1 // Copyright 2022 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // This file contains rules used by the laterLower pass.
6
7 // Simplify ISEL x $0 z into ISELZ
8 (ISEL [a] x (MOVDconst [0]) z) => (ISELZ [a] x z)
9 // Simplify ISEL $0 y z into ISELZ by inverting comparison and reversing arguments.
10 (ISEL [a] (MOVDconst [0]) y z) => (ISELZ [a^0x4] y z)
11
12 // SETBC, SETBCR is supported on ISA 3.1(Power10) and newer, use ISELZ for
13 // older targets
14 (SETBC [2] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [2] (MOVDconst [1]) cmp)
15 (SETBCR [2] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [6] (MOVDconst [1]) cmp)
16 (SETBC [0] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [0] (MOVDconst [1]) cmp)
17 (SETBCR [0] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [4] (MOVDconst [1]) cmp)
18 (SETBC [1] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [1] (MOVDconst [1]) cmp)
19 (SETBCR [1] cmp) && buildcfg.GOPPC64 <= 9 => (ISELZ [5] (MOVDconst [1]) cmp)
20
21 // The upper bits of the smaller than register values is undefined. Take advantage of that.
22 (AND <t> x:(MOVDconst [m]) n) && t.Size() <= 2 => (ANDconst [int64(int16(m))] n)
23
24 // Convert simple bit masks to an equivalent rldic[lr] if possible.
25 (AND x:(MOVDconst [m]) n) && isPPC64ValidShiftMask(m) => (RLDICL [encodePPC64RotateMask(0,m,64)] n)
26 (AND x:(MOVDconst [m]) n) && m != 0 && isPPC64ValidShiftMask(^m) => (RLDICR [encodePPC64RotateMask(0,m,64)] n)
27
28 // If the RLDICL does not rotate its value, a shifted value can be merged.
29 (RLDICL [em] x:(SRDconst [s] a)) && (em&0xFF0000) == 0 => (RLDICL [mergePPC64RLDICLandSRDconst(em, s)] a)
30
31 // Convert rotated 32 bit masks on 32 bit values into rlwinm. In general, this leaves the upper 32 bits in an undefined state.
32 (AND <t> x:(MOVDconst [m]) n) && t.Size() == 4 && isPPC64WordRotateMask(m) => (RLWINM [encodePPC64RotateMask(0,m,32)] n)
33
34 // When PCRel is supported, paddi can add a 34b signed constant in one instruction.
35 (ADD (MOVDconst [m]) x) && supportsPPC64PCRel() && (m<<30)>>30 == m => (ADDconst [m] x)
36
37
38 // Where possible and practical, generate CC opcodes. Due to the structure of the rules, there are limits to how
39 // a Value can be rewritten which make it impossible to correctly rewrite sibling Value users. To workaround this
40 // case, candidates for CC opcodes are converted in two steps:
41 // 1. Convert all (x (Op ...) ...) into (x (Select0 (OpCC ...) ...). See convertPPC64OpToOpCC for more
42 // detail on how and why this is done there.
43 // 2. Rewrite (CMPconst [0] (Select0 (OpCC ...))) into (Select1 (OpCC...))
44 // Note: to minimize potentially expensive regeneration of CC opcodes during the flagalloc pass, only rewrite if
45 // both ops are in the same block.
46 (CMPconst [0] z:((ADD|AND|ANDN|OR|SUB|NOR|XOR|MULHDU) x y)) && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z))
47 (CMPconst [0] z:((NEG|CNTLZD|RLDICL) x)) && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z))
48 // Note: ADDCCconst only assembles to 1 instruction for int16 constants.
49 (CMPconst [0] z:(ADDconst [c] x)) && int64(int16(c)) == c && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z))
50 (CMPconst [0] z:(ANDconst [c] x)) && int64(uint16(c)) == c && v.Block == z.Block => (CMPconst [0] convertPPC64OpToOpCC(z))
51 // And finally, fixup the flag user.
52 (CMPconst <t> [0] (Select0 z:((ADD|AND|ANDN|OR|SUB|NOR|XOR|MULHDU)CC x y))) => (Select1 <t> z)
53 (CMPconst <t> [0] (Select0 z:((ADDCCconst|ANDCCconst|NEGCC|CNTLZDCC|RLDICLCC) y))) => (Select1 <t> z)
54
55 // After trying to convert ANDconst to ANDCCconst above, if the CC result is not needed, try to avoid using
56 // ANDconst which clobbers CC.
57 (ANDconst [m] x) && isPPC64ValidShiftMask(m) => (RLDICL [encodePPC64RotateMask(0,m,64)] x)
58
59 // Likewise, trying converting RLDICLCC back to ANDCCconst as it is faster.
60 (RLDICLCC [a] x) && convertPPC64RldiclAndccconst(a) != 0 => (ANDCCconst [convertPPC64RldiclAndccconst(a)] x)
61
View as plain text