Source file src/cmd/compile/internal/ssa/func.go

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"cmd/compile/internal/abi"
     9  	"cmd/compile/internal/base"
    10  	"cmd/compile/internal/ir"
    11  	"cmd/compile/internal/typecheck"
    12  	"cmd/compile/internal/types"
    13  	"cmd/internal/obj"
    14  	"cmd/internal/src"
    15  	"fmt"
    16  	"math"
    17  	"strings"
    18  )
    19  
    20  // A Func represents a Go func declaration (or function literal) and its body.
    21  // This package compiles each Func independently.
    22  // Funcs are single-use; a new Func must be created for every compiled function.
    23  type Func struct {
    24  	Config *Config     // architecture information
    25  	Cache  *Cache      // re-usable cache
    26  	fe     Frontend    // frontend state associated with this Func, callbacks into compiler frontend
    27  	pass   *pass       // current pass information (name, options, etc.)
    28  	Name   string      // e.g. NewFunc or (*Func).NumBlocks (no package prefix)
    29  	Type   *types.Type // type signature of the function.
    30  	Blocks []*Block    // unordered set of all basic blocks (note: not indexable by ID)
    31  	Entry  *Block      // the entry basic block
    32  
    33  	bid idAlloc // block ID allocator
    34  	vid idAlloc // value ID allocator
    35  
    36  	HTMLWriter     *HTMLWriter    // html writer, for debugging
    37  	PrintOrHtmlSSA bool           // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false.  There's an odd dependence on this in debug.go for method logf.
    38  	ruleMatches    map[string]int // number of times countRule was called during compilation for any given string
    39  	ABI0           *abi.ABIConfig // A copy, for no-sync access
    40  	ABI1           *abi.ABIConfig // A copy, for no-sync access
    41  	ABISelf        *abi.ABIConfig // ABI for function being compiled
    42  	ABIDefault     *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions.
    43  
    44  	maxCPUFeatures CPUfeatures // union of all the CPU features in all the blocks.
    45  
    46  	scheduled   bool  // Values in Blocks are in final order
    47  	laidout     bool  // Blocks are ordered
    48  	NoSplit     bool  // true if function is marked as nosplit.  Used by schedule check pass.
    49  	dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName)
    50  	IsPgoHot    bool
    51  	DeferReturn *Block // avoid creating more than one deferreturn if there's multiple calls to deferproc-etc.
    52  
    53  	// when register allocation is done, maps value ids to locations
    54  	RegAlloc []Location
    55  
    56  	// temporary registers allocated to rare instructions
    57  	tempRegs map[ID]*Register
    58  
    59  	// map from LocalSlot to set of Values that we want to store in that slot.
    60  	NamedValues map[LocalSlot][]*Value
    61  	// Names is a copy of NamedValues.Keys. We keep a separate list
    62  	// of keys to make iteration order deterministic.
    63  	Names []*LocalSlot
    64  	// Canonicalize root/top-level local slots, and canonicalize their pieces.
    65  	// Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal.
    66  	CanonicalLocalSlots  map[LocalSlot]*LocalSlot
    67  	CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot
    68  
    69  	// RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry.
    70  	RegArgs []Spill
    71  	// OwnAux describes parameters and results for this function.
    72  	OwnAux *AuxCall
    73  	// CloSlot holds the compiler-synthesized name (".closureptr")
    74  	// where we spill the closure pointer for range func bodies.
    75  	CloSlot *ir.Name
    76  
    77  	freeValues *Value // free Values linked by argstorage[0].  All other fields except ID are 0/nil.
    78  	freeBlocks *Block // free Blocks linked by succstorage[0].b.  All other fields except ID are 0/nil.
    79  
    80  	cachedPostorder  []*Block   // cached postorder traversal
    81  	cachedIdom       []*Block   // cached immediate dominators
    82  	cachedSdom       SparseTree // cached dominator tree
    83  	cachedLoopnest   *loopnest  // cached loop nest information
    84  	cachedLineStarts *xposmap   // cached map/set of xpos to integers
    85  
    86  	auxmap    auxmap             // map from aux values to opaque ids used by CSE
    87  	constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type
    88  }
    89  
    90  type LocalSlotSplitKey struct {
    91  	parent *LocalSlot
    92  	Off    int64       // offset of slot in N
    93  	Type   *types.Type // type of slot
    94  }
    95  
    96  // NewFunc returns a new, empty function object.
    97  // Caller must reset cache before calling NewFunc.
    98  func (c *Config) NewFunc(fe Frontend, cache *Cache) *Func {
    99  	return &Func{
   100  		fe:     fe,
   101  		Config: c,
   102  		Cache:  cache,
   103  
   104  		NamedValues:          make(map[LocalSlot][]*Value),
   105  		CanonicalLocalSlots:  make(map[LocalSlot]*LocalSlot),
   106  		CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot),
   107  		OwnAux:               &AuxCall{},
   108  	}
   109  }
   110  
   111  // NumBlocks returns an integer larger than the id of any Block in the Func.
   112  func (f *Func) NumBlocks() int {
   113  	return f.bid.num()
   114  }
   115  
   116  // NumValues returns an integer larger than the id of any Value in the Func.
   117  func (f *Func) NumValues() int {
   118  	return f.vid.num()
   119  }
   120  
   121  // NameABI returns the function name followed by comma and the ABI number.
   122  // This is intended for use with GOSSAFUNC and HTML dumps, and differs from
   123  // the linker's "<1>" convention because "<" and ">" require shell quoting
   124  // and are not legal file names (for use with GOSSADIR) on Windows.
   125  func (f *Func) NameABI() string {
   126  	return FuncNameABI(f.Name, f.ABISelf.Which())
   127  }
   128  
   129  // FuncNameABI returns n followed by a comma and the value of a.
   130  // This is a separate function to allow a single point encoding
   131  // of the format, which is used in places where there's not a Func yet.
   132  func FuncNameABI(n string, a obj.ABI) string {
   133  	return fmt.Sprintf("%s,%d", n, a)
   134  }
   135  
   136  // newSparseSet returns a sparse set that can store at least up to n integers.
   137  func (f *Func) newSparseSet(n int) *sparseSet {
   138  	return f.Cache.allocSparseSet(n)
   139  }
   140  
   141  // retSparseSet returns a sparse set to the config's cache of sparse
   142  // sets to be reused by f.newSparseSet.
   143  func (f *Func) retSparseSet(ss *sparseSet) {
   144  	f.Cache.freeSparseSet(ss)
   145  }
   146  
   147  // newSparseMap returns a sparse map that can store at least up to n integers.
   148  func (f *Func) newSparseMap(n int) *sparseMap {
   149  	return f.Cache.allocSparseMap(n)
   150  }
   151  
   152  // retSparseMap returns a sparse map to the config's cache of sparse
   153  // sets to be reused by f.newSparseMap.
   154  func (f *Func) retSparseMap(ss *sparseMap) {
   155  	f.Cache.freeSparseMap(ss)
   156  }
   157  
   158  // newSparseMapPos returns a sparse map that can store at least up to n integers.
   159  func (f *Func) newSparseMapPos(n int) *sparseMapPos {
   160  	return f.Cache.allocSparseMapPos(n)
   161  }
   162  
   163  // retSparseMapPos returns a sparse map to the config's cache of sparse
   164  // sets to be reused by f.newSparseMapPos.
   165  func (f *Func) retSparseMapPos(ss *sparseMapPos) {
   166  	f.Cache.freeSparseMapPos(ss)
   167  }
   168  
   169  // newPoset returns a new poset from the internal cache
   170  func (f *Func) newPoset() *poset {
   171  	if len(f.Cache.scrPoset) > 0 {
   172  		po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1]
   173  		f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1]
   174  		return po
   175  	}
   176  	return newPoset()
   177  }
   178  
   179  // retPoset returns a poset to the internal cache
   180  func (f *Func) retPoset(po *poset) {
   181  	f.Cache.scrPoset = append(f.Cache.scrPoset, po)
   182  }
   183  
   184  func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot {
   185  	a, ok := f.CanonicalLocalSlots[slot]
   186  	if !ok {
   187  		a = new(LocalSlot)
   188  		*a = slot // don't escape slot
   189  		f.CanonicalLocalSlots[slot] = a
   190  	}
   191  	return a
   192  }
   193  
   194  func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) {
   195  	ptrType := types.NewPtr(types.Types[types.TUINT8])
   196  	lenType := types.Types[types.TINT]
   197  	// Split this string up into two separate variables.
   198  	p := f.SplitSlot(name, ".ptr", 0, ptrType)
   199  	l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
   200  	return p, l
   201  }
   202  
   203  func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) {
   204  	n := name.N
   205  	u := types.Types[types.TUINTPTR]
   206  	t := types.NewPtr(types.Types[types.TUINT8])
   207  	// Split this interface up into two separate variables.
   208  	sfx := ".itab"
   209  	if n.Type().IsEmptyInterface() {
   210  		sfx = ".type"
   211  	}
   212  	c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set
   213  	d := f.SplitSlot(name, ".data", u.Size(), t)
   214  	return c, d
   215  }
   216  
   217  func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) {
   218  	ptrType := types.NewPtr(name.Type.Elem())
   219  	lenType := types.Types[types.TINT]
   220  	p := f.SplitSlot(name, ".ptr", 0, ptrType)
   221  	l := f.SplitSlot(name, ".len", ptrType.Size(), lenType)
   222  	c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType)
   223  	return p, l, c
   224  }
   225  
   226  func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) {
   227  	s := name.Type.Size() / 2
   228  	var t *types.Type
   229  	if s == 8 {
   230  		t = types.Types[types.TFLOAT64]
   231  	} else {
   232  		t = types.Types[types.TFLOAT32]
   233  	}
   234  	r := f.SplitSlot(name, ".real", 0, t)
   235  	i := f.SplitSlot(name, ".imag", t.Size(), t)
   236  	return r, i
   237  }
   238  
   239  func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) {
   240  	var t *types.Type
   241  	if name.Type.IsSigned() {
   242  		t = types.Types[types.TINT32]
   243  	} else {
   244  		t = types.Types[types.TUINT32]
   245  	}
   246  	if f.Config.BigEndian {
   247  		return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32])
   248  	}
   249  	return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32])
   250  }
   251  
   252  func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot {
   253  	st := name.Type
   254  	return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i))
   255  }
   256  func (f *Func) SplitArray(name *LocalSlot) *LocalSlot {
   257  	n := name.N
   258  	at := name.Type
   259  	if at.NumElem() != 1 {
   260  		base.FatalfAt(n.Pos(), "bad array size")
   261  	}
   262  	et := at.Elem()
   263  	return f.SplitSlot(name, "[0]", 0, et)
   264  }
   265  
   266  func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot {
   267  	lssk := LocalSlotSplitKey{name, offset, t}
   268  	if als, ok := f.CanonicalLocalSplits[lssk]; ok {
   269  		return als
   270  	}
   271  	// Note: the _ field may appear several times.  But
   272  	// have no fear, identically-named but distinct Autos are
   273  	// ok, albeit maybe confusing for a debugger.
   274  	ls := f.fe.SplitSlot(name, sfx, offset, t)
   275  	f.CanonicalLocalSplits[lssk] = &ls
   276  	return &ls
   277  }
   278  
   279  // newValue allocates a new Value with the given fields and places it at the end of b.Values.
   280  func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value {
   281  	var v *Value
   282  	if f.freeValues != nil {
   283  		v = f.freeValues
   284  		f.freeValues = v.argstorage[0]
   285  		v.argstorage[0] = nil
   286  	} else {
   287  		ID := f.vid.get()
   288  		if int(ID) < len(f.Cache.values) {
   289  			v = &f.Cache.values[ID]
   290  			v.ID = ID
   291  		} else {
   292  			v = &Value{ID: ID}
   293  		}
   294  	}
   295  	v.Op = op
   296  	v.Type = t
   297  	v.Block = b
   298  	if notStmtBoundary(op) {
   299  		pos = pos.WithNotStmt()
   300  	}
   301  	v.Pos = pos
   302  	b.Values = append(b.Values, v)
   303  	return v
   304  }
   305  
   306  // newValueNoBlock allocates a new Value with the given fields.
   307  // The returned value is not placed in any block.  Once the caller
   308  // decides on a block b, it must set b.Block and append
   309  // the returned value to b.Values.
   310  func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value {
   311  	var v *Value
   312  	if f.freeValues != nil {
   313  		v = f.freeValues
   314  		f.freeValues = v.argstorage[0]
   315  		v.argstorage[0] = nil
   316  	} else {
   317  		ID := f.vid.get()
   318  		if int(ID) < len(f.Cache.values) {
   319  			v = &f.Cache.values[ID]
   320  			v.ID = ID
   321  		} else {
   322  			v = &Value{ID: ID}
   323  		}
   324  	}
   325  	v.Op = op
   326  	v.Type = t
   327  	v.Block = nil // caller must fix this.
   328  	if notStmtBoundary(op) {
   329  		pos = pos.WithNotStmt()
   330  	}
   331  	v.Pos = pos
   332  	return v
   333  }
   334  
   335  // LogStat writes a string key and int value as a warning in a
   336  // tab-separated format easily handled by spreadsheets or awk.
   337  // file names, lines, and function names are included to provide enough (?)
   338  // context to allow item-by-item comparisons across runs.
   339  // For example:
   340  // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log
   341  func (f *Func) LogStat(key string, args ...any) {
   342  	value := ""
   343  	for _, a := range args {
   344  		value += fmt.Sprintf("\t%v", a)
   345  	}
   346  	n := "missing_pass"
   347  	if f.pass != nil {
   348  		n = strings.ReplaceAll(f.pass.name, " ", "_")
   349  	}
   350  	f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name)
   351  }
   352  
   353  // unCacheLine removes v from f's constant cache "line" for aux,
   354  // resets v.InCache when it is found (and removed),
   355  // and returns whether v was found in that line.
   356  func (f *Func) unCacheLine(v *Value, aux int64) bool {
   357  	vv := f.constants[aux]
   358  	for i, cv := range vv {
   359  		if v == cv {
   360  			vv[i] = vv[len(vv)-1]
   361  			vv[len(vv)-1] = nil
   362  			f.constants[aux] = vv[0 : len(vv)-1]
   363  			v.InCache = false
   364  			return true
   365  		}
   366  	}
   367  	return false
   368  }
   369  
   370  // unCache removes v from f's constant cache.
   371  func (f *Func) unCache(v *Value) {
   372  	if v.InCache {
   373  		aux := v.AuxInt
   374  		if f.unCacheLine(v, aux) {
   375  			return
   376  		}
   377  		if aux == 0 {
   378  			switch v.Op {
   379  			case OpConstNil:
   380  				aux = constNilMagic
   381  			case OpConstSlice:
   382  				aux = constSliceMagic
   383  			case OpConstString:
   384  				aux = constEmptyStringMagic
   385  			case OpConstInterface:
   386  				aux = constInterfaceMagic
   387  			}
   388  			if aux != 0 && f.unCacheLine(v, aux) {
   389  				return
   390  			}
   391  		}
   392  		f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux)
   393  	}
   394  }
   395  
   396  // freeValue frees a value. It must no longer be referenced or have any args.
   397  func (f *Func) freeValue(v *Value) {
   398  	if v.Block == nil {
   399  		f.Fatalf("trying to free an already freed value")
   400  	}
   401  	if v.Uses != 0 {
   402  		f.Fatalf("value %s still has %d uses", v, v.Uses)
   403  	}
   404  	if len(v.Args) != 0 {
   405  		f.Fatalf("value %s still has %d args", v, len(v.Args))
   406  	}
   407  	// Clear everything but ID (which we reuse).
   408  	id := v.ID
   409  	if v.InCache {
   410  		f.unCache(v)
   411  	}
   412  	*v = Value{}
   413  	v.ID = id
   414  	v.argstorage[0] = f.freeValues
   415  	f.freeValues = v
   416  }
   417  
   418  // NewBlock allocates a new Block of the given kind and places it at the end of f.Blocks.
   419  func (f *Func) NewBlock(kind BlockKind) *Block {
   420  	var b *Block
   421  	if f.freeBlocks != nil {
   422  		b = f.freeBlocks
   423  		f.freeBlocks = b.succstorage[0].b
   424  		b.succstorage[0].b = nil
   425  	} else {
   426  		ID := f.bid.get()
   427  		if int(ID) < len(f.Cache.blocks) {
   428  			b = &f.Cache.blocks[ID]
   429  			b.ID = ID
   430  		} else {
   431  			b = &Block{ID: ID}
   432  		}
   433  	}
   434  	b.Kind = kind
   435  	b.Func = f
   436  	b.Preds = b.predstorage[:0]
   437  	b.Succs = b.succstorage[:0]
   438  	b.Values = b.valstorage[:0]
   439  	f.Blocks = append(f.Blocks, b)
   440  	f.invalidateCFG()
   441  	return b
   442  }
   443  
   444  func (f *Func) freeBlock(b *Block) {
   445  	if b.Func == nil {
   446  		f.Fatalf("trying to free an already freed block")
   447  	}
   448  	// Clear everything but ID (which we reuse).
   449  	id := b.ID
   450  	*b = Block{}
   451  	b.ID = id
   452  	b.succstorage[0].b = f.freeBlocks
   453  	f.freeBlocks = b
   454  }
   455  
   456  // NewValue0 returns a new value in the block with no arguments and zero aux values.
   457  func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value {
   458  	v := b.Func.newValue(op, t, b, pos)
   459  	v.AuxInt = 0
   460  	v.Args = v.argstorage[:0]
   461  	return v
   462  }
   463  
   464  // NewValue0I returns a new value in the block with no arguments and an auxint value.
   465  func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value {
   466  	v := b.Func.newValue(op, t, b, pos)
   467  	v.AuxInt = auxint
   468  	v.Args = v.argstorage[:0]
   469  	return v
   470  }
   471  
   472  // NewValue0A returns a new value in the block with no arguments and an aux value.
   473  func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value {
   474  	v := b.Func.newValue(op, t, b, pos)
   475  	v.AuxInt = 0
   476  	v.Aux = aux
   477  	v.Args = v.argstorage[:0]
   478  	return v
   479  }
   480  
   481  // NewValue0IA returns a new value in the block with no arguments and both an auxint and aux values.
   482  func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value {
   483  	v := b.Func.newValue(op, t, b, pos)
   484  	v.AuxInt = auxint
   485  	v.Aux = aux
   486  	v.Args = v.argstorage[:0]
   487  	return v
   488  }
   489  
   490  // NewValue1 returns a new value in the block with one argument and zero aux values.
   491  func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value {
   492  	v := b.Func.newValue(op, t, b, pos)
   493  	v.AuxInt = 0
   494  	v.Args = v.argstorage[:1]
   495  	v.argstorage[0] = arg
   496  	arg.Uses++
   497  	return v
   498  }
   499  
   500  // NewValue1I returns a new value in the block with one argument and an auxint value.
   501  func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value {
   502  	v := b.Func.newValue(op, t, b, pos)
   503  	v.AuxInt = auxint
   504  	v.Args = v.argstorage[:1]
   505  	v.argstorage[0] = arg
   506  	arg.Uses++
   507  	return v
   508  }
   509  
   510  // NewValue1A returns a new value in the block with one argument and an aux value.
   511  func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value {
   512  	v := b.Func.newValue(op, t, b, pos)
   513  	v.AuxInt = 0
   514  	v.Aux = aux
   515  	v.Args = v.argstorage[:1]
   516  	v.argstorage[0] = arg
   517  	arg.Uses++
   518  	return v
   519  }
   520  
   521  // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values.
   522  func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value {
   523  	v := b.Func.newValue(op, t, b, pos)
   524  	v.AuxInt = auxint
   525  	v.Aux = aux
   526  	v.Args = v.argstorage[:1]
   527  	v.argstorage[0] = arg
   528  	arg.Uses++
   529  	return v
   530  }
   531  
   532  // NewValue2 returns a new value in the block with two arguments and zero aux values.
   533  func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value {
   534  	v := b.Func.newValue(op, t, b, pos)
   535  	v.AuxInt = 0
   536  	v.Args = v.argstorage[:2]
   537  	v.argstorage[0] = arg0
   538  	v.argstorage[1] = arg1
   539  	arg0.Uses++
   540  	arg1.Uses++
   541  	return v
   542  }
   543  
   544  // NewValue2A returns a new value in the block with two arguments and one aux values.
   545  func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value {
   546  	v := b.Func.newValue(op, t, b, pos)
   547  	v.AuxInt = 0
   548  	v.Aux = aux
   549  	v.Args = v.argstorage[:2]
   550  	v.argstorage[0] = arg0
   551  	v.argstorage[1] = arg1
   552  	arg0.Uses++
   553  	arg1.Uses++
   554  	return v
   555  }
   556  
   557  // NewValue2I returns a new value in the block with two arguments and an auxint value.
   558  func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value {
   559  	v := b.Func.newValue(op, t, b, pos)
   560  	v.AuxInt = auxint
   561  	v.Args = v.argstorage[:2]
   562  	v.argstorage[0] = arg0
   563  	v.argstorage[1] = arg1
   564  	arg0.Uses++
   565  	arg1.Uses++
   566  	return v
   567  }
   568  
   569  // NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values.
   570  func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value {
   571  	v := b.Func.newValue(op, t, b, pos)
   572  	v.AuxInt = auxint
   573  	v.Aux = aux
   574  	v.Args = v.argstorage[:2]
   575  	v.argstorage[0] = arg0
   576  	v.argstorage[1] = arg1
   577  	arg0.Uses++
   578  	arg1.Uses++
   579  	return v
   580  }
   581  
   582  // NewValue3 returns a new value in the block with three arguments and zero aux values.
   583  func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value {
   584  	v := b.Func.newValue(op, t, b, pos)
   585  	v.AuxInt = 0
   586  	v.Args = v.argstorage[:3]
   587  	v.argstorage[0] = arg0
   588  	v.argstorage[1] = arg1
   589  	v.argstorage[2] = arg2
   590  	arg0.Uses++
   591  	arg1.Uses++
   592  	arg2.Uses++
   593  	return v
   594  }
   595  
   596  // NewValue3I returns a new value in the block with three arguments and an auxint value.
   597  func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value {
   598  	v := b.Func.newValue(op, t, b, pos)
   599  	v.AuxInt = auxint
   600  	v.Args = v.argstorage[:3]
   601  	v.argstorage[0] = arg0
   602  	v.argstorage[1] = arg1
   603  	v.argstorage[2] = arg2
   604  	arg0.Uses++
   605  	arg1.Uses++
   606  	arg2.Uses++
   607  	return v
   608  }
   609  
   610  // NewValue3A returns a new value in the block with three argument and an aux value.
   611  func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value {
   612  	v := b.Func.newValue(op, t, b, pos)
   613  	v.AuxInt = 0
   614  	v.Aux = aux
   615  	v.Args = v.argstorage[:3]
   616  	v.argstorage[0] = arg0
   617  	v.argstorage[1] = arg1
   618  	v.argstorage[2] = arg2
   619  	arg0.Uses++
   620  	arg1.Uses++
   621  	arg2.Uses++
   622  	return v
   623  }
   624  
   625  // NewValue4 returns a new value in the block with four arguments and zero aux values.
   626  func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value {
   627  	v := b.Func.newValue(op, t, b, pos)
   628  	v.AuxInt = 0
   629  	v.Args = []*Value{arg0, arg1, arg2, arg3}
   630  	arg0.Uses++
   631  	arg1.Uses++
   632  	arg2.Uses++
   633  	arg3.Uses++
   634  	return v
   635  }
   636  
   637  // NewValue4A returns a new value in the block with four arguments and zero aux values.
   638  func (b *Block) NewValue4A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2, arg3 *Value) *Value {
   639  	v := b.Func.newValue(op, t, b, pos)
   640  	v.AuxInt = 0
   641  	v.Aux = aux
   642  	v.Args = []*Value{arg0, arg1, arg2, arg3}
   643  	arg0.Uses++
   644  	arg1.Uses++
   645  	arg2.Uses++
   646  	arg3.Uses++
   647  	return v
   648  }
   649  
   650  // NewValue4I returns a new value in the block with four arguments and auxint value.
   651  func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value {
   652  	v := b.Func.newValue(op, t, b, pos)
   653  	v.AuxInt = auxint
   654  	v.Args = []*Value{arg0, arg1, arg2, arg3}
   655  	arg0.Uses++
   656  	arg1.Uses++
   657  	arg2.Uses++
   658  	arg3.Uses++
   659  	return v
   660  }
   661  
   662  // constVal returns a constant value for c.
   663  func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value {
   664  	if f.constants == nil {
   665  		f.constants = make(map[int64][]*Value)
   666  	}
   667  	vv := f.constants[c]
   668  	for _, v := range vv {
   669  		if v.Op == op && v.Type.Compare(t) == types.CMPeq {
   670  			if setAuxInt && v.AuxInt != c {
   671  				panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c))
   672  			}
   673  			return v
   674  		}
   675  	}
   676  	var v *Value
   677  	if setAuxInt {
   678  		v = f.Entry.NewValue0I(src.NoXPos, op, t, c)
   679  	} else {
   680  		v = f.Entry.NewValue0(src.NoXPos, op, t)
   681  	}
   682  	f.constants[c] = append(vv, v)
   683  	v.InCache = true
   684  	return v
   685  }
   686  
   687  // These magic auxint values let us easily cache non-numeric constants
   688  // using the same constants map while making collisions unlikely.
   689  // These values are unlikely to occur in regular code and
   690  // are easy to grep for in case of bugs.
   691  const (
   692  	constSliceMagic       = 1122334455
   693  	constInterfaceMagic   = 2233445566
   694  	constNilMagic         = 3344556677
   695  	constEmptyStringMagic = 4455667788
   696  )
   697  
   698  // ConstBool returns an int constant representing its argument.
   699  func (f *Func) ConstBool(t *types.Type, c bool) *Value {
   700  	i := int64(0)
   701  	if c {
   702  		i = 1
   703  	}
   704  	return f.constVal(OpConstBool, t, i, true)
   705  }
   706  func (f *Func) ConstInt8(t *types.Type, c int8) *Value {
   707  	return f.constVal(OpConst8, t, int64(c), true)
   708  }
   709  func (f *Func) ConstInt16(t *types.Type, c int16) *Value {
   710  	return f.constVal(OpConst16, t, int64(c), true)
   711  }
   712  func (f *Func) ConstInt32(t *types.Type, c int32) *Value {
   713  	return f.constVal(OpConst32, t, int64(c), true)
   714  }
   715  func (f *Func) ConstInt64(t *types.Type, c int64) *Value {
   716  	return f.constVal(OpConst64, t, c, true)
   717  }
   718  func (f *Func) ConstFloat32(t *types.Type, c float64) *Value {
   719  	return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true)
   720  }
   721  func (f *Func) ConstFloat64(t *types.Type, c float64) *Value {
   722  	return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true)
   723  }
   724  
   725  func (f *Func) ConstSlice(t *types.Type) *Value {
   726  	return f.constVal(OpConstSlice, t, constSliceMagic, false)
   727  }
   728  func (f *Func) ConstInterface(t *types.Type) *Value {
   729  	return f.constVal(OpConstInterface, t, constInterfaceMagic, false)
   730  }
   731  func (f *Func) ConstNil(t *types.Type) *Value {
   732  	return f.constVal(OpConstNil, t, constNilMagic, false)
   733  }
   734  func (f *Func) ConstEmptyString(t *types.Type) *Value {
   735  	v := f.constVal(OpConstString, t, constEmptyStringMagic, false)
   736  	v.Aux = StringToAux("")
   737  	return v
   738  }
   739  func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value {
   740  	v := f.constVal(OpOffPtr, t, c, true)
   741  	if len(v.Args) == 0 {
   742  		v.AddArg(sp)
   743  	}
   744  	return v
   745  }
   746  
   747  func (f *Func) Frontend() Frontend                          { return f.fe }
   748  func (f *Func) Warnl(pos src.XPos, msg string, args ...any) { f.fe.Warnl(pos, msg, args...) }
   749  func (f *Func) Logf(msg string, args ...any)                { f.fe.Logf(msg, args...) }
   750  func (f *Func) Log() bool                                   { return f.fe.Log() }
   751  
   752  func (f *Func) Fatalf(msg string, args ...any) {
   753  	stats := "crashed"
   754  	if f.Log() {
   755  		f.Logf("  pass %s end %s\n", f.pass.name, stats)
   756  		printFunc(f)
   757  	}
   758  	if f.HTMLWriter != nil {
   759  		f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats))
   760  		f.HTMLWriter.flushPhases()
   761  	}
   762  	f.fe.Fatalf(f.Entry.Pos, msg, args...)
   763  }
   764  
   765  // postorder returns the reachable blocks in f in a postorder traversal.
   766  func (f *Func) postorder() []*Block {
   767  	if f.cachedPostorder == nil {
   768  		f.cachedPostorder = postorder(f)
   769  	}
   770  	return f.cachedPostorder
   771  }
   772  
   773  func (f *Func) Postorder() []*Block {
   774  	return f.postorder()
   775  }
   776  
   777  // Idom returns a map from block ID to the immediate dominator of that block.
   778  // f.Entry.ID maps to nil. Unreachable blocks map to nil as well.
   779  func (f *Func) Idom() []*Block {
   780  	if f.cachedIdom == nil {
   781  		f.cachedIdom = dominators(f)
   782  	}
   783  	return f.cachedIdom
   784  }
   785  
   786  // Sdom returns a sparse tree representing the dominator relationships
   787  // among the blocks of f.
   788  func (f *Func) Sdom() SparseTree {
   789  	if f.cachedSdom == nil {
   790  		f.cachedSdom = newSparseTree(f, f.Idom())
   791  	}
   792  	return f.cachedSdom
   793  }
   794  
   795  // loopnest returns the loop nest information for f.
   796  func (f *Func) loopnest() *loopnest {
   797  	if f.cachedLoopnest == nil {
   798  		f.cachedLoopnest = loopnestfor(f)
   799  	}
   800  	return f.cachedLoopnest
   801  }
   802  
   803  // invalidateCFG tells f that its CFG has changed.
   804  func (f *Func) invalidateCFG() {
   805  	f.cachedPostorder = nil
   806  	f.cachedIdom = nil
   807  	f.cachedSdom = nil
   808  	f.cachedLoopnest = nil
   809  }
   810  
   811  // DebugHashMatch returns
   812  //
   813  //	base.DebugHashMatch(this function's package.name)
   814  //
   815  // for use in bug isolation.  The return value is true unless
   816  // environment variable GOCOMPILEDEBUG=gossahash=X is set, in which case "it depends on X".
   817  // See [base.DebugHashMatch] for more information.
   818  func (f *Func) DebugHashMatch() bool {
   819  	if !base.HasDebugHash() {
   820  		return true
   821  	}
   822  	sym := f.fe.Func().Sym()
   823  	return base.DebugHashMatchPkgFunc(sym.Pkg.Path, sym.Name)
   824  }
   825  
   826  func (f *Func) spSb() (sp, sb *Value) {
   827  	initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same.
   828  	for _, v := range f.Entry.Values {
   829  		if v.Op == OpSB {
   830  			sb = v
   831  		}
   832  		if v.Op == OpSP {
   833  			sp = v
   834  		}
   835  		if sb != nil && sp != nil {
   836  			return
   837  		}
   838  	}
   839  	if sb == nil {
   840  		sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr)
   841  	}
   842  	if sp == nil {
   843  		sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr)
   844  	}
   845  	return
   846  }
   847  
   848  // useFMA allows targeted debugging w/ GOFMAHASH
   849  // If you have an architecture-dependent FP glitch, this will help you find it.
   850  func (f *Func) useFMA(v *Value) bool {
   851  	if base.FmaHash == nil {
   852  		return true
   853  	}
   854  	return base.FmaHash.MatchPos(v.Pos, nil)
   855  }
   856  
   857  // NewLocal returns a new anonymous local variable of the given type.
   858  func (f *Func) NewLocal(pos src.XPos, typ *types.Type) *ir.Name {
   859  	nn := typecheck.TempAt(pos, f.fe.Func(), typ) // Note: adds new auto to fn.Dcl list
   860  	nn.SetNonMergeable(true)
   861  	return nn
   862  }
   863  
   864  // IsMergeCandidate returns true if variable n could participate in
   865  // stack slot merging. For now we're restricting the set to things to
   866  // items larger than what CanSSA would allow (approximateky, we disallow things
   867  // marked as open defer slots so as to avoid complicating liveness
   868  // analysis.
   869  func IsMergeCandidate(n *ir.Name) bool {
   870  	if base.Debug.MergeLocals == 0 ||
   871  		base.Flag.N != 0 ||
   872  		n.Class != ir.PAUTO ||
   873  		n.Type().Size() <= int64(3*types.PtrSize) ||
   874  		n.Addrtaken() ||
   875  		n.NonMergeable() ||
   876  		n.OpenDeferSlot() {
   877  		return false
   878  	}
   879  	return true
   880  }
   881  

View as plain text