// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/base" "cmd/compile/internal/types" "cmp" "container/heap" "slices" "sort" ) const ( ScorePhi = iota // towards top of block ScoreArg // must occur at the top of the entry block ScoreInitMem // after the args - used as mark by debug info generation ScoreReadTuple // must occur immediately after tuple-generating insn (or call) ScoreNilCheck ScoreMemory ScoreReadFlags ScoreDefault ScoreFlags ScoreControl // towards bottom of block ) type ValHeap struct { a []*Value score []int8 inBlockUses []bool } func (h ValHeap) Len() int { return len(h.a) } func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] } func (h *ValHeap) Push(x interface{}) { // Push and Pop use pointer receivers because they modify the slice's length, // not just its contents. v := x.(*Value) h.a = append(h.a, v) } func (h *ValHeap) Pop() interface{} { old := h.a n := len(old) x := old[n-1] h.a = old[0 : n-1] return x } func (h ValHeap) Less(i, j int) bool { x := h.a[i] y := h.a[j] sx := h.score[x.ID] sy := h.score[y.ID] if c := sx - sy; c != 0 { return c < 0 // lower scores come earlier. } // Note: only scores are required for correct scheduling. // Everything else is just heuristics. ix := h.inBlockUses[x.ID] iy := h.inBlockUses[y.ID] if ix != iy { return ix // values with in-block uses come earlier } if x.Pos != y.Pos { // Favor in-order line stepping return x.Pos.Before(y.Pos) } if x.Op != OpPhi { if c := len(x.Args) - len(y.Args); c != 0 { return c > 0 // smaller args come later } } if c := x.Uses - y.Uses; c != 0 { return c > 0 // smaller uses come later } // These comparisons are fairly arbitrary. // The goal here is stability in the face // of unrelated changes elsewhere in the compiler. if c := x.AuxInt - y.AuxInt; c != 0 { return c < 0 } if cmp := x.Type.Compare(y.Type); cmp != types.CMPeq { return cmp == types.CMPlt } return x.ID < y.ID } func (op Op) isLoweredGetClosurePtr() bool { switch op { case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr, Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpLOONG64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr, OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr: return true } return false } // Schedule the Values in each Block. After this phase returns, the // order of b.Values matters and is the order in which those values // will appear in the assembly output. For now it generates a // reasonable valid schedule using a priority queue. TODO(khr): // schedule smarter. func schedule(f *Func) { // reusable priority queue priq := new(ValHeap) // "priority" for a value score := f.Cache.allocInt8Slice(f.NumValues()) defer f.Cache.freeInt8Slice(score) // maps mem values to the next live memory value nextMem := f.Cache.allocValueSlice(f.NumValues()) defer f.Cache.freeValueSlice(nextMem) // inBlockUses records whether a value is used in the block // in which it lives. (block control values don't count as uses.) inBlockUses := f.Cache.allocBoolSlice(f.NumValues()) defer f.Cache.freeBoolSlice(inBlockUses) if f.Config.optimize { for _, b := range f.Blocks { for _, v := range b.Values { for _, a := range v.Args { if a.Block == b { inBlockUses[a.ID] = true } } } } } priq.inBlockUses = inBlockUses for _, b := range f.Blocks { // Compute score. Larger numbers are scheduled closer to the end of the block. for _, v := range b.Values { switch { case v.Op.isLoweredGetClosurePtr(): // We also score GetLoweredClosurePtr as early as possible to ensure that the // context register is not stomped. GetLoweredClosurePtr should only appear // in the entry block where there are no phi functions, so there is no // conflict or ambiguity here. if b != f.Entry { f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String()) } score[v.ID] = ScorePhi case opcodeTable[v.Op].nilCheck: // Nil checks must come before loads from the same address. score[v.ID] = ScoreNilCheck case v.Op == OpPhi: // We want all the phis first. score[v.ID] = ScorePhi case v.Op == OpArgIntReg || v.Op == OpArgFloatReg: // In-register args must be scheduled as early as possible to ensure that they // are not stomped (similar to the closure pointer above). // In particular, they need to come before regular OpArg operations because // of how regalloc places spill code (see regalloc.go:placeSpills:mustBeFirst). if b != f.Entry { f.Fatalf("%s appeared outside of entry block, b=%s", v.Op, b.String()) } score[v.ID] = ScorePhi case v.Op == OpArg || v.Op == OpSP || v.Op == OpSB: // We want all the args as early as possible, for better debugging. score[v.ID] = ScoreArg case v.Op == OpInitMem: // Early, but after args. See debug.go:buildLocationLists score[v.ID] = ScoreInitMem case v.Type.IsMemory(): // Schedule stores as early as possible. This tends to // reduce register pressure. score[v.ID] = ScoreMemory case v.Op == OpSelect0 || v.Op == OpSelect1 || v.Op == OpSelectN: // Tuple selectors need to appear immediately after the instruction // that generates the tuple. score[v.ID] = ScoreReadTuple case v.hasFlagInput(): // Schedule flag-reading ops earlier, to minimize the lifetime // of flag values. score[v.ID] = ScoreReadFlags case v.isFlagOp(): // Schedule flag register generation as late as possible. // This makes sure that we only have one live flags // value at a time. // Note that this case is after the case above, so values // which both read and generate flags are given ScoreReadFlags. score[v.ID] = ScoreFlags default: score[v.ID] = ScoreDefault // If we're reading flags, schedule earlier to keep flag lifetime short. for _, a := range v.Args { if a.isFlagOp() { score[v.ID] = ScoreReadFlags } } } } for _, c := range b.ControlValues() { // Force the control values to be scheduled at the end, // unless they have other special priority. if c.Block != b || score[c.ID] < ScoreReadTuple { continue } if score[c.ID] == ScoreReadTuple { score[c.Args[0].ID] = ScoreControl continue } score[c.ID] = ScoreControl } } priq.score = score // An edge represents a scheduling constraint that x must appear before y in the schedule. type edge struct { x, y *Value } edges := make([]edge, 0, 64) // inEdges is the number of scheduling edges incoming from values that haven't been scheduled yet. // i.e. inEdges[y.ID] = |e in edges where e.y == y and e.x is not in the schedule yet|. inEdges := f.Cache.allocInt32Slice(f.NumValues()) defer f.Cache.freeInt32Slice(inEdges) for _, b := range f.Blocks { edges = edges[:0] // Standard edges: from the argument of a value to that value. for _, v := range b.Values { if v.Op == OpPhi { // If a value is used by a phi, it does not induce // a scheduling edge because that use is from the // previous iteration. continue } for _, a := range v.Args { if a.Block == b { edges = append(edges, edge{a, v}) } } } // Find store chain for block. // Store chains for different blocks overwrite each other, so // the calculated store chain is good only for this block. for _, v := range b.Values { if v.Op != OpPhi && v.Op != OpInitMem && v.Type.IsMemory() { nextMem[v.MemoryArg().ID] = v } } // Add edges to enforce that any load must come before the following store. for _, v := range b.Values { if v.Op == OpPhi || v.Type.IsMemory() { continue } w := v.MemoryArg() if w == nil { continue } if s := nextMem[w.ID]; s != nil && s.Block == b { edges = append(edges, edge{v, s}) } } // Sort all the edges by source Value ID. slices.SortFunc(edges, func(a, b edge) int { return cmp.Compare(a.x.ID, b.x.ID) }) // Compute inEdges for values in this block. for _, e := range edges { inEdges[e.y.ID]++ } // Initialize priority queue with schedulable values. priq.a = priq.a[:0] for _, v := range b.Values { if inEdges[v.ID] == 0 { heap.Push(priq, v) } } // Produce the schedule. Pick the highest priority scheduleable value, // add it to the schedule, add any of its uses that are now scheduleable // to the queue, and repeat. nv := len(b.Values) b.Values = b.Values[:0] for priq.Len() > 0 { // Schedule the next schedulable value in priority order. v := heap.Pop(priq).(*Value) b.Values = append(b.Values, v) // Find all the scheduling edges out from this value. i := sort.Search(len(edges), func(i int) bool { return edges[i].x.ID >= v.ID }) j := sort.Search(len(edges), func(i int) bool { return edges[i].x.ID > v.ID }) // Decrement inEdges for each target of edges from v. for _, e := range edges[i:j] { inEdges[e.y.ID]-- if inEdges[e.y.ID] == 0 { heap.Push(priq, e.y) } } } if len(b.Values) != nv { f.Fatalf("schedule does not include all values in block %s", b) } } // Remove SPanchored now that we've scheduled. // Also unlink nil checks now that ordering is assured // between the nil check and the uses of the nil-checked pointer. for _, b := range f.Blocks { for _, v := range b.Values { for i, a := range v.Args { if a.Op == OpSPanchored || opcodeTable[a.Op].nilCheck { v.SetArg(i, a.Args[0]) } } } for i, c := range b.ControlValues() { if c.Op == OpSPanchored || opcodeTable[c.Op].nilCheck { b.ReplaceControl(i, c.Args[0]) } } } for _, b := range f.Blocks { i := 0 for _, v := range b.Values { if v.Op == OpSPanchored { // Free this value if v.Uses != 0 { base.Fatalf("SPAnchored still has %d uses", v.Uses) } v.resetArgs() f.freeValue(v) } else { if opcodeTable[v.Op].nilCheck { if v.Uses != 0 { base.Fatalf("nilcheck still has %d uses", v.Uses) } // We can't delete the nil check, but we mark // it as having void type so regalloc won't // try to allocate a register for it. v.Type = types.TypeVoid } b.Values[i] = v i++ } } b.truncateValues(i) } f.scheduled = true } // storeOrder orders values with respect to stores. That is, // if v transitively depends on store s, v is ordered after s, // otherwise v is ordered before s. // Specifically, values are ordered like // // store1 // NilCheck that depends on store1 // other values that depends on store1 // store2 // NilCheck that depends on store2 // other values that depends on store2 // ... // // The order of non-store and non-NilCheck values are undefined // (not necessarily dependency order). This should be cheaper // than a full scheduling as done above. // Note that simple dependency order won't work: there is no // dependency between NilChecks and values like IsNonNil. // Auxiliary data structures are passed in as arguments, so // that they can be allocated in the caller and be reused. // This function takes care of reset them. func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value { if len(values) == 0 { return values } f := values[0].Block.Func // find all stores // Members of values that are store values. // A constant bound allows this to be stack-allocated. 64 is // enough to cover almost every storeOrder call. stores := make([]*Value, 0, 64) hasNilCheck := false sset.clear() // sset is the set of stores that are used in other values for _, v := range values { if v.Type.IsMemory() { stores = append(stores, v) if v.Op == OpInitMem || v.Op == OpPhi { continue } sset.add(v.MemoryArg().ID) // record that v's memory arg is used } if v.Op == OpNilCheck { hasNilCheck = true } } if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" { // there is no store, the order does not matter return values } // find last store, which is the one that is not used by other stores var last *Value for _, v := range stores { if !sset.contains(v.ID) { if last != nil { f.Fatalf("two stores live simultaneously: %v and %v", v, last) } last = v } } // We assign a store number to each value. Store number is the // index of the latest store that this value transitively depends. // The i-th store in the current block gets store number 3*i. A nil // check that depends on the i-th store gets store number 3*i+1. // Other values that depends on the i-th store gets store number 3*i+2. // Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends // is in the previous block (or no store at all, e.g. value is Const). // First we assign the number to all stores by walking back the store chain, // then assign the number to other values in DFS order. count := make([]int32, 3*(len(stores)+1)) sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once for n, w := len(stores), last; n > 0; n-- { storeNumber[w.ID] = int32(3 * n) count[3*n]++ sset.add(w.ID) if w.Op == OpInitMem || w.Op == OpPhi { if n != 1 { f.Fatalf("store order is wrong: there are stores before %v", w) } break } w = w.MemoryArg() } var stack []*Value for _, v := range values { if sset.contains(v.ID) { // in sset means v is a store, or already pushed to stack, or already assigned a store number continue } stack = append(stack, v) sset.add(v.ID) for len(stack) > 0 { w := stack[len(stack)-1] if storeNumber[w.ID] != 0 { stack = stack[:len(stack)-1] continue } if w.Op == OpPhi { // Phi value doesn't depend on store in the current block. // Do this early to avoid dependency cycle. storeNumber[w.ID] = 2 count[2]++ stack = stack[:len(stack)-1] continue } max := int32(0) // latest store dependency argsdone := true for _, a := range w.Args { if a.Block != w.Block { continue } if !sset.contains(a.ID) { stack = append(stack, a) sset.add(a.ID) argsdone = false break } if storeNumber[a.ID]/3 > max { max = storeNumber[a.ID] / 3 } } if !argsdone { continue } n := 3*max + 2 if w.Op == OpNilCheck { n = 3*max + 1 } storeNumber[w.ID] = n count[n]++ stack = stack[:len(stack)-1] } } // convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i] for i := range count { if i == 0 { continue } count[i] += count[i-1] } if count[len(count)-1] != int32(len(values)) { f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values) } // place values in count-indexed bins, which are in the desired store order order := make([]*Value, len(values)) for _, v := range values { s := storeNumber[v.ID] order[count[s-1]] = v count[s-1]++ } // Order nil checks in source order. We want the first in source order to trigger. // If two are on the same line, we don't really care which happens first. // See issue 18169. if hasNilCheck { start := -1 for i, v := range order { if v.Op == OpNilCheck { if start == -1 { start = i } } else { if start != -1 { slices.SortFunc(order[start:i], valuePosCmp) start = -1 } } } if start != -1 { slices.SortFunc(order[start:], valuePosCmp) } } return order } // isFlagOp reports if v is an OP with the flag type. func (v *Value) isFlagOp() bool { if v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags() { return true } // PPC64 carry generators put their carry in a non-flag-typed register // in their output. switch v.Op { case OpPPC64SUBC, OpPPC64ADDC, OpPPC64SUBCconst, OpPPC64ADDCconst: return true } return false } // hasFlagInput reports whether v has a flag value as any of its inputs. func (v *Value) hasFlagInput() bool { for _, a := range v.Args { if a.isFlagOp() { return true } } // PPC64 carry dependencies are conveyed through their final argument, // so we treat those operations as taking flags as well. switch v.Op { case OpPPC64SUBE, OpPPC64ADDE, OpPPC64SUBZEzero, OpPPC64ADDZE, OpPPC64ADDZEzero: return true } return false } func valuePosCmp(a, b *Value) int { if a.Pos.Before(b.Pos) { return -1 } if a.Pos.After(b.Pos) { return +1 } return 0 }