// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/compile/internal/ir" "cmd/compile/internal/types" "cmd/internal/src" "fmt" "math" "sort" "strings" ) // A Value represents a value in the SSA representation of the program. // The ID and Type fields must not be modified. The remainder may be modified // if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)). type Value struct { // A unique identifier for the value. For performance we allocate these IDs // densely starting at 1. There is no guarantee that there won't be occasional holes, though. ID ID // The operation that computes this value. See op.go. Op Op // The type of this value. Normally this will be a Go type, but there // are a few other pseudo-types, see ../types/type.go. Type *types.Type // Auxiliary info for this value. The type of this information depends on the opcode and type. // AuxInt is used for integer values, Aux is used for other values. // Floats are stored in AuxInt using math.Float64bits(f). // Unused portions of AuxInt are filled by sign-extending the used portion, // even if the represented value is unsigned. // Users of AuxInt which interpret AuxInt as unsigned (e.g. shifts) must be careful. // Use Value.AuxUnsigned to get the zero-extended value of AuxInt. AuxInt int64 Aux Aux // Arguments of this value Args []*Value // Containing basic block Block *Block // Source position Pos src.XPos // Use count. Each appearance in Value.Args and Block.Controls counts once. Uses int32 // wasm: Value stays on the WebAssembly stack. This value will not get a "register" (WebAssembly variable) // nor a slot on Go stack, and the generation of this value is delayed to its use time. OnWasmStack bool // Is this value in the per-function constant cache? If so, remove from cache before changing it or recycling it. InCache bool // Storage for the first three args argstorage [3]*Value } // Examples: // Opcode aux args // OpAdd nil 2 // OpConst string 0 string constant // OpConst int64 0 int64 constant // OpAddcq int64 1 amd64 op: v = arg[0] + constant // short form print. Just v#. func (v *Value) String() string { if v == nil { return "nil" // should never happen, but not panicking helps with debugging } return fmt.Sprintf("v%d", v.ID) } func (v *Value) AuxInt8() int8 { if opcodeTable[v.Op].auxType != auxInt8 && opcodeTable[v.Op].auxType != auxNameOffsetInt8 { v.Fatalf("op %s doesn't have an int8 aux field", v.Op) } return int8(v.AuxInt) } func (v *Value) AuxUInt8() uint8 { if opcodeTable[v.Op].auxType != auxUInt8 { v.Fatalf("op %s doesn't have a uint8 aux field", v.Op) } return uint8(v.AuxInt) } func (v *Value) AuxInt16() int16 { if opcodeTable[v.Op].auxType != auxInt16 { v.Fatalf("op %s doesn't have an int16 aux field", v.Op) } return int16(v.AuxInt) } func (v *Value) AuxInt32() int32 { if opcodeTable[v.Op].auxType != auxInt32 { v.Fatalf("op %s doesn't have an int32 aux field", v.Op) } return int32(v.AuxInt) } // AuxUnsigned returns v.AuxInt as an unsigned value for OpConst*. // v.AuxInt is always sign-extended to 64 bits, even if the // represented value is unsigned. This undoes that sign extension. func (v *Value) AuxUnsigned() uint64 { c := v.AuxInt switch v.Op { case OpConst64: return uint64(c) case OpConst32: return uint64(uint32(c)) case OpConst16: return uint64(uint16(c)) case OpConst8: return uint64(uint8(c)) } v.Fatalf("op %s isn't OpConst*", v.Op) return 0 } func (v *Value) AuxFloat() float64 { if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 { v.Fatalf("op %s doesn't have a float aux field", v.Op) } return math.Float64frombits(uint64(v.AuxInt)) } func (v *Value) AuxValAndOff() ValAndOff { if opcodeTable[v.Op].auxType != auxSymValAndOff { v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op) } return ValAndOff(v.AuxInt) } func (v *Value) AuxArm64BitField() arm64BitField { if opcodeTable[v.Op].auxType != auxARM64BitField { v.Fatalf("op %s doesn't have a ARM64BitField aux field", v.Op) } return arm64BitField(v.AuxInt) } // long form print. v# = opcode [aux] args [: reg] (names) func (v *Value) LongString() string { if v == nil { return "" } s := fmt.Sprintf("v%d = %s", v.ID, v.Op) s += " <" + v.Type.String() + ">" s += v.auxString() for _, a := range v.Args { s += fmt.Sprintf(" %v", a) } if v.Block == nil { return s } r := v.Block.Func.RegAlloc if int(v.ID) < len(r) && r[v.ID] != nil { s += " : " + r[v.ID].String() } if reg := v.Block.Func.tempRegs[v.ID]; reg != nil { s += " tmp=" + reg.String() } var names []string for name, values := range v.Block.Func.NamedValues { for _, value := range values { if value == v { names = append(names, name.String()) break // drop duplicates. } } } if len(names) != 0 { sort.Strings(names) // Otherwise a source of variation in debugging output. s += " (" + strings.Join(names, ", ") + ")" } return s } func (v *Value) auxString() string { switch opcodeTable[v.Op].auxType { case auxBool: if v.AuxInt == 0 { return " [false]" } else { return " [true]" } case auxInt8: return fmt.Sprintf(" [%d]", v.AuxInt8()) case auxInt16: return fmt.Sprintf(" [%d]", v.AuxInt16()) case auxInt32: return fmt.Sprintf(" [%d]", v.AuxInt32()) case auxInt64, auxInt128: return fmt.Sprintf(" [%d]", v.AuxInt) case auxUInt8: return fmt.Sprintf(" [%d]", v.AuxUInt8()) case auxARM64BitField: lsb := v.AuxArm64BitField().lsb() width := v.AuxArm64BitField().width() return fmt.Sprintf(" [lsb=%d,width=%d]", lsb, width) case auxFloat32, auxFloat64: return fmt.Sprintf(" [%g]", v.AuxFloat()) case auxString: return fmt.Sprintf(" {%q}", v.Aux) case auxSym, auxCall, auxTyp: if v.Aux != nil { return fmt.Sprintf(" {%v}", v.Aux) } return "" case auxSymOff, auxCallOff, auxTypSize, auxNameOffsetInt8: s := "" if v.Aux != nil { s = fmt.Sprintf(" {%v}", v.Aux) } if v.AuxInt != 0 || opcodeTable[v.Op].auxType == auxNameOffsetInt8 { s += fmt.Sprintf(" [%v]", v.AuxInt) } return s case auxSymValAndOff: s := "" if v.Aux != nil { s = fmt.Sprintf(" {%v}", v.Aux) } return s + fmt.Sprintf(" [%s]", v.AuxValAndOff()) case auxCCop: return fmt.Sprintf(" [%s]", Op(v.AuxInt)) case auxS390XCCMask, auxS390XRotateParams: return fmt.Sprintf(" {%v}", v.Aux) case auxFlagConstant: return fmt.Sprintf("[%s]", flagConstant(v.AuxInt)) case auxNone: return "" default: // If you see this, add a case above instead. return fmt.Sprintf("[auxtype=%d AuxInt=%d Aux=%v]", opcodeTable[v.Op].auxType, v.AuxInt, v.Aux) } } // If/when midstack inlining is enabled (-l=4), the compiler gets both larger and slower. // Not-inlining this method is a help (*Value.reset and *Block.NewValue0 are similar). // //go:noinline func (v *Value) AddArg(w *Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, w) w.Uses++ } //go:noinline func (v *Value) AddArg2(w1, w2 *Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, w1, w2) w1.Uses++ w2.Uses++ } //go:noinline func (v *Value) AddArg3(w1, w2, w3 *Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, w1, w2, w3) w1.Uses++ w2.Uses++ w3.Uses++ } //go:noinline func (v *Value) AddArg4(w1, w2, w3, w4 *Value) { v.Args = append(v.Args, w1, w2, w3, w4) w1.Uses++ w2.Uses++ w3.Uses++ w4.Uses++ } //go:noinline func (v *Value) AddArg5(w1, w2, w3, w4, w5 *Value) { v.Args = append(v.Args, w1, w2, w3, w4, w5) w1.Uses++ w2.Uses++ w3.Uses++ w4.Uses++ w5.Uses++ } //go:noinline func (v *Value) AddArg6(w1, w2, w3, w4, w5, w6 *Value) { v.Args = append(v.Args, w1, w2, w3, w4, w5, w6) w1.Uses++ w2.Uses++ w3.Uses++ w4.Uses++ w5.Uses++ w6.Uses++ } func (v *Value) AddArgs(a ...*Value) { if v.Args == nil { v.resetArgs() // use argstorage } v.Args = append(v.Args, a...) for _, x := range a { x.Uses++ } } func (v *Value) SetArg(i int, w *Value) { v.Args[i].Uses-- v.Args[i] = w w.Uses++ } func (v *Value) SetArgs1(a *Value) { v.resetArgs() v.AddArg(a) } func (v *Value) SetArgs2(a, b *Value) { v.resetArgs() v.AddArg(a) v.AddArg(b) } func (v *Value) SetArgs3(a, b, c *Value) { v.resetArgs() v.AddArg(a) v.AddArg(b) v.AddArg(c) } func (v *Value) resetArgs() { for _, a := range v.Args { a.Uses-- } v.argstorage[0] = nil v.argstorage[1] = nil v.argstorage[2] = nil v.Args = v.argstorage[:0] } // reset is called from most rewrite rules. // Allowing it to be inlined increases the size // of cmd/compile by almost 10%, and slows it down. // //go:noinline func (v *Value) reset(op Op) { if v.InCache { v.Block.Func.unCache(v) } v.Op = op v.resetArgs() v.AuxInt = 0 v.Aux = nil } // invalidateRecursively marks a value as invalid (unused) // and after decrementing reference counts on its Args, // also recursively invalidates any of those whose use // count goes to zero. It returns whether any of the // invalidated values was marked with IsStmt. // // BEWARE of doing this *before* you've applied intended // updates to SSA. func (v *Value) invalidateRecursively() bool { lostStmt := v.Pos.IsStmt() == src.PosIsStmt if v.InCache { v.Block.Func.unCache(v) } v.Op = OpInvalid for _, a := range v.Args { a.Uses-- if a.Uses == 0 { lost := a.invalidateRecursively() lostStmt = lost || lostStmt } } v.argstorage[0] = nil v.argstorage[1] = nil v.argstorage[2] = nil v.Args = v.argstorage[:0] v.AuxInt = 0 v.Aux = nil return lostStmt } // copyOf is called from rewrite rules. // It modifies v to be (Copy a). // //go:noinline func (v *Value) copyOf(a *Value) { if v == a { return } if v.InCache { v.Block.Func.unCache(v) } v.Op = OpCopy v.resetArgs() v.AddArg(a) v.AuxInt = 0 v.Aux = nil v.Type = a.Type } // copyInto makes a new value identical to v and adds it to the end of b. // unlike copyIntoWithXPos this does not check for v.Pos being a statement. func (v *Value) copyInto(b *Block) *Value { c := b.NewValue0(v.Pos.WithNotStmt(), v.Op, v.Type) // Lose the position, this causes line number churn otherwise. c.Aux = v.Aux c.AuxInt = v.AuxInt c.AddArgs(v.Args...) for _, a := range v.Args { if a.Type.IsMemory() { v.Fatalf("can't move a value with a memory arg %s", v.LongString()) } } return c } // copyIntoWithXPos makes a new value identical to v and adds it to the end of b. // The supplied position is used as the position of the new value. // Because this is used for rematerialization, check for case that (rematerialized) // input to value with position 'pos' carried a statement mark, and that the supplied // position (of the instruction using the rematerialized value) is not marked, and // preserve that mark if its line matches the supplied position. func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value { if v.Pos.IsStmt() == src.PosIsStmt && pos.IsStmt() != src.PosIsStmt && v.Pos.SameFileAndLine(pos) { pos = pos.WithIsStmt() } c := b.NewValue0(pos, v.Op, v.Type) c.Aux = v.Aux c.AuxInt = v.AuxInt c.AddArgs(v.Args...) for _, a := range v.Args { if a.Type.IsMemory() { v.Fatalf("can't move a value with a memory arg %s", v.LongString()) } } return c } func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) } func (v *Value) Log() bool { return v.Block.Log() } func (v *Value) Fatalf(msg string, args ...interface{}) { v.Block.Func.fe.Fatalf(v.Pos, msg, args...) } // isGenericIntConst reports whether v is a generic integer constant. func (v *Value) isGenericIntConst() bool { return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8) } // ResultReg returns the result register assigned to v, in cmd/internal/obj/$ARCH numbering. // It is similar to Reg and Reg0, except that it is usable interchangeably for all Value Ops. // If you know v.Op, using Reg or Reg0 (as appropriate) will be more efficient. func (v *Value) ResultReg() int16 { reg := v.Block.Func.RegAlloc[v.ID] if reg == nil { v.Fatalf("nil reg for value: %s\n%s\n", v.LongString(), v.Block.Func) } if pair, ok := reg.(LocPair); ok { reg = pair[0] } if reg == nil { v.Fatalf("nil reg0 for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // Reg returns the register assigned to v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg() int16 { reg := v.Block.Func.RegAlloc[v.ID] if reg == nil { v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // Reg0 returns the register assigned to the first output of v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg0() int16 { reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0] if reg == nil { v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // Reg1 returns the register assigned to the second output of v, in cmd/internal/obj/$ARCH numbering. func (v *Value) Reg1() int16 { reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1] if reg == nil { v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).objNum } // RegTmp returns the temporary register assigned to v, in cmd/internal/obj/$ARCH numbering. func (v *Value) RegTmp() int16 { reg := v.Block.Func.tempRegs[v.ID] if reg == nil { v.Fatalf("nil tmp register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.objNum } func (v *Value) RegName() string { reg := v.Block.Func.RegAlloc[v.ID] if reg == nil { v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func) } return reg.(*Register).name } // MemoryArg returns the memory argument for the Value. // The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part). // Otherwise, nil is returned. func (v *Value) MemoryArg() *Value { if v.Op == OpPhi { v.Fatalf("MemoryArg on Phi") } na := len(v.Args) if na == 0 { return nil } if m := v.Args[na-1]; m.Type.IsMemory() { return m } return nil } // LackingPos indicates whether v is a value that is unlikely to have a correct // position assigned to it. Ignoring such values leads to more user-friendly positions // assigned to nearby values and the blocks containing them. func (v *Value) LackingPos() bool { // The exact definition of LackingPos is somewhat heuristically defined and may change // in the future, for example if some of these operations are generated more carefully // with respect to their source position. return v.Op == OpVarDef || v.Op == OpVarLive || v.Op == OpPhi || (v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem } // removeable reports whether the value v can be removed from the SSA graph entirely // if its use count drops to 0. func (v *Value) removeable() bool { if v.Type.IsVoid() { // Void ops (inline marks), must stay. return false } if opcodeTable[v.Op].nilCheck { // Nil pointer checks must stay. return false } if v.Type.IsMemory() { // We don't need to preserve all memory ops, but we do need // to keep calls at least (because they might have // synchronization operations we can't see). return false } if v.Op.HasSideEffects() { // These are mostly synchronization operations. return false } return true } // AutoVar returns a *Name and int64 representing the auto variable and offset within it // where v should be spilled. func AutoVar(v *Value) (*ir.Name, int64) { if loc, ok := v.Block.Func.RegAlloc[v.ID].(LocalSlot); ok { if v.Type.Size() > loc.Type.Size() { v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) } return loc.N, loc.Off } // Assume it is a register, return its spill slot, which needs to be live nameOff := v.Aux.(*AuxNameOffset) return nameOff.Name, nameOff.Offset } // CanSSA reports whether values of type t can be represented as a Value. func CanSSA(t *types.Type) bool { types.CalcSize(t) if t.Size() > int64(4*types.PtrSize) { // 4*Widthptr is an arbitrary constant. We want it // to be at least 3*Widthptr so slices can be registerized. // Too big and we'll introduce too much register pressure. return false } switch t.Kind() { case types.TARRAY: // We can't do larger arrays because dynamic indexing is // not supported on SSA variables. // TODO: allow if all indexes are constant. if t.NumElem() <= 1 { return CanSSA(t.Elem()) } return false case types.TSTRUCT: if t.NumFields() > MaxStruct { return false } for _, t1 := range t.Fields() { if !CanSSA(t1.Type) { return false } } return true default: return true } }