Source file src/cmd/compile/internal/ssa/_gen/genericOps.go

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package main
     6  
     7  // Generic opcodes typically specify a width. The inputs and outputs
     8  // of that op are the given number of bits wide. There is no notion of
     9  // "sign", so Add32 can be used both for signed and unsigned 32-bit
    10  // addition.
    11  
    12  // Signed/unsigned is explicit with the extension ops
    13  // (SignExt*/ZeroExt*) and implicit as the arg to some opcodes
    14  // (e.g. the second argument to shifts is unsigned). If not mentioned,
    15  // all args take signed inputs, or don't care whether their inputs
    16  // are signed or unsigned.
    17  
    18  var genericOps = []opData{
    19  	// 2-input arithmetic
    20  	// Types must be consistent with Go typing. Add, for example, must take two values
    21  	// of the same type and produces that same type.
    22  	{name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1
    23  	{name: "Add16", argLength: 2, commutative: true},
    24  	{name: "Add32", argLength: 2, commutative: true},
    25  	{name: "Add64", argLength: 2, commutative: true},
    26  	{name: "AddPtr", argLength: 2}, // For address calculations.  arg0 is a pointer and arg1 is an int.
    27  	{name: "Add32F", argLength: 2, commutative: true},
    28  	{name: "Add64F", argLength: 2, commutative: true},
    29  
    30  	{name: "Sub8", argLength: 2}, // arg0 - arg1
    31  	{name: "Sub16", argLength: 2},
    32  	{name: "Sub32", argLength: 2},
    33  	{name: "Sub64", argLength: 2},
    34  	{name: "SubPtr", argLength: 2},
    35  	{name: "Sub32F", argLength: 2},
    36  	{name: "Sub64F", argLength: 2},
    37  
    38  	{name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1
    39  	{name: "Mul16", argLength: 2, commutative: true},
    40  	{name: "Mul32", argLength: 2, commutative: true},
    41  	{name: "Mul64", argLength: 2, commutative: true},
    42  	{name: "Mul32F", argLength: 2, commutative: true},
    43  	{name: "Mul64F", argLength: 2, commutative: true},
    44  
    45  	{name: "Div32F", argLength: 2}, // arg0 / arg1
    46  	{name: "Div64F", argLength: 2},
    47  
    48  	{name: "Hmul32", argLength: 2, commutative: true},
    49  	{name: "Hmul32u", argLength: 2, commutative: true},
    50  	{name: "Hmul64", argLength: 2, commutative: true},
    51  	{name: "Hmul64u", argLength: 2, commutative: true},
    52  
    53  	{name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)", commutative: true}, // arg0 * arg1, returns (hi, lo)
    54  	{name: "Mul64uhilo", argLength: 2, typ: "(UInt64,UInt64)", commutative: true}, // arg0 * arg1, returns (hi, lo)
    55  
    56  	{name: "Mul32uover", argLength: 2, typ: "(UInt32,Bool)", commutative: true}, // Let x = arg0*arg1 (full 32x32-> 64 unsigned multiply), returns (uint32(x), (uint32(x) != x))
    57  	{name: "Mul64uover", argLength: 2, typ: "(UInt64,Bool)", commutative: true}, // Let x = arg0*arg1 (full 64x64->128 unsigned multiply), returns (uint64(x), (uint64(x) != x))
    58  
    59  	// Weird special instructions for use in the strength reduction of divides.
    60  	// These ops compute unsigned (arg0 + arg1) / 2, correct to all
    61  	// 32/64 bits, even when the intermediate result of the add has 33/65 bits.
    62  	// These ops can assume arg0 >= arg1.
    63  	// Note: these ops aren't commutative!
    64  	{name: "Avg32u", argLength: 2, typ: "UInt32"}, // 32-bit platforms only
    65  	{name: "Avg64u", argLength: 2, typ: "UInt64"}, // 64-bit platforms only
    66  
    67  	// For Div16, Div32 and Div64, AuxInt non-zero means that the divisor has been proved to be not -1
    68  	// or that the dividend is not the most negative value.
    69  	{name: "Div8", argLength: 2},  // arg0 / arg1, signed
    70  	{name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned
    71  	{name: "Div16", argLength: 2, aux: "Bool"},
    72  	{name: "Div16u", argLength: 2},
    73  	{name: "Div32", argLength: 2, aux: "Bool"},
    74  	{name: "Div32u", argLength: 2},
    75  	{name: "Div64", argLength: 2, aux: "Bool"},
    76  	{name: "Div64u", argLength: 2},
    77  	{name: "Div128u", argLength: 3}, // arg0:arg1 / arg2 (128-bit divided by 64-bit), returns (q, r)
    78  
    79  	// For Mod16, Mod32 and Mod64, AuxInt non-zero means that the divisor has been proved to be not -1.
    80  	{name: "Mod8", argLength: 2},  // arg0 % arg1, signed
    81  	{name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned
    82  	{name: "Mod16", argLength: 2, aux: "Bool"},
    83  	{name: "Mod16u", argLength: 2},
    84  	{name: "Mod32", argLength: 2, aux: "Bool"},
    85  	{name: "Mod32u", argLength: 2},
    86  	{name: "Mod64", argLength: 2, aux: "Bool"},
    87  	{name: "Mod64u", argLength: 2},
    88  
    89  	{name: "And8", argLength: 2, commutative: true}, // arg0 & arg1
    90  	{name: "And16", argLength: 2, commutative: true},
    91  	{name: "And32", argLength: 2, commutative: true},
    92  	{name: "And64", argLength: 2, commutative: true},
    93  
    94  	{name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1
    95  	{name: "Or16", argLength: 2, commutative: true},
    96  	{name: "Or32", argLength: 2, commutative: true},
    97  	{name: "Or64", argLength: 2, commutative: true},
    98  
    99  	{name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1
   100  	{name: "Xor16", argLength: 2, commutative: true},
   101  	{name: "Xor32", argLength: 2, commutative: true},
   102  	{name: "Xor64", argLength: 2, commutative: true},
   103  
   104  	// For shifts, AxB means the shifted value has A bits and the shift amount has B bits.
   105  	// Shift amounts are considered unsigned.
   106  	// If arg1 is known to be nonnegative and less than the number of bits in arg0,
   107  	// then auxInt may be set to 1.
   108  	// This enables better code generation on some platforms.
   109  	{name: "Lsh8x8", argLength: 2, aux: "Bool"}, // arg0 << arg1
   110  	{name: "Lsh8x16", argLength: 2, aux: "Bool"},
   111  	{name: "Lsh8x32", argLength: 2, aux: "Bool"},
   112  	{name: "Lsh8x64", argLength: 2, aux: "Bool"},
   113  	{name: "Lsh16x8", argLength: 2, aux: "Bool"},
   114  	{name: "Lsh16x16", argLength: 2, aux: "Bool"},
   115  	{name: "Lsh16x32", argLength: 2, aux: "Bool"},
   116  	{name: "Lsh16x64", argLength: 2, aux: "Bool"},
   117  	{name: "Lsh32x8", argLength: 2, aux: "Bool"},
   118  	{name: "Lsh32x16", argLength: 2, aux: "Bool"},
   119  	{name: "Lsh32x32", argLength: 2, aux: "Bool"},
   120  	{name: "Lsh32x64", argLength: 2, aux: "Bool"},
   121  	{name: "Lsh64x8", argLength: 2, aux: "Bool"},
   122  	{name: "Lsh64x16", argLength: 2, aux: "Bool"},
   123  	{name: "Lsh64x32", argLength: 2, aux: "Bool"},
   124  	{name: "Lsh64x64", argLength: 2, aux: "Bool"},
   125  
   126  	{name: "Rsh8x8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, signed
   127  	{name: "Rsh8x16", argLength: 2, aux: "Bool"},
   128  	{name: "Rsh8x32", argLength: 2, aux: "Bool"},
   129  	{name: "Rsh8x64", argLength: 2, aux: "Bool"},
   130  	{name: "Rsh16x8", argLength: 2, aux: "Bool"},
   131  	{name: "Rsh16x16", argLength: 2, aux: "Bool"},
   132  	{name: "Rsh16x32", argLength: 2, aux: "Bool"},
   133  	{name: "Rsh16x64", argLength: 2, aux: "Bool"},
   134  	{name: "Rsh32x8", argLength: 2, aux: "Bool"},
   135  	{name: "Rsh32x16", argLength: 2, aux: "Bool"},
   136  	{name: "Rsh32x32", argLength: 2, aux: "Bool"},
   137  	{name: "Rsh32x64", argLength: 2, aux: "Bool"},
   138  	{name: "Rsh64x8", argLength: 2, aux: "Bool"},
   139  	{name: "Rsh64x16", argLength: 2, aux: "Bool"},
   140  	{name: "Rsh64x32", argLength: 2, aux: "Bool"},
   141  	{name: "Rsh64x64", argLength: 2, aux: "Bool"},
   142  
   143  	{name: "Rsh8Ux8", argLength: 2, aux: "Bool"}, // arg0 >> arg1, unsigned
   144  	{name: "Rsh8Ux16", argLength: 2, aux: "Bool"},
   145  	{name: "Rsh8Ux32", argLength: 2, aux: "Bool"},
   146  	{name: "Rsh8Ux64", argLength: 2, aux: "Bool"},
   147  	{name: "Rsh16Ux8", argLength: 2, aux: "Bool"},
   148  	{name: "Rsh16Ux16", argLength: 2, aux: "Bool"},
   149  	{name: "Rsh16Ux32", argLength: 2, aux: "Bool"},
   150  	{name: "Rsh16Ux64", argLength: 2, aux: "Bool"},
   151  	{name: "Rsh32Ux8", argLength: 2, aux: "Bool"},
   152  	{name: "Rsh32Ux16", argLength: 2, aux: "Bool"},
   153  	{name: "Rsh32Ux32", argLength: 2, aux: "Bool"},
   154  	{name: "Rsh32Ux64", argLength: 2, aux: "Bool"},
   155  	{name: "Rsh64Ux8", argLength: 2, aux: "Bool"},
   156  	{name: "Rsh64Ux16", argLength: 2, aux: "Bool"},
   157  	{name: "Rsh64Ux32", argLength: 2, aux: "Bool"},
   158  	{name: "Rsh64Ux64", argLength: 2, aux: "Bool"},
   159  
   160  	// 2-input comparisons
   161  	{name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1
   162  	{name: "Eq16", argLength: 2, commutative: true, typ: "Bool"},
   163  	{name: "Eq32", argLength: 2, commutative: true, typ: "Bool"},
   164  	{name: "Eq64", argLength: 2, commutative: true, typ: "Bool"},
   165  	{name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"},
   166  	{name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   167  	{name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   168  	{name: "Eq32F", argLength: 2, commutative: true, typ: "Bool"},
   169  	{name: "Eq64F", argLength: 2, commutative: true, typ: "Bool"},
   170  
   171  	{name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
   172  	{name: "Neq16", argLength: 2, commutative: true, typ: "Bool"},
   173  	{name: "Neq32", argLength: 2, commutative: true, typ: "Bool"},
   174  	{name: "Neq64", argLength: 2, commutative: true, typ: "Bool"},
   175  	{name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"},
   176  	{name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   177  	{name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend
   178  	{name: "Neq32F", argLength: 2, commutative: true, typ: "Bool"},
   179  	{name: "Neq64F", argLength: 2, commutative: true, typ: "Bool"},
   180  
   181  	{name: "Less8", argLength: 2, typ: "Bool"},  // arg0 < arg1, signed
   182  	{name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned
   183  	{name: "Less16", argLength: 2, typ: "Bool"},
   184  	{name: "Less16U", argLength: 2, typ: "Bool"},
   185  	{name: "Less32", argLength: 2, typ: "Bool"},
   186  	{name: "Less32U", argLength: 2, typ: "Bool"},
   187  	{name: "Less64", argLength: 2, typ: "Bool"},
   188  	{name: "Less64U", argLength: 2, typ: "Bool"},
   189  	{name: "Less32F", argLength: 2, typ: "Bool"},
   190  	{name: "Less64F", argLength: 2, typ: "Bool"},
   191  
   192  	{name: "Leq8", argLength: 2, typ: "Bool"},  // arg0 <= arg1, signed
   193  	{name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned
   194  	{name: "Leq16", argLength: 2, typ: "Bool"},
   195  	{name: "Leq16U", argLength: 2, typ: "Bool"},
   196  	{name: "Leq32", argLength: 2, typ: "Bool"},
   197  	{name: "Leq32U", argLength: 2, typ: "Bool"},
   198  	{name: "Leq64", argLength: 2, typ: "Bool"},
   199  	{name: "Leq64U", argLength: 2, typ: "Bool"},
   200  	{name: "Leq32F", argLength: 2, typ: "Bool"},
   201  	{name: "Leq64F", argLength: 2, typ: "Bool"},
   202  
   203  	// the type of a CondSelect is the same as the type of its first
   204  	// two arguments, which should be register-width scalars; the third
   205  	// argument should be a boolean
   206  	{name: "CondSelect", argLength: 3}, // arg2 ? arg0 : arg1
   207  
   208  	// boolean ops
   209  	{name: "AndB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 && arg1 (not shortcircuited)
   210  	{name: "OrB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 || arg1 (not shortcircuited)
   211  	{name: "EqB", argLength: 2, commutative: true, typ: "Bool"},  // arg0 == arg1
   212  	{name: "NeqB", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1
   213  	{name: "Not", argLength: 1, typ: "Bool"},                     // !arg0, boolean
   214  
   215  	// 1-input ops
   216  	{name: "Neg8", argLength: 1}, // -arg0
   217  	{name: "Neg16", argLength: 1},
   218  	{name: "Neg32", argLength: 1},
   219  	{name: "Neg64", argLength: 1},
   220  	{name: "Neg32F", argLength: 1},
   221  	{name: "Neg64F", argLength: 1},
   222  
   223  	{name: "Com8", argLength: 1}, // ^arg0
   224  	{name: "Com16", argLength: 1},
   225  	{name: "Com32", argLength: 1},
   226  	{name: "Com64", argLength: 1},
   227  
   228  	{name: "Ctz8", argLength: 1},         // Count trailing (low order) zeroes (returns 0-8)
   229  	{name: "Ctz16", argLength: 1},        // Count trailing (low order) zeroes (returns 0-16)
   230  	{name: "Ctz32", argLength: 1},        // Count trailing (low order) zeroes (returns 0-32)
   231  	{name: "Ctz64", argLength: 1},        // Count trailing (low order) zeroes (returns 0-64)
   232  	{name: "Ctz64On32", argLength: 2},    // Count trailing (low order) zeroes (returns 0-64) in arg[1]<<32+arg[0]
   233  	{name: "Ctz8NonZero", argLength: 1},  // same as above, but arg[0] known to be non-zero, returns 0-7
   234  	{name: "Ctz16NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-15
   235  	{name: "Ctz32NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-31
   236  	{name: "Ctz64NonZero", argLength: 1}, // same as above, but arg[0] known to be non-zero, returns 0-63
   237  	{name: "BitLen8", argLength: 1},      // Number of bits in arg[0] (returns 0-8)
   238  	{name: "BitLen16", argLength: 1},     // Number of bits in arg[0] (returns 0-16)
   239  	{name: "BitLen32", argLength: 1},     // Number of bits in arg[0] (returns 0-32)
   240  	{name: "BitLen64", argLength: 1},     // Number of bits in arg[0] (returns 0-64)
   241  
   242  	{name: "Bswap16", argLength: 1}, // Swap bytes
   243  	{name: "Bswap32", argLength: 1}, // Swap bytes
   244  	{name: "Bswap64", argLength: 1}, // Swap bytes
   245  
   246  	{name: "BitRev8", argLength: 1},  // Reverse the bits in arg[0]
   247  	{name: "BitRev16", argLength: 1}, // Reverse the bits in arg[0]
   248  	{name: "BitRev32", argLength: 1}, // Reverse the bits in arg[0]
   249  	{name: "BitRev64", argLength: 1}, // Reverse the bits in arg[0]
   250  
   251  	{name: "PopCount8", argLength: 1},  // Count bits in arg[0]
   252  	{name: "PopCount16", argLength: 1}, // Count bits in arg[0]
   253  	{name: "PopCount32", argLength: 1}, // Count bits in arg[0]
   254  	{name: "PopCount64", argLength: 1}, // Count bits in arg[0]
   255  
   256  	// RotateLeftX instructions rotate the X bits of arg[0] to the left
   257  	// by the low lg_2(X) bits of arg[1], interpreted as an unsigned value.
   258  	// Note that this works out regardless of the bit width or signedness of
   259  	// arg[1]. In particular, RotateLeft by x is the same as RotateRight by -x.
   260  	{name: "RotateLeft64", argLength: 2},
   261  	{name: "RotateLeft32", argLength: 2},
   262  	{name: "RotateLeft16", argLength: 2},
   263  	{name: "RotateLeft8", argLength: 2},
   264  
   265  	// Square root.
   266  	// Special cases:
   267  	//   +∞  → +∞
   268  	//   ±0  → ±0 (sign preserved)
   269  	//   x<0 → NaN
   270  	//   NaN → NaN
   271  	{name: "Sqrt", argLength: 1},   // √arg0 (floating point, double precision)
   272  	{name: "Sqrt32", argLength: 1}, // √arg0 (floating point, single precision)
   273  
   274  	// Round to integer, float64 only.
   275  	// Special cases:
   276  	//   ±∞  → ±∞ (sign preserved)
   277  	//   ±0  → ±0 (sign preserved)
   278  	//   NaN → NaN
   279  	{name: "Floor", argLength: 1},       // round arg0 toward -∞
   280  	{name: "Ceil", argLength: 1},        // round arg0 toward +∞
   281  	{name: "Trunc", argLength: 1},       // round arg0 toward 0
   282  	{name: "Round", argLength: 1},       // round arg0 to nearest, ties away from 0
   283  	{name: "RoundToEven", argLength: 1}, // round arg0 to nearest, ties to even
   284  
   285  	// Modify the sign bit
   286  	{name: "Abs", argLength: 1},      // absolute value arg0
   287  	{name: "Copysign", argLength: 2}, // copy sign from arg0 to arg1
   288  
   289  	// Integer min/max implementation, if hardware is available.
   290  	{name: "Min64", argLength: 2},  // min(arg0,arg1), signed
   291  	{name: "Max64", argLength: 2},  // max(arg0,arg1), signed
   292  	{name: "Min64u", argLength: 2}, // min(arg0,arg1), unsigned
   293  	{name: "Max64u", argLength: 2}, // max(arg0,arg1), unsigned
   294  
   295  	// Float min/max implementation, if hardware is available.
   296  	{name: "Min64F", argLength: 2}, // min(arg0,arg1)
   297  	{name: "Min32F", argLength: 2}, // min(arg0,arg1)
   298  	{name: "Max64F", argLength: 2}, // max(arg0,arg1)
   299  	{name: "Max32F", argLength: 2}, // max(arg0,arg1)
   300  
   301  	// 3-input opcode.
   302  	// Fused-multiply-add, float64 only.
   303  	// When a*b+c is exactly zero (before rounding), then the result is +0 or -0.
   304  	// The 0's sign is determined according to the standard rules for the
   305  	// addition (-0 if both a*b and c are -0, +0 otherwise).
   306  	//
   307  	// Otherwise, when a*b+c rounds to zero, then the resulting 0's sign is
   308  	// determined by the sign of the exact result a*b+c.
   309  	// See section 6.3 in ieee754.
   310  	//
   311  	// When the multiply is an infinity times a zero, the result is NaN.
   312  	// See section 7.2 in ieee754.
   313  	{name: "FMA", argLength: 3}, // compute (a*b)+c without intermediate rounding
   314  
   315  	// Data movement. Max argument length for Phi is indefinite.
   316  	{name: "Phi", argLength: -1, zeroWidth: true}, // select an argument based on which predecessor block we came from
   317  	{name: "Copy", argLength: 1},                  // output = arg0
   318  	// Convert converts between pointers and integers.
   319  	// We have a special op for this so as to not confuse GC
   320  	// (particularly stack maps).  It takes a memory arg so it
   321  	// gets correctly ordered with respect to GC safepoints.
   322  	// It gets compiled to nothing, so its result must in the same
   323  	// register as its argument. regalloc knows it can use any
   324  	// allocatable integer register for OpConvert.
   325  	// arg0=ptr/int arg1=mem, output=int/ptr
   326  	{name: "Convert", argLength: 2, zeroWidth: true, resultInArg0: true},
   327  
   328  	// constants. Constant values are stored in the aux or
   329  	// auxint fields.
   330  	{name: "ConstBool", aux: "Bool"},     // auxint is 0 for false and 1 for true
   331  	{name: "ConstString", aux: "String"}, // value is aux.(string)
   332  	{name: "ConstNil", typ: "BytePtr"},   // nil pointer
   333  	{name: "Const8", aux: "Int8"},        // auxint is sign-extended 8 bits
   334  	{name: "Const16", aux: "Int16"},      // auxint is sign-extended 16 bits
   335  	{name: "Const32", aux: "Int32"},      // auxint is sign-extended 32 bits
   336  	// Note: ConstX are sign-extended even when the type of the value is unsigned.
   337  	// For instance, uint8(0xaa) is stored as auxint=0xffffffffffffffaa.
   338  	{name: "Const64", aux: "Int64"}, // value is auxint
   339  	// Note: for both Const32F and Const64F, we disallow encoding NaNs.
   340  	// Signaling NaNs are tricky because if you do anything with them, they become quiet.
   341  	// Particularly, converting a 32 bit sNaN to 64 bit and back converts it to a qNaN.
   342  	// See issue 36399 and 36400.
   343  	// Encodings of +inf, -inf, and -0 are fine.
   344  	{name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly representable as float 32
   345  	{name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint))
   346  	{name: "ConstInterface"},           // nil interface
   347  	{name: "ConstSlice"},               // nil slice
   348  
   349  	// Constant-like things
   350  	{name: "InitMem", zeroWidth: true},                               // memory input to the function.
   351  	{name: "Arg", aux: "SymOff", symEffect: "Read", zeroWidth: true}, // argument to the function.  aux=GCNode of arg, off = offset in that arg.
   352  
   353  	// Like Arg, these are generic ops that survive lowering. AuxInt is a register index, and the actual output register for each index is defined by the architecture.
   354  	// AuxInt = integer argument index (not a register number). ABI-specified spill loc obtained from function
   355  	{name: "ArgIntReg", aux: "NameOffsetInt8", zeroWidth: true},   // argument to the function in an int reg.
   356  	{name: "ArgFloatReg", aux: "NameOffsetInt8", zeroWidth: true}, // argument to the function in a float reg.
   357  
   358  	// The address of a variable.  arg0 is the base pointer.
   359  	// If the variable is a global, the base pointer will be SB and
   360  	// the Aux field will be a *obj.LSym.
   361  	// If the variable is a local, the base pointer will be SP and
   362  	// the Aux field will be a *gc.Node.
   363  	{name: "Addr", argLength: 1, aux: "Sym", symEffect: "Addr"},      // Address of a variable.  Arg0=SB.  Aux identifies the variable.
   364  	{name: "LocalAddr", argLength: 2, aux: "Sym", symEffect: "Addr"}, // Address of a variable.  Arg0=SP. Arg1=mem. Aux identifies the variable.
   365  
   366  	{name: "SP", zeroWidth: true},                                       // stack pointer
   367  	{name: "SB", typ: "Uintptr", zeroWidth: true},                       // static base pointer (a.k.a. globals pointer)
   368  	{name: "Invalid"},                                                   // unused value
   369  	{name: "SPanchored", typ: "Uintptr", argLength: 2, zeroWidth: true}, // arg0 = SP, arg1 = mem. Result is identical to arg0, but cannot be scheduled before memory state arg1.
   370  
   371  	// Memory operations
   372  	{name: "Load", argLength: 2},                          // Load from arg0.  arg1=memory
   373  	{name: "Dereference", argLength: 2},                   // Load from arg0.  arg1=memory.  Helper op for arg/result passing, result is an otherwise not-SSA-able "value".
   374  	{name: "Store", argLength: 3, typ: "Mem", aux: "Typ"}, // Store arg1 to arg0.  arg2=memory, aux=type.  Returns memory.
   375  	// Normally we require that the source and destination of Move do not overlap.
   376  	// There is an exception when we know all the loads will happen before all
   377  	// the stores. In that case, overlap is ok. See
   378  	// memmove inlining in generic.rules. When inlineablememmovesize (in ../rewrite.go)
   379  	// returns true, we must do all loads before all stores, when lowering Move.
   380  	// The type of Move is used for the write barrier pass to insert write barriers
   381  	// and for alignment on some architectures.
   382  	// For pointerless types, it is possible for the type to be inaccurate.
   383  	// For type alignment and pointer information, use the type in Aux;
   384  	// for type size, use the size in AuxInt.
   385  	// The "inline runtime.memmove" rewrite rule generates Moves with inaccurate types,
   386  	// such as type byte instead of the more accurate type [8]byte.
   387  	{name: "Move", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
   388  	{name: "Zero", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
   389  
   390  	// Memory operations with write barriers.
   391  	// Expand to runtime calls. Write barrier will be removed if write on stack.
   392  	{name: "StoreWB", argLength: 3, typ: "Mem", aux: "Typ"},    // Store arg1 to arg0. arg2=memory, aux=type.  Returns memory.
   393  	{name: "MoveWB", argLength: 3, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size, aux=type.  Returns memory.
   394  	{name: "ZeroWB", argLength: 2, typ: "Mem", aux: "TypSize"}, // arg0=destptr, arg1=mem, auxint=size, aux=type. Returns memory.
   395  	{name: "WBend", argLength: 1, typ: "Mem"},                  // Write barrier code is done, interrupting is now allowed.
   396  
   397  	// WB invokes runtime.gcWriteBarrier.  This is not a normal
   398  	// call: it takes arguments in registers, doesn't clobber
   399  	// general-purpose registers (the exact clobber set is
   400  	// arch-dependent), and is not a safe-point.
   401  	{name: "WB", argLength: 1, typ: "(BytePtr,Mem)", aux: "Int64"}, // arg0=mem, auxint=# of buffer entries needed. Returns buffer pointer and memory.
   402  
   403  	{name: "HasCPUFeature", argLength: 0, typ: "bool", aux: "Sym", symEffect: "None"}, // aux=place that this feature flag can be loaded from
   404  
   405  	// PanicBounds and PanicExtend generate a runtime panic.
   406  	// Their arguments provide index values to use in panic messages.
   407  	// Both PanicBounds and PanicExtend have an AuxInt value from the BoundsKind type (in ../op.go).
   408  	// PanicBounds' index is int sized.
   409  	// PanicExtend's index is int64 sized. (PanicExtend is only used on 32-bit archs.)
   410  	{name: "PanicBounds", argLength: 3, aux: "Int64", typ: "Mem", call: true}, // arg0=idx, arg1=len, arg2=mem, returns memory.
   411  	{name: "PanicExtend", argLength: 4, aux: "Int64", typ: "Mem", call: true}, // arg0=idxHi, arg1=idxLo, arg2=len, arg3=mem, returns memory.
   412  
   413  	// Function calls. Arguments to the call have already been written to the stack.
   414  	// Return values appear on the stack. The method receiver, if any, is treated
   415  	// as a phantom first argument.
   416  	// TODO(josharian): ClosureCall and InterCall should have Int32 aux
   417  	// to match StaticCall's 32 bit arg size limit.
   418  	// TODO(drchase,josharian): could the arg size limit be bundled into the rules for CallOff?
   419  
   420  	// Before lowering, LECalls receive their fixed inputs (first), memory (last),
   421  	// and a variable number of input values in the middle.
   422  	// They produce a variable number of result values.
   423  	// These values are not necessarily "SSA-able"; they can be too large,
   424  	// but in that case inputs are loaded immediately before with OpDereference,
   425  	// and outputs are stored immediately with OpStore.
   426  	//
   427  	// After call expansion, Calls have the same fixed-middle-memory arrangement of inputs,
   428  	// with the difference that the "middle" is only the register-resident inputs,
   429  	// and the non-register inputs are instead stored at ABI-defined offsets from SP
   430  	// (and the stores thread through the memory that is ultimately an input to the call).
   431  	// Outputs follow a similar pattern; register-resident outputs are the leading elements
   432  	// of a Result-typed output, with memory last, and any memory-resident outputs have been
   433  	// stored to ABI-defined locations.  Each non-memory input or output fits in a register.
   434  	//
   435  	// Subsequent architecture-specific lowering only changes the opcode.
   436  
   437  	{name: "ClosureCall", argLength: -1, aux: "CallOff", call: true}, // arg0=code pointer, arg1=context ptr, arg2..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   438  	{name: "StaticCall", argLength: -1, aux: "CallOff", call: true},  // call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   439  	{name: "InterCall", argLength: -1, aux: "CallOff", call: true},   // interface call.  arg0=code pointer, arg1..argN-1 are register inputs, argN=memory, auxint=arg size.  Returns Result of register results, plus memory.
   440  	{name: "TailCall", argLength: -1, aux: "CallOff", call: true},    // tail call function aux.(*obj.LSym), arg0..argN-1 are register inputs, argN=memory.  auxint=arg size.  Returns Result of register results, plus memory.
   441  
   442  	{name: "ClosureLECall", argLength: -1, aux: "CallOff", call: true}, // late-expanded closure call. arg0=code pointer, arg1=context ptr,  arg2..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   443  	{name: "StaticLECall", argLength: -1, aux: "CallOff", call: true},  // late-expanded static call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   444  	{name: "InterLECall", argLength: -1, aux: "CallOff", call: true},   // late-expanded interface call. arg0=code pointer, arg1..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   445  	{name: "TailLECall", argLength: -1, aux: "CallOff", call: true},    // late-expanded static tail call function aux.(*ssa.AuxCall.Fn). arg0..argN-1 are inputs, argN is mem. auxint = arg size. Result is tuple of result(s), plus mem.
   446  
   447  	// Conversions: signed extensions, zero (unsigned) extensions, truncations
   448  	{name: "SignExt8to16", argLength: 1, typ: "Int16"},
   449  	{name: "SignExt8to32", argLength: 1, typ: "Int32"},
   450  	{name: "SignExt8to64", argLength: 1, typ: "Int64"},
   451  	{name: "SignExt16to32", argLength: 1, typ: "Int32"},
   452  	{name: "SignExt16to64", argLength: 1, typ: "Int64"},
   453  	{name: "SignExt32to64", argLength: 1, typ: "Int64"},
   454  	{name: "ZeroExt8to16", argLength: 1, typ: "UInt16"},
   455  	{name: "ZeroExt8to32", argLength: 1, typ: "UInt32"},
   456  	{name: "ZeroExt8to64", argLength: 1, typ: "UInt64"},
   457  	{name: "ZeroExt16to32", argLength: 1, typ: "UInt32"},
   458  	{name: "ZeroExt16to64", argLength: 1, typ: "UInt64"},
   459  	{name: "ZeroExt32to64", argLength: 1, typ: "UInt64"},
   460  	{name: "Trunc16to8", argLength: 1},
   461  	{name: "Trunc32to8", argLength: 1},
   462  	{name: "Trunc32to16", argLength: 1},
   463  	{name: "Trunc64to8", argLength: 1},
   464  	{name: "Trunc64to16", argLength: 1},
   465  	{name: "Trunc64to32", argLength: 1},
   466  
   467  	{name: "Cvt32to32F", argLength: 1},
   468  	{name: "Cvt32to64F", argLength: 1},
   469  	{name: "Cvt64to32F", argLength: 1},
   470  	{name: "Cvt64to64F", argLength: 1},
   471  	{name: "Cvt32Fto32", argLength: 1},
   472  	{name: "Cvt32Fto64", argLength: 1},
   473  	{name: "Cvt64Fto32", argLength: 1},
   474  	{name: "Cvt64Fto64", argLength: 1},
   475  	{name: "Cvt32Fto64F", argLength: 1},
   476  	{name: "Cvt64Fto32F", argLength: 1},
   477  	{name: "CvtBoolToUint8", argLength: 1},
   478  
   479  	// Force rounding to precision of type.
   480  	{name: "Round32F", argLength: 1},
   481  	{name: "Round64F", argLength: 1},
   482  
   483  	// Automatically inserted safety checks
   484  	{name: "IsNonNil", argLength: 1, typ: "Bool"},        // arg0 != nil
   485  	{name: "IsInBounds", argLength: 2, typ: "Bool"},      // 0 <= arg0 < arg1. arg1 is guaranteed >= 0.
   486  	{name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0.
   487  	{name: "NilCheck", argLength: 2, nilCheck: true},     // arg0=ptr, arg1=mem. Panics if arg0 is nil. Returns the ptr unmodified.
   488  
   489  	// Pseudo-ops
   490  	{name: "GetG", argLength: 1, zeroWidth: true}, // runtime.getg() (read g pointer). arg0=mem
   491  	{name: "GetClosurePtr"},                       // get closure pointer from dedicated register
   492  	{name: "GetCallerPC"},                         // for GetCallerPC intrinsic
   493  	{name: "GetCallerSP", argLength: 1},           // for GetCallerSP intrinsic. arg0=mem.
   494  
   495  	// Indexing operations
   496  	{name: "PtrIndex", argLength: 2},             // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type
   497  	{name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers)
   498  
   499  	// Slices
   500  	{name: "SliceMake", argLength: 3},                // arg0=ptr, arg1=len, arg2=cap
   501  	{name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
   502  	{name: "SliceLen", argLength: 1},                 // len(arg0)
   503  	{name: "SliceCap", argLength: 1},                 // cap(arg0)
   504  	// SlicePtrUnchecked, like SlicePtr, extracts the pointer from a slice.
   505  	// SlicePtr values are assumed non-nil, because they are guarded by bounds checks.
   506  	// SlicePtrUnchecked values can be nil.
   507  	{name: "SlicePtrUnchecked", argLength: 1},
   508  
   509  	// Complex (part/whole)
   510  	{name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag
   511  	{name: "ComplexReal", argLength: 1}, // real(arg0)
   512  	{name: "ComplexImag", argLength: 1}, // imag(arg0)
   513  
   514  	// Strings
   515  	{name: "StringMake", argLength: 2},                // arg0=ptr, arg1=len
   516  	{name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0)
   517  	{name: "StringLen", argLength: 1, typ: "Int"},     // len(arg0)
   518  
   519  	// Interfaces
   520  	{name: "IMake", argLength: 2},                // arg0=itab, arg1=data
   521  	{name: "ITab", argLength: 1, typ: "Uintptr"}, // arg0=interface, returns itable field
   522  	{name: "IData", argLength: 1},                // arg0=interface, returns data field
   523  
   524  	// Structs
   525  	{name: "StructMake", argLength: -1},                // args...=field0..n-1. Returns struct with n fields.
   526  	{name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index.  Returns the auxint'th field.
   527  
   528  	// Arrays
   529  	{name: "ArrayMake0"},                              // Returns array with 0 elements
   530  	{name: "ArrayMake1", argLength: 1},                // Returns array with 1 element
   531  	{name: "ArraySelect", argLength: 1, aux: "Int64"}, // arg0=array, auxint=index. Returns a[i].
   532  
   533  	// Spill&restore ops for the register allocator. These are
   534  	// semantically identical to OpCopy; they do not take/return
   535  	// stores like regular memory ops do. We can get away without memory
   536  	// args because we know there is no aliasing of spill slots on the stack.
   537  	{name: "StoreReg", argLength: 1},
   538  	{name: "LoadReg", argLength: 1},
   539  
   540  	// Used during ssa construction. Like Copy, but the arg has not been specified yet.
   541  	{name: "FwdRef", aux: "Sym", symEffect: "None"},
   542  
   543  	// Unknown value. Used for Values whose values don't matter because they are dead code.
   544  	{name: "Unknown"},
   545  
   546  	{name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem", symEffect: "None", zeroWidth: true}, // aux is a *gc.Node of a variable that is about to be initialized.  arg0=mem, returns mem
   547  	// TODO: what's the difference between VarLive and KeepAlive?
   548  	{name: "VarLive", argLength: 1, aux: "Sym", symEffect: "Read", zeroWidth: true}, // aux is a *gc.Node of a variable that must be kept live.  arg0=mem, returns mem
   549  	{name: "KeepAlive", argLength: 2, typ: "Mem", zeroWidth: true},                  // arg[0] is a value that must be kept alive until this mark.  arg[1]=mem, returns mem
   550  
   551  	// InlMark marks the start of an inlined function body. Its AuxInt field
   552  	// distinguishes which entry in the local inline tree it is marking.
   553  	{name: "InlMark", argLength: 1, aux: "Int32", typ: "Void"}, // arg[0]=mem, returns void.
   554  
   555  	// Ops for breaking 64-bit operations on 32-bit architectures
   556  	{name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo
   557  	{name: "Int64Hi", argLength: 1, typ: "UInt32"},   // high 32-bit of arg0
   558  	{name: "Int64Lo", argLength: 1, typ: "UInt32"},   // low 32-bit of arg0
   559  
   560  	{name: "Add32carry", argLength: 2, commutative: true, typ: "(UInt32,Flags)"}, // arg0 + arg1, returns (value, carry)
   561  	{name: "Add32withcarry", argLength: 3, commutative: true},                    // arg0 + arg1 + arg2, arg2=carry (0 or 1)
   562  
   563  	{name: "Sub32carry", argLength: 2, typ: "(UInt32,Flags)"}, // arg0 - arg1, returns (value, carry)
   564  	{name: "Sub32withcarry", argLength: 3},                    // arg0 - arg1 - arg2, arg2=carry (0 or 1)
   565  
   566  	{name: "Add64carry", argLength: 3, commutative: true, typ: "(UInt64,UInt64)"}, // arg0 + arg1 + arg2, arg2 must be 0 or 1. returns (value, value>>64)
   567  	{name: "Sub64borrow", argLength: 3, typ: "(UInt64,UInt64)"},                   // arg0 - (arg1 + arg2), arg2 must be 0 or 1. returns (value, value>>64&1)
   568  
   569  	{name: "Signmask", argLength: 1, typ: "Int32"},  // 0 if arg0 >= 0, -1 if arg0 < 0
   570  	{name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0
   571  	{name: "Slicemask", argLength: 1},               // 0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0. Type is native int size.
   572  
   573  	{name: "SpectreIndex", argLength: 2},      // arg0 if 0 <= arg0 < arg1, 0 otherwise. Type is native int size.
   574  	{name: "SpectreSliceIndex", argLength: 2}, // arg0 if 0 <= arg0 <= arg1, 0 otherwise. Type is native int size.
   575  
   576  	{name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch
   577  	{name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch
   578  	{name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch
   579  	{name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch
   580  	{name: "Cvt64Uto32F", argLength: 1}, // uint64 -> float32, only used on archs that has the instruction
   581  	{name: "Cvt64Uto64F", argLength: 1}, // uint64 -> float64, only used on archs that has the instruction
   582  	{name: "Cvt32Fto64U", argLength: 1}, // float32 -> uint64, only used on archs that has the instruction
   583  	{name: "Cvt64Fto64U", argLength: 1}, // float64 -> uint64, only used on archs that has the instruction
   584  
   585  	// pseudo-ops for breaking Tuple
   586  	{name: "Select0", argLength: 1, zeroWidth: true},  // the first component of a tuple
   587  	{name: "Select1", argLength: 1, zeroWidth: true},  // the second component of a tuple
   588  	{name: "SelectN", argLength: 1, aux: "Int64"},     // arg0=result, auxint=field index.  Returns the auxint'th member.
   589  	{name: "SelectNAddr", argLength: 1, aux: "Int64"}, // arg0=result, auxint=field index.  Returns the address of auxint'th member. Used for un-SSA-able result types.
   590  	{name: "MakeResult", argLength: -1},               // arg0 .. are components of a "Result" (like the result from a Call). The last arg should be memory (like the result from a call).
   591  
   592  	// Atomic operations used for semantically inlining sync/atomic and
   593  	// internal/runtime/atomic. Atomic loads return a new memory so that
   594  	// the loads are properly ordered with respect to other loads and
   595  	// stores.
   596  	{name: "AtomicLoad8", argLength: 2, typ: "(UInt8,Mem)"},                                    // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   597  	{name: "AtomicLoad32", argLength: 2, typ: "(UInt32,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   598  	{name: "AtomicLoad64", argLength: 2, typ: "(UInt64,Mem)"},                                  // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   599  	{name: "AtomicLoadPtr", argLength: 2, typ: "(BytePtr,Mem)"},                                // Load from arg0.  arg1=memory.  Returns loaded value and new memory.
   600  	{name: "AtomicLoadAcq32", argLength: 2, typ: "(UInt32,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
   601  	{name: "AtomicLoadAcq64", argLength: 2, typ: "(UInt64,Mem)"},                               // Load from arg0.  arg1=memory.  Lock acquisition, returns loaded value and new memory.
   602  	{name: "AtomicStore8", argLength: 3, typ: "Mem", hasSideEffects: true},                     // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   603  	{name: "AtomicStore32", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   604  	{name: "AtomicStore64", argLength: 3, typ: "Mem", hasSideEffects: true},                    // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   605  	{name: "AtomicStorePtrNoWB", argLength: 3, typ: "Mem", hasSideEffects: true},               // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   606  	{name: "AtomicStoreRel32", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
   607  	{name: "AtomicStoreRel64", argLength: 3, typ: "Mem", hasSideEffects: true},                 // Store arg1 to *arg0.  arg2=memory.  Lock release, returns memory.
   608  	{name: "AtomicExchange8", argLength: 3, typ: "(UInt8,Mem)", hasSideEffects: true},          // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   609  	{name: "AtomicExchange32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   610  	{name: "AtomicExchange64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},        // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   611  	{name: "AtomicAdd32", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   612  	{name: "AtomicAdd64", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},             // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   613  	{name: "AtomicCompareAndSwap32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   614  	{name: "AtomicCompareAndSwap64", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true},    // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   615  	{name: "AtomicCompareAndSwapRel32", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Lock release, reports whether store happens and new memory.
   616  
   617  	// Older atomic logical operations which don't return the old value.
   618  	{name: "AtomicAnd8", argLength: 3, typ: "Mem", hasSideEffects: true},  // *arg0 &= arg1.  arg2=memory.  Returns memory.
   619  	{name: "AtomicOr8", argLength: 3, typ: "Mem", hasSideEffects: true},   // *arg0 |= arg1.  arg2=memory.  Returns memory.
   620  	{name: "AtomicAnd32", argLength: 3, typ: "Mem", hasSideEffects: true}, // *arg0 &= arg1.  arg2=memory.  Returns memory.
   621  	{name: "AtomicOr32", argLength: 3, typ: "Mem", hasSideEffects: true},  // *arg0 |= arg1.  arg2=memory.  Returns memory.
   622  
   623  	// Newer atomic logical operations which return the old value.
   624  	{name: "AtomicAnd64value", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true}, // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   625  	{name: "AtomicAnd32value", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true}, // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   626  	{name: "AtomicAnd8value", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},   // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   627  	{name: "AtomicOr64value", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},  // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   628  	{name: "AtomicOr32value", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},  // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   629  	{name: "AtomicOr8value", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},    // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   630  
   631  	// Atomic operation variants
   632  	// These variants have the same semantics as above atomic operations.
   633  	// But they are used for generating more efficient code on certain modern machines, with run-time CPU feature detection.
   634  	// On ARM64, these are used when the LSE hardware feature is available (either known at compile time or detected at runtime). If LSE is not available,
   635  	// then the basic atomic oprations are used instead.
   636  	{name: "AtomicStore8Variant", argLength: 3, typ: "Mem", hasSideEffects: true},  // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   637  	{name: "AtomicStore32Variant", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   638  	{name: "AtomicStore64Variant", argLength: 3, typ: "Mem", hasSideEffects: true}, // Store arg1 to *arg0.  arg2=memory.  Returns memory.
   639  
   640  	{name: "AtomicAdd32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   641  	{name: "AtomicAdd64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},          // Do *arg0 += arg1.  arg2=memory.  Returns sum and new memory.
   642  	{name: "AtomicExchange8Variant", argLength: 3, typ: "(UInt8,Mem)", hasSideEffects: true},       // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   643  	{name: "AtomicExchange32Variant", argLength: 3, typ: "(UInt32,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   644  	{name: "AtomicExchange64Variant", argLength: 3, typ: "(UInt64,Mem)", hasSideEffects: true},     // Store arg1 to *arg0.  arg2=memory.  Returns old contents of *arg0 and new memory.
   645  	{name: "AtomicCompareAndSwap32Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   646  	{name: "AtomicCompareAndSwap64Variant", argLength: 4, typ: "(Bool,Mem)", hasSideEffects: true}, // if *arg0==arg1, then set *arg0=arg2.  Returns true if store happens and new memory.
   647  	{name: "AtomicAnd64valueVariant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},    // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   648  	{name: "AtomicOr64valueVariant", argLength: 3, typ: "(Uint64, Mem)", hasSideEffects: true},     // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   649  	{name: "AtomicAnd32valueVariant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},    // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   650  	{name: "AtomicOr32valueVariant", argLength: 3, typ: "(Uint32, Mem)", hasSideEffects: true},     // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   651  	{name: "AtomicAnd8valueVariant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},      // *arg0 &= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   652  	{name: "AtomicOr8valueVariant", argLength: 3, typ: "(Uint8, Mem)", hasSideEffects: true},       // *arg0 |= arg1.  arg2=memory.  Returns old contents of *arg0 and new memory.
   653  
   654  	// Publication barrier
   655  	{name: "PubBarrier", argLength: 1, hasSideEffects: true}, // Do data barrier. arg0=memory.
   656  
   657  	// Clobber experiment op
   658  	{name: "Clobber", argLength: 0, typ: "Void", aux: "SymOff", symEffect: "None"}, // write an invalid pointer value to the given pointer slot of a stack variable
   659  	{name: "ClobberReg", argLength: 0, typ: "Void"},                                // clobber a register
   660  
   661  	// Prefetch instruction
   662  	{name: "PrefetchCache", argLength: 2, hasSideEffects: true},         // Do prefetch arg0 to cache. arg0=addr, arg1=memory.
   663  	{name: "PrefetchCacheStreamed", argLength: 2, hasSideEffects: true}, // Do non-temporal or streamed prefetch arg0 to cache. arg0=addr, arg1=memory.
   664  }
   665  
   666  //     kind          controls        successors   implicit exit
   667  //   ----------------------------------------------------------
   668  //     Exit      [return mem]                []             yes
   669  //      Ret      [return mem]                []             yes
   670  //   RetJmp      [return mem]                []             yes
   671  //    Plain                []            [next]
   672  //       If   [boolean Value]      [then, else]
   673  //    First                []   [always, never]
   674  //    Defer             [mem]  [nopanic, panic]                  (control opcode should be OpStaticCall to runtime.deferproc)
   675  // JumpTable   [integer Value]  [succ1,succ2,..]
   676  
   677  var genericBlocks = []blockData{
   678  	{name: "Plain"},                  // a single successor
   679  	{name: "If", controls: 1},        // if Controls[0] goto Succs[0] else goto Succs[1]
   680  	{name: "Defer", controls: 1},     // Succs[0]=defer queued, Succs[1]=defer recovered. Controls[0] is call op (of memory type)
   681  	{name: "Ret", controls: 1},       // no successors, Controls[0] value is memory result
   682  	{name: "RetJmp", controls: 1},    // no successors, Controls[0] value is a tail call
   683  	{name: "Exit", controls: 1},      // no successors, Controls[0] value generates a panic
   684  	{name: "JumpTable", controls: 1}, // multiple successors, the integer Controls[0] selects which one
   685  
   686  	// transient block state used for dead code removal
   687  	{name: "First"}, // 2 successors, always takes the first one (second is dead)
   688  }
   689  
   690  func init() {
   691  	archs = append(archs, arch{
   692  		name:    "generic",
   693  		ops:     genericOps,
   694  		blocks:  genericBlocks,
   695  		generic: true,
   696  	})
   697  }
   698  

View as plain text