// Derived from Inferno utils/6l/l.h and related files. // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/l.h // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package obj import ( "bufio" "bytes" "cmd/internal/dwarf" "cmd/internal/goobj" "cmd/internal/objabi" "cmd/internal/src" "cmd/internal/sys" "encoding/binary" "fmt" "internal/abi" "sync" "sync/atomic" ) // An Addr is an argument to an instruction. // The general forms and their encodings are: // // sym±offset(symkind)(reg)(index*scale) // Memory reference at address &sym(symkind) + offset + reg + index*scale. // Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted. // If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg). // To force a parsing as index*scale, write (index*1). // Encoding: // type = TYPE_MEM // name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE) // sym = sym // offset = ±offset // reg = reg (REG_*) // index = index (REG_*) // scale = scale (1, 2, 4, 8) // // $ // Effective address of memory reference , defined above. // Encoding: same as memory reference, but type = TYPE_ADDR. // // $<±integer value> // This is a special case of $, in which only ±offset is present. // It has a separate type for easy recognition. // Encoding: // type = TYPE_CONST // offset = ±integer value // // * // Indirect reference through memory reference , defined above. // Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function // pointer stored in the data word sym(SB), not a function named sym(SB). // Encoding: same as above, but type = TYPE_INDIR. // // $*$ // No longer used. // On machines with actual SB registers, $*$ forced the // instruction encoding to use a full 32-bit constant, never a // reference relative to SB. // // $ // Floating point constant value. // Encoding: // type = TYPE_FCONST // val = floating point value // // $ // String literal value (raw bytes used for DATA instruction). // Encoding: // type = TYPE_SCONST // val = string // // // Special symbolic constants for ARM64, such as conditional flags, tlbi_op and so on. // Encoding: // type = TYPE_SPECIAL // offset = The constant value corresponding to this symbol // // // Any register: integer, floating point, control, segment, and so on. // If looking for specific register kind, must check type and reg value range. // Encoding: // type = TYPE_REG // reg = reg (REG_*) // // x(PC) // Encoding: // type = TYPE_BRANCH // val = Prog* reference OR ELSE offset = target pc (branch takes priority) // // $±x-±y // Final argument to TEXT, specifying local frame size x and argument size y. // In this form, x and y are integer literals only, not arbitrary expressions. // This avoids parsing ambiguities due to the use of - as a separator. // The ± are optional. // If the final argument to TEXT omits the -±y, the encoding should still // use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown. // Encoding: // type = TYPE_TEXTSIZE // offset = x // val = int32(y) // // reg<>shift, reg->shift, reg@>shift // Shifted register value, for ARM and ARM64. // In this form, reg must be a register and shift can be a register or an integer constant. // Encoding: // type = TYPE_SHIFT // On ARM: // offset = (reg&15) | shifttype<<5 | count // shifttype = 0, 1, 2, 3 for <<, >>, ->, @> // count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant. // On ARM64: // offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10 // shifttype = 0, 1, 2 for <<, >>, -> // // (reg, reg) // A destination register pair. When used as the last argument of an instruction, // this form makes clear that both registers are destinations. // Encoding: // type = TYPE_REGREG // reg = first register // offset = second register // // [reg, reg, reg-reg] // Register list for ARM, ARM64, 386/AMD64. // Encoding: // type = TYPE_REGLIST // On ARM: // offset = bit mask of registers in list; R0 is low bit. // On ARM64: // offset = register count (Q:size) | arrangement (opcode) | first register // On 386/AMD64: // reg = range low register // offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange) // // reg, reg // Register pair for ARM. // TYPE_REGREG2 // // (reg+reg) // Register pair for PPC64. // Encoding: // type = TYPE_MEM // reg = first register // index = second register // scale = 1 // // reg.[US]XT[BHWX] // Register extension for ARM64 // Encoding: // type = TYPE_REG // reg = REG_[US]XT[BHWX] + register + shift amount // offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10) // // reg. // Register arrangement for ARM64 and Loong64 SIMD register // e.g.: // On ARM64: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16 // On Loong64: X1.B32, X1.H16, X1.W8, X2.V4, X1.Q1, V1.B16, V1.H8, V1.W4, V1.V2 // Encoding: // type = TYPE_REG // reg = REG_ARNG + register + arrangement // // reg.[index] // Register element for ARM64 and Loong64 // Encoding: // type = TYPE_REG // reg = REG_ELEM + register + arrangement // index = element index type Addr struct { Reg int16 Index int16 Scale int16 // Sometimes holds a register. Type AddrType Name AddrName Class int8 Offset int64 Sym *LSym // argument value: // for TYPE_SCONST, a string // for TYPE_FCONST, a float64 // for TYPE_BRANCH, a *Prog (optional) // for TYPE_TEXTSIZE, an int32 (optional) Val interface{} } type AddrName int8 const ( NAME_NONE AddrName = iota NAME_EXTERN NAME_STATIC NAME_AUTO NAME_PARAM // A reference to name@GOT(SB) is a reference to the entry in the global offset // table for 'name'. NAME_GOTREF // Indicates that this is a reference to a TOC anchor. NAME_TOCREF ) //go:generate stringer -type AddrType type AddrType uint8 const ( TYPE_NONE AddrType = iota TYPE_BRANCH TYPE_TEXTSIZE TYPE_MEM TYPE_CONST TYPE_FCONST TYPE_SCONST TYPE_REG TYPE_ADDR TYPE_SHIFT TYPE_REGREG TYPE_REGREG2 TYPE_INDIR TYPE_REGLIST TYPE_SPECIAL ) func (a *Addr) Target() *Prog { if a.Type == TYPE_BRANCH && a.Val != nil { return a.Val.(*Prog) } return nil } func (a *Addr) SetTarget(t *Prog) { if a.Type != TYPE_BRANCH { panic("setting branch target when type is not TYPE_BRANCH") } a.Val = t } func (a *Addr) SetConst(v int64) { a.Sym = nil a.Type = TYPE_CONST a.Offset = v } // Prog describes a single machine instruction. // // The general instruction form is: // // (1) As.Scond From [, ...RestArgs], To // (2) As.Scond From, Reg [, ...RestArgs], To, RegTo2 // // where As is an opcode and the others are arguments: // From, Reg are sources, and To, RegTo2 are destinations. // RestArgs can hold additional sources and destinations. // Usually, not all arguments are present. // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2. // The Scond field holds additional condition bits for systems (like arm) // that have generalized conditional execution. // (2) form is present for compatibility with older code, // to avoid too much changes in a single swing. // (1) scheme is enough to express any kind of operand combination. // // Jump instructions use the To.Val field to point to the target *Prog, // which must be in the same linked list as the jump instruction. // // The Progs for a given function are arranged in a list linked through the Link field. // // Each Prog is charged to a specific source line in the debug information, // specified by Pos.Line(). // Every Prog has a Ctxt field that defines its context. // For performance reasons, Progs are usually bulk allocated, cached, and reused; // those bulk allocators should always be used, rather than new(Prog). // // The other fields not yet mentioned are for use by the back ends and should // be left zeroed by creators of Prog lists. type Prog struct { Ctxt *Link // linker context Link *Prog // next Prog in linked list From Addr // first source operand RestArgs []AddrPos // can pack any operands that not fit into {Prog.From, Prog.To}, same kinds of operands are saved in order To Addr // destination operand (second is RegTo2 below) Pool *Prog // constant pool entry, for arm,arm64 back ends Forwd *Prog // for x86 back end Rel *Prog // for x86, arm back ends Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase Pos src.XPos // source position of this instruction Spadj int32 // effect of instruction on stack pointer (increment or decrement amount) As As // assembler opcode Reg int16 // 2nd source operand RegTo2 int16 // 2nd destination operand Mark uint16 // bitmask of arch-specific items Optab uint16 // arch-specific opcode index Scond uint8 // bits that describe instruction suffixes (e.g. ARM conditions, RISCV Rounding Mode) Back uint8 // for x86 back end: backwards branch state Ft uint8 // for x86 back end: type index of Prog.From Tt uint8 // for x86 back end: type index of Prog.To Isize uint8 // for x86 back end: size of the instruction in bytes } // AddrPos indicates whether the operand is the source or the destination. type AddrPos struct { Addr Pos OperandPos } type OperandPos int8 const ( Source OperandPos = iota Destination ) // From3Type returns p.GetFrom3().Type, or TYPE_NONE when // p.GetFrom3() returns nil. func (p *Prog) From3Type() AddrType { from3 := p.GetFrom3() if from3 == nil { return TYPE_NONE } return from3.Type } // GetFrom3 returns second source operand (the first is Prog.From). // The same kinds of operands are saved in order so GetFrom3 actually // return the first source operand in p.RestArgs. // In combination with Prog.From and Prog.To it makes common 3 operand // case easier to use. func (p *Prog) GetFrom3() *Addr { for i := range p.RestArgs { if p.RestArgs[i].Pos == Source { return &p.RestArgs[i].Addr } } return nil } // AddRestSource assigns []Args{{a, Source}} to p.RestArgs. func (p *Prog) AddRestSource(a Addr) { p.RestArgs = append(p.RestArgs, AddrPos{a, Source}) } // AddRestSourceReg calls p.AddRestSource with a register Addr containing reg. func (p *Prog) AddRestSourceReg(reg int16) { p.AddRestSource(Addr{Type: TYPE_REG, Reg: reg}) } // AddRestSourceConst calls p.AddRestSource with a const Addr containing off. func (p *Prog) AddRestSourceConst(off int64) { p.AddRestSource(Addr{Type: TYPE_CONST, Offset: off}) } // AddRestDest assigns []Args{{a, Destination}} to p.RestArgs when the second destination // operand does not fit into prog.RegTo2. func (p *Prog) AddRestDest(a Addr) { p.RestArgs = append(p.RestArgs, AddrPos{a, Destination}) } // GetTo2 returns the second destination operand. // The same kinds of operands are saved in order so GetTo2 actually // return the first destination operand in Prog.RestArgs[] func (p *Prog) GetTo2() *Addr { for i := range p.RestArgs { if p.RestArgs[i].Pos == Destination { return &p.RestArgs[i].Addr } } return nil } // AddRestSourceArgs assigns more than one source operands to p.RestArgs. func (p *Prog) AddRestSourceArgs(args []Addr) { for i := range args { p.RestArgs = append(p.RestArgs, AddrPos{args[i], Source}) } } // An As denotes an assembler opcode. // There are some portable opcodes, declared here in package obj, // that are common to all architectures. // However, the majority of opcodes are arch-specific // and are declared in their respective architecture's subpackage. type As int16 // These are the portable opcodes. const ( AXXX As = iota ACALL ADUFFCOPY ADUFFZERO AEND AFUNCDATA AJMP ANOP APCALIGN APCALIGNMAX // currently x86, amd64 and arm64 APCDATA ARET AGETCALLERPC ATEXT AUNDEF A_ARCHSPECIFIC ) // Each architecture is allotted a distinct subspace of opcode values // for declaring its arch-specific opcodes. // Within this subspace, the first arch-specific opcode should be // at offset A_ARCHSPECIFIC. // // Subspaces are aligned to a power of two so opcodes can be masked // with AMask and used as compact array indices. const ( ABase386 = (1 + iota) << 11 ABaseARM ABaseAMD64 ABasePPC64 ABaseARM64 ABaseMIPS ABaseLoong64 ABaseRISCV ABaseS390X ABaseWasm AllowedOpCodes = 1 << 11 // The number of opcodes available for any given architecture. AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index. ) // An LSym is the sort of symbol that is written to an object file. // It represents Go symbols in a flat pkg+"."+name namespace. type LSym struct { Name string Type objabi.SymKind Attribute Size int64 Gotype *LSym P []byte R []Reloc Extra *interface{} // *FuncInfo, *VarInfo, *FileInfo, or *TypeInfo, if present Pkg string PkgIdx int32 SymIdx int32 } // A FuncInfo contains extra fields for STEXT symbols. type FuncInfo struct { Args int32 Locals int32 Align int32 FuncID abi.FuncID FuncFlag abi.FuncFlag StartLine int32 Text *Prog Autot map[*LSym]struct{} Pcln Pcln InlMarks []InlMark spills []RegSpill dwarfInfoSym *LSym dwarfLocSym *LSym dwarfRangesSym *LSym dwarfAbsFnSym *LSym dwarfDebugLinesSym *LSym GCArgs *LSym GCLocals *LSym StackObjects *LSym OpenCodedDeferInfo *LSym ArgInfo *LSym // argument info for traceback ArgLiveInfo *LSym // argument liveness info for traceback WrapInfo *LSym // for wrapper, info of wrapped function JumpTables []JumpTable FuncInfoSym *LSym WasmImport *WasmImport WasmExport *WasmExport sehUnwindInfoSym *LSym } // JumpTable represents a table used for implementing multi-way // computed branching, used typically for implementing switches. // Sym is the table itself, and Targets is a list of target // instructions to go to for the computed branch index. type JumpTable struct { Sym *LSym Targets []*Prog } // NewFuncInfo allocates and returns a FuncInfo for LSym. func (s *LSym) NewFuncInfo() *FuncInfo { if s.Extra != nil { panic(fmt.Sprintf("invalid use of LSym - NewFuncInfo with Extra of type %T", *s.Extra)) } f := new(FuncInfo) s.Extra = new(interface{}) *s.Extra = f return f } // Func returns the *FuncInfo associated with s, or else nil. func (s *LSym) Func() *FuncInfo { if s.Extra == nil { return nil } f, _ := (*s.Extra).(*FuncInfo) return f } type VarInfo struct { dwarfInfoSym *LSym } // NewVarInfo allocates and returns a VarInfo for LSym. func (s *LSym) NewVarInfo() *VarInfo { if s.Extra != nil { panic(fmt.Sprintf("invalid use of LSym - NewVarInfo with Extra of type %T", *s.Extra)) } f := new(VarInfo) s.Extra = new(interface{}) *s.Extra = f return f } // VarInfo returns the *VarInfo associated with s, or else nil. func (s *LSym) VarInfo() *VarInfo { if s.Extra == nil { return nil } f, _ := (*s.Extra).(*VarInfo) return f } // A FileInfo contains extra fields for SDATA symbols backed by files. // (If LSym.Extra is a *FileInfo, LSym.P == nil.) type FileInfo struct { Name string // name of file to read into object file Size int64 // length of file } // NewFileInfo allocates and returns a FileInfo for LSym. func (s *LSym) NewFileInfo() *FileInfo { if s.Extra != nil { panic(fmt.Sprintf("invalid use of LSym - NewFileInfo with Extra of type %T", *s.Extra)) } f := new(FileInfo) s.Extra = new(interface{}) *s.Extra = f return f } // File returns the *FileInfo associated with s, or else nil. func (s *LSym) File() *FileInfo { if s.Extra == nil { return nil } f, _ := (*s.Extra).(*FileInfo) return f } // A TypeInfo contains information for a symbol // that contains a runtime._type. type TypeInfo struct { Type interface{} // a *cmd/compile/internal/types.Type } func (s *LSym) NewTypeInfo() *TypeInfo { if s.Extra != nil { panic(fmt.Sprintf("invalid use of LSym - NewTypeInfo with Extra of type %T", *s.Extra)) } t := new(TypeInfo) s.Extra = new(interface{}) *s.Extra = t return t } // WasmImport represents a WebAssembly (WASM) imported function with // parameters and results translated into WASM types based on the Go function // declaration. type WasmImport struct { // Module holds the WASM module name specified by the //go:wasmimport // directive. Module string // Name holds the WASM imported function name specified by the // //go:wasmimport directive. Name string WasmFuncType // type of the imported function // aux symbol to pass metadata to the linker, serialization of // the fields above. AuxSym *LSym } func (wi *WasmImport) CreateAuxSym() { var b bytes.Buffer wi.Write(&b) p := b.Bytes() wi.AuxSym = &LSym{ Type: objabi.SDATA, // doesn't really matter P: append([]byte(nil), p...), Size: int64(len(p)), } } func (wi *WasmImport) Write(w *bytes.Buffer) { var b [8]byte writeUint32 := func(x uint32) { binary.LittleEndian.PutUint32(b[:], x) w.Write(b[:4]) } writeString := func(s string) { writeUint32(uint32(len(s))) w.WriteString(s) } writeString(wi.Module) writeString(wi.Name) wi.WasmFuncType.Write(w) } func (wi *WasmImport) Read(b []byte) { readUint32 := func() uint32 { x := binary.LittleEndian.Uint32(b) b = b[4:] return x } readString := func() string { n := readUint32() s := string(b[:n]) b = b[n:] return s } wi.Module = readString() wi.Name = readString() wi.WasmFuncType.Read(b) } // WasmFuncType represents a WebAssembly (WASM) function type with // parameters and results translated into WASM types based on the Go function // declaration. type WasmFuncType struct { // Params holds the function parameter fields. Params []WasmField // Results holds the function result fields. Results []WasmField } func (ft *WasmFuncType) Write(w *bytes.Buffer) { var b [8]byte writeByte := func(x byte) { w.WriteByte(x) } writeUint32 := func(x uint32) { binary.LittleEndian.PutUint32(b[:], x) w.Write(b[:4]) } writeInt64 := func(x int64) { binary.LittleEndian.PutUint64(b[:], uint64(x)) w.Write(b[:]) } writeUint32(uint32(len(ft.Params))) for _, f := range ft.Params { writeByte(byte(f.Type)) writeInt64(f.Offset) } writeUint32(uint32(len(ft.Results))) for _, f := range ft.Results { writeByte(byte(f.Type)) writeInt64(f.Offset) } } func (ft *WasmFuncType) Read(b []byte) { readByte := func() byte { x := b[0] b = b[1:] return x } readUint32 := func() uint32 { x := binary.LittleEndian.Uint32(b) b = b[4:] return x } readInt64 := func() int64 { x := binary.LittleEndian.Uint64(b) b = b[8:] return int64(x) } ft.Params = make([]WasmField, readUint32()) for i := range ft.Params { ft.Params[i].Type = WasmFieldType(readByte()) ft.Params[i].Offset = int64(readInt64()) } ft.Results = make([]WasmField, readUint32()) for i := range ft.Results { ft.Results[i].Type = WasmFieldType(readByte()) ft.Results[i].Offset = int64(readInt64()) } } // WasmExport represents a WebAssembly (WASM) exported function with // parameters and results translated into WASM types based on the Go function // declaration. type WasmExport struct { WasmFuncType WrappedSym *LSym // the wrapped Go function AuxSym *LSym // aux symbol to pass metadata to the linker } func (we *WasmExport) CreateAuxSym() { var b bytes.Buffer we.WasmFuncType.Write(&b) p := b.Bytes() we.AuxSym = &LSym{ Type: objabi.SDATA, // doesn't really matter P: append([]byte(nil), p...), Size: int64(len(p)), } } type WasmField struct { Type WasmFieldType // Offset holds the frame-pointer-relative locations for Go's stack-based // ABI. This is used by the src/cmd/internal/wasm package to map WASM // import parameters to the Go stack in a wrapper function. Offset int64 } type WasmFieldType byte const ( WasmI32 WasmFieldType = iota WasmI64 WasmF32 WasmF64 WasmPtr // bool is not really a wasm type, but we allow it on wasmimport/wasmexport // function parameters/results. 32-bit on Wasm side, 8-bit on Go side. WasmBool ) type InlMark struct { // When unwinding from an instruction in an inlined body, mark // where we should unwind to. // id records the global inlining id of the inlined body. // p records the location of an instruction in the parent (inliner) frame. p *Prog id int32 } // Mark p as the instruction to set as the pc when // "unwinding" the inlining global frame id. Usually it should be // instruction with a file:line at the callsite, and occur // just before the body of the inlined function. func (fi *FuncInfo) AddInlMark(p *Prog, id int32) { fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id}) } // AddSpill appends a spill record to the list for FuncInfo fi func (fi *FuncInfo) AddSpill(s RegSpill) { fi.spills = append(fi.spills, s) } // Record the type symbol for an auto variable so that the linker // an emit DWARF type information for the type. func (fi *FuncInfo) RecordAutoType(gotype *LSym) { if fi.Autot == nil { fi.Autot = make(map[*LSym]struct{}) } fi.Autot[gotype] = struct{}{} } //go:generate stringer -type ABI // ABI is the calling convention of a text symbol. type ABI uint8 const ( // ABI0 is the stable stack-based ABI. It's important that the // value of this is "0": we can't distinguish between // references to data and ABI0 text symbols in assembly code, // and hence this doesn't distinguish between symbols without // an ABI and text symbols with ABI0. ABI0 ABI = iota // ABIInternal is the internal ABI that may change between Go // versions. All Go functions use the internal ABI and the // compiler generates wrappers for calls to and from other // ABIs. ABIInternal ABICount ) // ParseABI converts from a string representation in 'abistr' to the // corresponding ABI value. Second return value is TRUE if the // abi string is recognized, FALSE otherwise. func ParseABI(abistr string) (ABI, bool) { switch abistr { default: return ABI0, false case "ABI0": return ABI0, true case "ABIInternal": return ABIInternal, true } } // ABISet is a bit set of ABI values. type ABISet uint8 const ( // ABISetCallable is the set of all ABIs any function could // potentially be called using. ABISetCallable ABISet = (1 << ABI0) | (1 << ABIInternal) ) // Ensure ABISet is big enough to hold all ABIs. var _ ABISet = 1 << (ABICount - 1) func ABISetOf(abi ABI) ABISet { return 1 << abi } func (a *ABISet) Set(abi ABI, value bool) { if value { *a |= 1 << abi } else { *a &^= 1 << abi } } func (a *ABISet) Get(abi ABI) bool { return (*a>>abi)&1 != 0 } func (a ABISet) String() string { s := "{" for i := ABI(0); a != 0; i++ { if a&(1< 0 { s = s[:len(s)-1] } return s } // TextAttrString formats the symbol attributes for printing in as part of a TEXT prog. func (s *LSym) TextAttrString() string { attr := s.Attribute.String() if s.Func().FuncFlag&abi.FuncFlagTopFrame != 0 { if attr != "" { attr += "|" } attr += "TOPFRAME" } return attr } func (s *LSym) String() string { return s.Name } // The compiler needs *LSym to be assignable to cmd/compile/internal/ssa.Sym. func (*LSym) CanBeAnSSASym() {} func (*LSym) CanBeAnSSAAux() {} type Pcln struct { // Aux symbols for pcln Pcsp *LSym Pcfile *LSym Pcline *LSym Pcinline *LSym Pcdata []*LSym Funcdata []*LSym UsedFiles map[goobj.CUFileIndex]struct{} // file indices used while generating pcfile InlTree InlTree // per-function inlining tree extracted from the global tree } type Reloc struct { Off int32 Siz uint8 Type objabi.RelocType Add int64 Sym *LSym } type Auto struct { Asym *LSym Aoffset int32 Name AddrName Gotype *LSym } // RegSpill provides spill/fill information for a register-resident argument // to a function. These need spilling/filling in the safepoint/stackgrowth case. // At the time of fill/spill, the offset must be adjusted by the architecture-dependent // adjustment to hardware SP that occurs in a call instruction. E.g., for AMD64, // at Offset+8 because the return address was pushed. type RegSpill struct { Addr Addr Reg int16 Reg2 int16 // If not 0, a second register to spill at Addr+regSize. Only for some archs. Spill, Unspill As } // A Func represents a Go function. If non-nil, it must be a *ir.Func. type Func interface { Pos() src.XPos } // Link holds the context for writing object code from a compiler // to be linker input or for reading that input into the linker. type Link struct { Headtype objabi.HeadType Arch *LinkArch Debugasm int Debugvlog bool Debugpcln string Flag_shared bool Flag_dynlink bool Flag_linkshared bool Flag_optimize bool Flag_locationlists bool Flag_noRefName bool // do not include referenced symbol names in object file Retpoline bool // emit use of retpoline stubs for indirect jmp/call Flag_maymorestack string // If not "", call this function before stack checks Bso *bufio.Writer Pathname string Pkgpath string // the current package's import path hashmu sync.Mutex // protects hash, funchash hash map[string]*LSym // name -> sym mapping funchash map[string]*LSym // name -> sym mapping for ABIInternal syms statichash map[string]*LSym // name -> sym mapping for static syms PosTable src.PosTable InlTree InlTree // global inlining tree used by gc/inl.go DwFixups *DwarfFixupTable Imports []goobj.ImportedPkg DiagFunc func(string, ...interface{}) DiagFlush func() DebugInfo func(ctxt *Link, fn *LSym, info *LSym, curfn Func) ([]dwarf.Scope, dwarf.InlCalls) GenAbstractFunc func(fn *LSym) Errors int InParallel bool // parallel backend phase in effect UseBASEntries bool // use Base Address Selection Entries in location lists and PC ranges IsAsm bool // is the source assembly language, which may contain surprising idioms (e.g., call tables) Std bool // is standard library package // state for writing objects Text []*LSym Data []*LSym // Constant symbols (e.g. $i64.*) are data symbols created late // in the concurrent phase. To ensure a deterministic order, we // add them to a separate list, sort at the end, and append it // to Data. constSyms []*LSym // Windows SEH symbols are also data symbols that can be created // concurrently. SEHSyms []*LSym // pkgIdx maps package path to index. The index is used for // symbol reference in the object file. pkgIdx map[string]int32 defs []*LSym // list of defined symbols in the current package hashed64defs []*LSym // list of defined short (64-bit or less) hashed (content-addressable) symbols hasheddefs []*LSym // list of defined hashed (content-addressable) symbols nonpkgdefs []*LSym // list of defined non-package symbols nonpkgrefs []*LSym // list of referenced non-package symbols Fingerprint goobj.FingerprintType // fingerprint of symbol indices, to catch index mismatch } func (ctxt *Link) Diag(format string, args ...interface{}) { ctxt.Errors++ ctxt.DiagFunc(format, args...) } func (ctxt *Link) Logf(format string, args ...interface{}) { fmt.Fprintf(ctxt.Bso, format, args...) ctxt.Bso.Flush() } // SpillRegisterArgs emits the code to spill register args into whatever // locations the spill records specify. func (fi *FuncInfo) SpillRegisterArgs(last *Prog, pa ProgAlloc) *Prog { // Spill register args. for _, ra := range fi.spills { spill := Appendp(last, pa) spill.As = ra.Spill spill.From.Type = TYPE_REG spill.From.Reg = ra.Reg if ra.Reg2 != 0 { spill.From.Type = TYPE_REGREG spill.From.Offset = int64(ra.Reg2) } spill.To = ra.Addr last = spill } return last } // UnspillRegisterArgs emits the code to restore register args from whatever // locations the spill records specify. func (fi *FuncInfo) UnspillRegisterArgs(last *Prog, pa ProgAlloc) *Prog { // Unspill any spilled register args for _, ra := range fi.spills { unspill := Appendp(last, pa) unspill.As = ra.Unspill unspill.From = ra.Addr unspill.To.Type = TYPE_REG unspill.To.Reg = ra.Reg if ra.Reg2 != 0 { unspill.To.Type = TYPE_REGREG unspill.To.Offset = int64(ra.Reg2) } last = unspill } return last } // LinkArch is the definition of a single architecture. type LinkArch struct { *sys.Arch Init func(*Link) ErrorCheck func(*Link, *LSym) Preprocess func(*Link, *LSym, ProgAlloc) Assemble func(*Link, *LSym, ProgAlloc) Progedit func(*Link, *Prog, ProgAlloc) SEH func(*Link, *LSym) *LSym UnaryDst map[As]bool // Instruction takes one operand, a destination. DWARFRegisters map[int16]int16 }