.CurFunc.LSym.AddRel(base.Ctxt, obj.Reloc{ Type: objabi.R_USENAMEDMETHOD, Sym: staticdata.StringSymNoCommon(dot.Sel.Name), }) return } // dot.Offset() is the method index * PtrSize (the offset of code pointer in itab). midx := dot.Offset() / int64(types.PtrSize) ir.CurFunc.LSym.AddRel(base.Ctxt, obj.Reloc{ Type: objabi.R_USEIFACEMETHOD, Sym: TypeLinksym(ityp), Add: InterfaceMethodOffset(ityp, midx), }) } func deref(t *types.Type) *types.Type { if t.IsPtr() { return t.Elem() } return t }