// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/internal/src" "fmt" ) // Block represents a basic block in the control flow graph of a function. type Block struct { // A unique identifier for the block. The system will attempt to allocate // these IDs densely, but no guarantees. ID ID // Source position for block's control operation Pos src.XPos // The kind of block this is. Kind BlockKind // Likely direction for branches. // If BranchLikely, Succs[0] is the most likely branch taken. // If BranchUnlikely, Succs[1] is the most likely branch taken. // Ignored if len(Succs) < 2. // Fatal if not BranchUnknown and len(Succs) > 2. Likely BranchPrediction // After flagalloc, records whether flags are live at the end of the block. FlagsLiveAtEnd bool // A block that would be good to align (according to the optimizer's guesses) Hotness Hotness // Subsequent blocks, if any. The number and order depend on the block kind. Succs []Edge // Inverse of successors. // The order is significant to Phi nodes in the block. // TODO: predecessors is a pain to maintain. Can we somehow order phi // arguments by block id and have this field computed explicitly when needed? Preds []Edge // A list of values that determine how the block is exited. The number // and type of control values depends on the Kind of the block. For // instance, a BlockIf has a single boolean control value and BlockExit // has a single memory control value. // // The ControlValues() method may be used to get a slice with the non-nil // control values that can be ranged over. // // Controls[1] must be nil if Controls[0] is nil. Controls [2]*Value // Auxiliary info for the block. Its value depends on the Kind. Aux Aux AuxInt int64 // The unordered set of Values that define the operation of this block. // After the scheduling pass, this list is ordered. Values []*Value // The containing function Func *Func // Storage for Succs, Preds and Values. succstorage [2]Edge predstorage [4]Edge valstorage [9]*Value } // Edge represents a CFG edge. // Example edges for b branching to either c or d. // (c and d have other predecessors.) // // b.Succs = [{c,3}, {d,1}] // c.Preds = [?, ?, ?, {b,0}] // d.Preds = [?, {b,1}, ?] // // These indexes allow us to edit the CFG in constant time. // In addition, it informs phi ops in degenerate cases like: // // b: // if k then c else c // c: // v = Phi(x, y) // // Then the indexes tell you whether x is chosen from // the if or else branch from b. // // b.Succs = [{c,0},{c,1}] // c.Preds = [{b,0},{b,1}] // // means x is chosen if k is true. type Edge struct { // block edge goes to (in a Succs list) or from (in a Preds list) b *Block // index of reverse edge. Invariant: // e := x.Succs[idx] // e.b.Preds[e.i] = Edge{x,idx} // and similarly for predecessors. i int } func (e Edge) Block() *Block { return e.b } func (e Edge) Index() int { return e.i } func (e Edge) String() string { return fmt.Sprintf("{%v,%d}", e.b, e.i) } // BlockKind is the kind of SSA block. type BlockKind uint8 // short form print func (b *Block) String() string { return fmt.Sprintf("b%d", b.ID) } // long form print func (b *Block) LongString() string { s := b.Kind.String() if b.Aux != nil { s += fmt.Sprintf(" {%s}", b.Aux) } if t := b.AuxIntString(); t != "" { s += fmt.Sprintf(" [%s]", t) } for _, c := range b.ControlValues() { s += fmt.Sprintf(" %s", c) } if len(b.Succs) > 0 { s += " ->" for _, c := range b.Succs { s += " " + c.b.String() } } switch b.Likely { case BranchUnlikely: s += " (unlikely)" case BranchLikely: s += " (likely)" } return s } // NumControls returns the number of non-nil control values the // block has. func (b *Block) NumControls() int { if b.Controls[0] == nil { return 0 } if b.Controls[1] == nil { return 1 } return 2 } // ControlValues returns a slice containing the non-nil control // values of the block. The index of each control value will be // the same as it is in the Controls property and can be used // in ReplaceControl calls. func (b *Block) ControlValues() []*Value { if b.Controls[0] == nil { return b.Controls[:0] } if b.Controls[1] == nil { return b.Controls[:1] } return b.Controls[:2] } // SetControl removes all existing control values and then adds // the control value provided. The number of control values after // a call to SetControl will always be 1. func (b *Block) SetControl(v *Value) { b.ResetControls() b.Controls[0] = v v.Uses++ } // ResetControls sets the number of controls for the block to 0. func (b *Block) ResetControls() { if b.Controls[0] != nil { b.Controls[0].Uses-- } if b.Controls[1] != nil { b.Controls[1].Uses-- } b.Controls = [2]*Value{} // reset both controls to nil } // AddControl appends a control value to the existing list of control values. func (b *Block) AddControl(v *Value) { i := b.NumControls() b.Controls[i] = v // panics if array is full v.Uses++ } // ReplaceControl exchanges the existing control value at the index provided // for the new value. The index must refer to a valid control value. func (b *Block) ReplaceControl(i int, v *Value) { b.Controls[i].Uses-- b.Controls[i] = v v.Uses++ } // CopyControls replaces the controls for this block with those from the // provided block. The provided block is not modified. func (b *Block) CopyControls(from *Block) { if b == from { return } b.ResetControls() for _, c := range from.ControlValues() { b.AddControl(c) } } // Reset sets the block to the provided kind and clears all the blocks control // and auxiliary values. Other properties of the block, such as its successors, // predecessors and values are left unmodified. func (b *Block) Reset(kind BlockKind) { b.Kind = kind b.ResetControls() b.Aux = nil b.AuxInt = 0 } // resetWithControl resets b and adds control v. // It is equivalent to b.Reset(kind); b.AddControl(v), // except that it is one call instead of two and avoids a bounds check. // It is intended for use by rewrite rules, where this matters. func (b *Block) resetWithControl(kind BlockKind, v *Value) { b.Kind = kind b.ResetControls() b.Aux = nil b.AuxInt = 0 b.Controls[0] = v v.Uses++ } // resetWithControl2 resets b and adds controls v and w. // It is equivalent to b.Reset(kind); b.AddControl(v); b.AddControl(w), // except that it is one call instead of three and avoids two bounds checks. // It is intended for use by rewrite rules, where this matters. func (b *Block) resetWithControl2(kind BlockKind, v, w *Value) { b.Kind = kind b.ResetControls() b.Aux = nil b.AuxInt = 0 b.Controls[0] = v b.Controls[1] = w v.Uses++ w.Uses++ } // truncateValues truncates b.Values at the ith element, zeroing subsequent elements. // The values in b.Values after i must already have had their args reset, // to maintain correct value uses counts. func (b *Block) truncateValues(i int) { tail := b.Values[i:] for j := range tail { tail[j] = nil } b.Values = b.Values[:i] } // AddEdgeTo adds an edge from block b to block c. func (b *Block) AddEdgeTo(c *Block) { i := len(b.Succs) j := len(c.Preds) b.Succs = append(b.Succs, Edge{c, j}) c.Preds = append(c.Preds, Edge{b, i}) b.Func.invalidateCFG() } // removePred removes the ith input edge from b. // It is the responsibility of the caller to remove // the corresponding successor edge, and adjust any // phi values by calling b.removePhiArg(v, i). func (b *Block) removePred(i int) { n := len(b.Preds) - 1 if i != n { e := b.Preds[n] b.Preds[i] = e // Update the other end of the edge we moved. e.b.Succs[e.i].i = i } b.Preds[n] = Edge{} b.Preds = b.Preds[:n] b.Func.invalidateCFG() } // removeSucc removes the ith output edge from b. // It is the responsibility of the caller to remove // the corresponding predecessor edge. // Note that this potentially reorders successors of b, so it // must be used very carefully. func (b *Block) removeSucc(i int) { n := len(b.Succs) - 1 if i != n { e := b.Succs[n] b.Succs[i] = e // Update the other end of the edge we moved. e.b.Preds[e.i].i = i } b.Succs[n] = Edge{} b.Succs = b.Succs[:n] b.Func.invalidateCFG() } func (b *Block) swapSuccessors() { if len(b.Succs) != 2 { b.Fatalf("swapSuccessors with len(Succs)=%d", len(b.Succs)) } e0 := b.Succs[0] e1 := b.Succs[1] b.Succs[0] = e1 b.Succs[1] = e0 e0.b.Preds[e0.i].i = 1 e1.b.Preds[e1.i].i = 0 b.Likely *= -1 } // Swaps b.Succs[x] and b.Succs[y]. func (b *Block) swapSuccessorsByIdx(x, y int) { if x == y { return } ex := b.Succs[x] ey := b.Succs[y] b.Succs[x] = ey b.Succs[y] = ex ex.b.Preds[ex.i].i = y ey.b.Preds[ey.i].i = x } // removePhiArg removes the ith arg from phi. // It must be called after calling b.removePred(i) to // adjust the corresponding phi value of the block: // // b.removePred(i) // for _, v := range b.Values { // // if v.Op != OpPhi { // continue // } // b.removePhiArg(v, i) // // } func (b *Block) removePhiArg(phi *Value, i int) { n := len(b.Preds) if numPhiArgs := len(phi.Args); numPhiArgs-1 != n { b.Fatalf("inconsistent state for %v, num predecessors: %d, num phi args: %d", phi, n, numPhiArgs) } phi.Args[i].Uses-- phi.Args[i] = phi.Args[n] phi.Args[n] = nil phi.Args = phi.Args[:n] phielimValue(phi) } // uniquePred returns the predecessor of b, if there is exactly one. // Returns nil otherwise. func (b *Block) uniquePred() *Block { if len(b.Preds) != 1 { return nil } return b.Preds[0].b } // LackingPos indicates whether b is a block whose position should be inherited // from its successors. This is true if all the values within it have unreliable positions // and if it is "plain", meaning that there is no control flow that is also very likely // to correspond to a well-understood source position. func (b *Block) LackingPos() bool { // Non-plain predecessors are If or Defer, which both (1) have two successors, // which might have different line numbers and (2) correspond to statements // in the source code that have positions, so this case ought not occur anyway. if b.Kind != BlockPlain { return false } if b.Pos != src.NoXPos { return false } for _, v := range b.Values { if v.LackingPos() { continue } return false } return true } func (b *Block) AuxIntString() string { switch b.Kind.AuxIntType() { case "int8": return fmt.Sprintf("%v", int8(b.AuxInt)) case "uint8": return fmt.Sprintf("%v", uint8(b.AuxInt)) case "": // no aux int type return "" default: // type specified but not implemented - print as int64 return fmt.Sprintf("%v", b.AuxInt) } } // likelyBranch reports whether block b is the likely branch of all of its predecessors. func (b *Block) likelyBranch() bool { if len(b.Preds) == 0 { return false } for _, e := range b.Preds { p := e.b if len(p.Succs) == 1 || len(p.Succs) == 2 && (p.Likely == BranchLikely && p.Succs[0].b == b || p.Likely == BranchUnlikely && p.Succs[1].b == b) { continue } return false } return true } func (b *Block) Logf(msg string, args ...interface{}) { b.Func.Logf(msg, args...) } func (b *Block) Log() bool { return b.Func.Log() } func (b *Block) Fatalf(msg string, args ...interface{}) { b.Func.Fatalf(msg, args...) } type BranchPrediction int8 const ( BranchUnlikely = BranchPrediction(-1) BranchUnknown = BranchPrediction(0) BranchLikely = BranchPrediction(+1) ) type Hotness int8 // Could use negative numbers for specifically non-hot blocks, but don't, yet. const ( // These values are arranged in what seems to be order of increasing alignment importance. // Currently only a few are relevant. Implicitly, they are all in a loop. HotNotFlowIn Hotness = 1 << iota // This block is only reached by branches HotInitial // In the block order, the first one for a given loop. Not necessarily topological header. HotPgo // By PGO-based heuristics, this block occurs in a hot loop HotNot = 0 HotInitialNotFlowIn = HotInitial | HotNotFlowIn // typically first block of a rotated loop, loop is entered with a branch (not to this block). No PGO HotPgoInitial = HotPgo | HotInitial // special case; single block loop, initial block is header block has a flow-in entry, but PGO says it is hot HotPgoInitialNotFLowIn = HotPgo | HotInitial | HotNotFlowIn // PGO says it is hot, and the loop is rotated so flow enters loop with a branch )