// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loong64 import ( "cmd/internal/obj" "cmd/internal/objabi" "fmt" "log" "slices" ) // ctxt0 holds state while assembling a single function. // Each function gets a fresh ctxt0. // This allows for multiple functions to be safely concurrently assembled. type ctxt0 struct { ctxt *obj.Link newprog obj.ProgAlloc cursym *obj.LSym autosize int32 instoffset int64 pc int64 } // Instruction layout. const ( FuncAlign = 4 loopAlign = 16 ) type Optab struct { as obj.As from1 uint8 reg uint8 from3 uint8 to1 uint8 to2 uint8 type_ int8 size int8 param int16 flag uint8 } const ( NOTUSETMP = 1 << iota // p expands to multiple instructions, but does NOT use REGTMP // branchLoopHead marks loop entry. // Used to insert padding for under-aligned loops. branchLoopHead ) var optab = []Optab{ {obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, C_NONE, 0, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 1, 4, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 1, 4, 0, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 12, 4, 0, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 12, 4, 0, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 12, 4, 0, 0}, {ASUB, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASUBV, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AADD, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AADDV, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AAND, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASUB, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASUBV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AADD, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AADDV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AAND, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ANEGW, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ANEGV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AMASKEQZ, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASLL, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASLL, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASLLV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {ASLLV, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AMUL, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AMUL, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AMULV, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AMULV, C_REG, C_REG, C_NONE, C_REG, C_NONE, 2, 4, 0, 0}, {AADDF, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 2, 4, 0, 0}, {AADDF, C_FREG, C_FREG, C_NONE, C_FREG, C_NONE, 2, 4, 0, 0}, {ACMPEQF, C_FREG, C_FREG, C_NONE, C_FCCREG, C_NONE, 2, 4, 0, 0}, {AVSEQB, C_VREG, C_VREG, C_NONE, C_VREG, C_NONE, 2, 4, 0, 0}, {AXVSEQB, C_XREG, C_XREG, C_NONE, C_XREG, C_NONE, 2, 4, 0, 0}, {ACLOW, C_REG, C_NONE, C_NONE, C_REG, C_NONE, 9, 4, 0, 0}, {AABSF, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 9, 4, 0, 0}, {AMOVVF, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 9, 4, 0, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 9, 4, 0, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_FREG, C_NONE, 9, 4, 0, 0}, {AVPCNTB, C_VREG, C_NONE, C_NONE, C_VREG, C_NONE, 9, 4, 0, 0}, {AXVPCNTB, C_XREG, C_NONE, C_NONE, C_XREG, C_NONE, 9, 4, 0, 0}, {AFMADDF, C_FREG, C_FREG, C_NONE, C_FREG, C_NONE, 37, 4, 0, 0}, {AFMADDF, C_FREG, C_FREG, C_FREG, C_FREG, C_NONE, 37, 4, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGSP, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGSP, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGSP, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGSP, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGSP, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AVMOVQ, C_VREG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AXVMOVQ, C_XREG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AVMOVQ, C_VREG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGZERO, 0}, {AXVMOVQ, C_XREG, C_NONE, C_NONE, C_SAUTO, C_NONE, 7, 4, REGZERO, 0}, {ASC, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {ASCV, C_REG, C_NONE, C_NONE, C_SOREG, C_NONE, 7, 4, REGZERO, 0}, {AMOVW, C_SAUTO, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGSP, 0}, {AMOVWU, C_SAUTO, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGSP, 0}, {AMOVV, C_SAUTO, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGSP, 0}, {AMOVB, C_SAUTO, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGSP, 0}, {AMOVBU, C_SAUTO, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGSP, 0}, {AMOVW, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AMOVWU, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AMOVV, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AMOVB, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AMOVBU, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AVMOVQ, C_SOREG, C_NONE, C_NONE, C_VREG, C_NONE, 8, 4, REGZERO, 0}, {AXVMOVQ, C_SOREG, C_NONE, C_NONE, C_XREG, C_NONE, 8, 4, REGZERO, 0}, {AVMOVQ, C_SAUTO, C_NONE, C_NONE, C_VREG, C_NONE, 8, 4, REGZERO, 0}, {AXVMOVQ, C_SAUTO, C_NONE, C_NONE, C_XREG, C_NONE, 8, 4, REGZERO, 0}, {ALL, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {ALLV, C_SOREG, C_NONE, C_NONE, C_REG, C_NONE, 8, 4, REGZERO, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, C_NONE, 35, 12, REGSP, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_LAUTO, C_NONE, 35, 12, REGSP, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_LAUTO, C_NONE, 35, 12, REGSP, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, C_NONE, 35, 12, REGSP, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_LAUTO, C_NONE, 35, 12, REGSP, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {ASC, C_REG, C_NONE, C_NONE, C_LOREG, C_NONE, 35, 12, REGZERO, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_TLS_LE, C_NONE, 53, 16, 0, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_TLS_LE, C_NONE, 53, 16, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_TLS_LE, C_NONE, 53, 16, 0, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_TLS_LE, C_NONE, 53, 16, 0, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_TLS_LE, C_NONE, 53, 16, 0, 0}, {AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGSP, 0}, {AMOVWU, C_LAUTO, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGSP, 0}, {AMOVV, C_LAUTO, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGSP, 0}, {AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGSP, 0}, {AMOVBU, C_LAUTO, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGSP, 0}, {AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGZERO, 0}, {AMOVWU, C_LOREG, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGZERO, 0}, {AMOVV, C_LOREG, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGZERO, 0}, {AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGZERO, 0}, {AMOVBU, C_LOREG, C_NONE, C_NONE, C_REG, C_NONE, 36, 12, REGZERO, 0}, {AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, C_NONE, 51, 8, 0, 0}, {AMOVWU, C_ADDR, C_NONE, C_NONE, C_REG, C_NONE, 51, 8, 0, 0}, {AMOVV, C_ADDR, C_NONE, C_NONE, C_REG, C_NONE, 51, 8, 0, 0}, {AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, C_NONE, 51, 8, 0, 0}, {AMOVBU, C_ADDR, C_NONE, C_NONE, C_REG, C_NONE, 51, 8, 0, 0}, {AMOVW, C_TLS_LE, C_NONE, C_NONE, C_REG, C_NONE, 54, 16, 0, 0}, {AMOVWU, C_TLS_LE, C_NONE, C_NONE, C_REG, C_NONE, 54, 16, 0, 0}, {AMOVV, C_TLS_LE, C_NONE, C_NONE, C_REG, C_NONE, 54, 16, 0, 0}, {AMOVB, C_TLS_LE, C_NONE, C_NONE, C_REG, C_NONE, 54, 16, 0, 0}, {AMOVBU, C_TLS_LE, C_NONE, C_NONE, C_REG, C_NONE, 54, 16, 0, 0}, {AMOVW, C_SACON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGSP, 0}, {AMOVV, C_SACON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGSP, 0}, {AMOVW, C_EXTADDR, C_NONE, C_NONE, C_REG, C_NONE, 52, 8, 0, NOTUSETMP}, {AMOVV, C_EXTADDR, C_NONE, C_NONE, C_REG, C_NONE, 52, 8, 0, NOTUSETMP}, {AMOVW, C_LACON, C_NONE, C_NONE, C_REG, C_NONE, 26, 12, REGSP, 0}, {AMOVV, C_LACON, C_NONE, C_NONE, C_REG, C_NONE, 26, 12, REGSP, 0}, {AMOVW, C_ADDCON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGZERO, 0}, {AMOVV, C_ADDCON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGZERO, 0}, {AMOVW, C_ANDCON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGZERO, 0}, {AMOVV, C_ANDCON, C_NONE, C_NONE, C_REG, C_NONE, 3, 4, REGZERO, 0}, {AMOVW, C_UCON, C_NONE, C_NONE, C_REG, C_NONE, 24, 4, 0, 0}, {AMOVV, C_UCON, C_NONE, C_NONE, C_REG, C_NONE, 24, 4, 0, 0}, {AMOVW, C_LCON, C_NONE, C_NONE, C_REG, C_NONE, 19, 8, 0, NOTUSETMP}, {AMOVV, C_LCON, C_NONE, C_NONE, C_REG, C_NONE, 19, 8, 0, NOTUSETMP}, {AMOVV, C_DCON, C_NONE, C_NONE, C_REG, C_NONE, 59, 16, 0, NOTUSETMP}, {AADD, C_ADD0CON, C_REG, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AADD, C_ADD0CON, C_NONE, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AADD, C_ANDCON, C_REG, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AADD, C_ANDCON, C_NONE, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AADDV, C_ADD0CON, C_REG, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AADDV, C_ADD0CON, C_NONE, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AADDV, C_ANDCON, C_REG, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AADDV, C_ANDCON, C_NONE, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AAND, C_AND0CON, C_REG, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AAND, C_AND0CON, C_NONE, C_NONE, C_REG, C_NONE, 4, 4, 0, 0}, {AAND, C_ADDCON, C_REG, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AAND, C_ADDCON, C_NONE, C_NONE, C_REG, C_NONE, 10, 8, 0, 0}, {AADD, C_UCON, C_REG, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AADD, C_UCON, C_NONE, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AADDV, C_UCON, C_REG, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AADDV, C_UCON, C_NONE, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AAND, C_UCON, C_REG, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AAND, C_UCON, C_NONE, C_NONE, C_REG, C_NONE, 25, 8, 0, 0}, {AADD, C_LCON, C_NONE, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AADDV, C_LCON, C_NONE, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AAND, C_LCON, C_NONE, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AADD, C_LCON, C_REG, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AADDV, C_LCON, C_REG, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AAND, C_LCON, C_REG, C_NONE, C_REG, C_NONE, 23, 12, 0, 0}, {AADDV, C_DCON, C_NONE, C_NONE, C_REG, C_NONE, 60, 20, 0, 0}, {AADDV, C_DCON, C_REG, C_NONE, C_REG, C_NONE, 60, 20, 0, 0}, {ASLL, C_SCON, C_REG, C_NONE, C_REG, C_NONE, 16, 4, 0, 0}, {ASLL, C_SCON, C_NONE, C_NONE, C_REG, C_NONE, 16, 4, 0, 0}, {ASLLV, C_SCON, C_REG, C_NONE, C_REG, C_NONE, 16, 4, 0, 0}, {ASLLV, C_SCON, C_NONE, C_NONE, C_REG, C_NONE, 16, 4, 0, 0}, {ABSTRPICKW, C_SCON, C_REG, C_SCON, C_REG, C_NONE, 17, 4, 0, 0}, {ABSTRPICKW, C_SCON, C_REG, C_ZCON, C_REG, C_NONE, 17, 4, 0, 0}, {ABSTRPICKW, C_ZCON, C_REG, C_ZCON, C_REG, C_NONE, 17, 4, 0, 0}, {ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0}, {ASYSCALL, C_ANDCON, C_NONE, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0}, {ABEQ, C_REG, C_REG, C_NONE, C_BRAN, C_NONE, 6, 4, 0, 0}, {ABEQ, C_REG, C_NONE, C_NONE, C_BRAN, C_NONE, 6, 4, 0, 0}, {ABLEZ, C_REG, C_NONE, C_NONE, C_BRAN, C_NONE, 6, 4, 0, 0}, {ABFPT, C_NONE, C_NONE, C_NONE, C_BRAN, C_NONE, 6, 4, 0, NOTUSETMP}, {AJMP, C_NONE, C_NONE, C_NONE, C_BRAN, C_NONE, 11, 4, 0, 0}, // b {AJAL, C_NONE, C_NONE, C_NONE, C_BRAN, C_NONE, 11, 4, 0, 0}, // bl {AJMP, C_NONE, C_NONE, C_NONE, C_ZOREG, C_NONE, 18, 4, REGZERO, 0}, // jirl r0, rj, 0 {AJAL, C_NONE, C_NONE, C_NONE, C_ZOREG, C_NONE, 18, 4, REGLINK, 0}, // jirl r1, rj, 0 {AMOVF, C_SAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 27, 4, REGSP, 0}, {AMOVD, C_SAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 27, 4, REGSP, 0}, {AMOVF, C_SOREG, C_NONE, C_NONE, C_FREG, C_NONE, 27, 4, REGZERO, 0}, {AMOVD, C_SOREG, C_NONE, C_NONE, C_FREG, C_NONE, 27, 4, REGZERO, 0}, {AMOVF, C_LAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 27, 12, REGSP, 0}, {AMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, C_NONE, 27, 12, REGSP, 0}, {AMOVF, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 27, 12, REGZERO, 0}, {AMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, C_NONE, 27, 12, REGZERO, 0}, {AMOVF, C_ADDR, C_NONE, C_NONE, C_FREG, C_NONE, 51, 8, 0, 0}, {AMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, C_NONE, 51, 8, 0, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_SAUTO, C_NONE, 28, 4, REGSP, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_SAUTO, C_NONE, 28, 4, REGSP, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_SOREG, C_NONE, 28, 4, REGZERO, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_SOREG, C_NONE, 28, 4, REGZERO, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 28, 12, REGSP, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, C_NONE, 28, 12, REGSP, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 28, 12, REGZERO, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, C_NONE, 28, 12, REGZERO, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, C_NONE, 50, 8, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_FREG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_FREG, C_NONE, 30, 4, 0, 0}, {AMOVW, C_FREG, C_NONE, C_NONE, C_REG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_FREG, C_NONE, C_NONE, C_REG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_FCCREG, C_NONE, C_NONE, C_REG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_FCSRREG, C_NONE, C_NONE, C_REG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_FCCREG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_FCSRREG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_FREG, C_NONE, C_NONE, C_FCCREG, C_NONE, 30, 4, 0, 0}, {AMOVV, C_FCCREG, C_NONE, C_NONE, C_FREG, C_NONE, 30, 4, 0, 0}, {AMOVW, C_ADDCON, C_NONE, C_NONE, C_FREG, C_NONE, 34, 8, 0, 0}, {AMOVW, C_ANDCON, C_NONE, C_NONE, C_FREG, C_NONE, 34, 8, 0, 0}, {AMOVB, C_REG, C_NONE, C_NONE, C_TLS_IE, C_NONE, 56, 16, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_TLS_IE, C_NONE, 56, 16, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_TLS_IE, C_NONE, 56, 16, 0, 0}, {AMOVBU, C_REG, C_NONE, C_NONE, C_TLS_IE, C_NONE, 56, 16, 0, 0}, {AMOVWU, C_REG, C_NONE, C_NONE, C_TLS_IE, C_NONE, 56, 16, 0, 0}, {AMOVB, C_TLS_IE, C_NONE, C_NONE, C_REG, C_NONE, 57, 16, 0, 0}, {AMOVW, C_TLS_IE, C_NONE, C_NONE, C_REG, C_NONE, 57, 16, 0, 0}, {AMOVV, C_TLS_IE, C_NONE, C_NONE, C_REG, C_NONE, 57, 16, 0, 0}, {AMOVBU, C_TLS_IE, C_NONE, C_NONE, C_REG, C_NONE, 57, 16, 0, 0}, {AMOVWU, C_TLS_IE, C_NONE, C_NONE, C_REG, C_NONE, 57, 16, 0, 0}, {AWORD, C_LCON, C_NONE, C_NONE, C_NONE, C_NONE, 38, 4, 0, 0}, {AWORD, C_DCON, C_NONE, C_NONE, C_NONE, C_NONE, 61, 4, 0, 0}, {AMOVV, C_GOTADDR, C_NONE, C_NONE, C_REG, C_NONE, 65, 8, 0, 0}, {ATEQ, C_SCON, C_REG, C_NONE, C_REG, C_NONE, 15, 8, 0, 0}, {ATEQ, C_SCON, C_NONE, C_NONE, C_REG, C_NONE, 15, 8, 0, 0}, {ARDTIMELW, C_NONE, C_NONE, C_NONE, C_REG, C_REG, 62, 4, 0, 0}, {AAMSWAPW, C_REG, C_NONE, C_NONE, C_ZOREG, C_REG, 66, 4, 0, 0}, {ANOOP, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0}, /* store with extended register offset */ {AMOVB, C_REG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AMOVW, C_REG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AMOVV, C_REG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AMOVF, C_FREG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AMOVD, C_FREG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AVMOVQ, C_VREG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, {AXVMOVQ, C_XREG, C_NONE, C_NONE, C_ROFF, C_NONE, 20, 4, 0, 0}, /* load with extended register offset */ {AMOVB, C_ROFF, C_NONE, C_NONE, C_REG, C_NONE, 21, 4, 0, 0}, {AMOVBU, C_ROFF, C_NONE, C_NONE, C_REG, C_NONE, 21, 4, 0, 0}, {AMOVW, C_ROFF, C_NONE, C_NONE, C_REG, C_NONE, 21, 4, 0, 0}, {AMOVWU, C_ROFF, C_NONE, C_NONE, C_REG, C_NONE, 21, 4, 0, 0}, {AMOVV, C_ROFF, C_NONE, C_NONE, C_REG, C_NONE, 21, 4, 0, 0}, {AMOVF, C_ROFF, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0}, {AMOVD, C_ROFF, C_NONE, C_NONE, C_FREG, C_NONE, 21, 4, 0, 0}, {AVMOVQ, C_ROFF, C_NONE, C_NONE, C_VREG, C_NONE, 21, 4, 0, 0}, {AXVMOVQ, C_ROFF, C_NONE, C_NONE, C_XREG, C_NONE, 21, 4, 0, 0}, {AVMOVQ, C_REG, C_NONE, C_NONE, C_ELEM, C_NONE, 39, 4, 0, 0}, {AVMOVQ, C_ELEM, C_NONE, C_NONE, C_REG, C_NONE, 40, 4, 0, 0}, {AXVMOVQ, C_REG, C_NONE, C_NONE, C_ELEM, C_NONE, 39, 4, 0, 0}, {AXVMOVQ, C_ELEM, C_NONE, C_NONE, C_REG, C_NONE, 40, 4, 0, 0}, {AXVMOVQ, C_XREG, C_NONE, C_NONE, C_ELEM, C_NONE, 43, 4, 0, 0}, {AXVMOVQ, C_ELEM, C_NONE, C_NONE, C_XREG, C_NONE, 44, 4, 0, 0}, {AVMOVQ, C_REG, C_NONE, C_NONE, C_ARNG, C_NONE, 41, 4, 0, 0}, {AXVMOVQ, C_REG, C_NONE, C_NONE, C_ARNG, C_NONE, 41, 4, 0, 0}, {AXVMOVQ, C_XREG, C_NONE, C_NONE, C_ARNG, C_NONE, 42, 4, 0, 0}, {AVMOVQ, C_ELEM, C_NONE, C_NONE, C_ARNG, C_NONE, 45, 4, 0, 0}, {obj.APCALIGN, C_SCON, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, {obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, C_NONE, 0, 0, 0, 0}, {obj.APCDATA, C_DCON, C_NONE, C_NONE, C_DCON, C_NONE, 0, 0, 0, 0}, {obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, C_NONE, 0, 0, 0, 0}, {obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, {obj.ANOP, C_LCON, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, // nop variants, see #40689 {obj.ANOP, C_DCON, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, // nop variants, see #40689 {obj.ANOP, C_REG, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, {obj.ANOP, C_FREG, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0}, {obj.ADUFFZERO, C_NONE, C_NONE, C_NONE, C_BRAN, C_NONE, 11, 4, 0, 0}, // same as AJMP {obj.ADUFFCOPY, C_NONE, C_NONE, C_NONE, C_BRAN, C_NONE, 11, 4, 0, 0}, // same as AJMP {obj.AXXX, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0}, } var atomicInst = map[obj.As]uint32{ AAMSWAPB: 0x070B8 << 15, // amswap.b AAMSWAPH: 0x070B9 << 15, // amswap.h AAMSWAPW: 0x070C0 << 15, // amswap.w AAMSWAPV: 0x070C1 << 15, // amswap.d AAMCASB: 0x070B0 << 15, // amcas.b AAMCASH: 0x070B1 << 15, // amcas.h AAMCASW: 0x070B2 << 15, // amcas.w AAMCASV: 0x070B3 << 15, // amcas.d AAMADDW: 0x070C2 << 15, // amadd.w AAMADDV: 0x070C3 << 15, // amadd.d AAMANDW: 0x070C4 << 15, // amand.w AAMANDV: 0x070C5 << 15, // amand.d AAMORW: 0x070C6 << 15, // amor.w AAMORV: 0x070C7 << 15, // amor.d AAMXORW: 0x070C8 << 15, // amxor.w AAMXORV: 0x070C9 << 15, // amxor.d AAMMAXW: 0x070CA << 15, // ammax.w AAMMAXV: 0x070CB << 15, // ammax.d AAMMINW: 0x070CC << 15, // ammin.w AAMMINV: 0x070CD << 15, // ammin.d AAMMAXWU: 0x070CE << 15, // ammax.wu AAMMAXVU: 0x070CF << 15, // ammax.du AAMMINWU: 0x070D0 << 15, // ammin.wu AAMMINVU: 0x070D1 << 15, // ammin.du AAMSWAPDBB: 0x070BC << 15, // amswap_db.b AAMSWAPDBH: 0x070BD << 15, // amswap_db.h AAMSWAPDBW: 0x070D2 << 15, // amswap_db.w AAMSWAPDBV: 0x070D3 << 15, // amswap_db.d AAMCASDBB: 0x070B4 << 15, // amcas_db.b AAMCASDBH: 0x070B5 << 15, // amcas_db.h AAMCASDBW: 0x070B6 << 15, // amcas_db.w AAMCASDBV: 0x070B7 << 15, // amcas_db.d AAMADDDBW: 0x070D4 << 15, // amadd_db.w AAMADDDBV: 0x070D5 << 15, // amadd_db.d AAMANDDBW: 0x070D6 << 15, // amand_db.w AAMANDDBV: 0x070D7 << 15, // amand_db.d AAMORDBW: 0x070D8 << 15, // amor_db.w AAMORDBV: 0x070D9 << 15, // amor_db.d AAMXORDBW: 0x070DA << 15, // amxor_db.w AAMXORDBV: 0x070DB << 15, // amxor_db.d AAMMAXDBW: 0x070DC << 15, // ammax_db.w AAMMAXDBV: 0x070DD << 15, // ammax_db.d AAMMINDBW: 0x070DE << 15, // ammin_db.w AAMMINDBV: 0x070DF << 15, // ammin_db.d AAMMAXDBWU: 0x070E0 << 15, // ammax_db.wu AAMMAXDBVU: 0x070E1 << 15, // ammax_db.du AAMMINDBWU: 0x070E2 << 15, // ammin_db.wu AAMMINDBVU: 0x070E3 << 15, // ammin_db.du } func IsAtomicInst(as obj.As) bool { _, ok := atomicInst[as] return ok } // pcAlignPadLength returns the number of bytes required to align pc to alignedValue, // reporting an error if alignedValue is not a power of two or is out of range. func pcAlignPadLength(ctxt *obj.Link, pc int64, alignedValue int64) int { if !((alignedValue&(alignedValue-1) == 0) && 8 <= alignedValue && alignedValue <= 2048) { ctxt.Diag("alignment value of an instruction must be a power of two and in the range [8, 2048], got %d\n", alignedValue) } return int(-pc & (alignedValue - 1)) } var oprange [ALAST & obj.AMask][]Optab var xcmp [C_NCLASS][C_NCLASS]bool func span0(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { if ctxt.Retpoline { ctxt.Diag("-spectre=ret not supported on loong64") ctxt.Retpoline = false // don't keep printing } p := cursym.Func().Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } c := ctxt0{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset + ctxt.Arch.FixedFrameSize)} if oprange[AOR&obj.AMask] == nil { c.ctxt.Diag("loong64 ops not initialized, call loong64.buildop first") } pc := int64(0) p.Pc = pc var m int var o *Optab for p = p.Link; p != nil; p = p.Link { p.Pc = pc o = c.oplook(p) m = int(o.size) if m == 0 { switch p.As { case obj.APCALIGN: alignedValue := p.From.Offset m = pcAlignPadLength(ctxt, pc, alignedValue) // Update the current text symbol alignment value. if int32(alignedValue) > cursym.Func().Align { cursym.Func().Align = int32(alignedValue) } break case obj.ANOP, obj.AFUNCDATA, obj.APCDATA: continue default: c.ctxt.Diag("zero-width instruction\n%v", p) } } pc += int64(m) } c.cursym.Size = pc // mark loop entry instructions for padding // loop entrances are defined as targets of backward branches for p = c.cursym.Func().Text.Link; p != nil; p = p.Link { if q := p.To.Target(); q != nil && q.Pc < p.Pc { q.Mark |= branchLoopHead } } // Run these passes until convergence. for { rescan := false pc = 0 prev := c.cursym.Func().Text for p = prev.Link; p != nil; prev, p = p, p.Link { p.Pc = pc o = c.oplook(p) // Prepend a PCALIGN $loopAlign to each of the loop heads // that need padding, if not already done so (because this // pass may execute more than once). // // This needs to come before any pass that look at pc, // because pc will be adjusted if padding happens. if p.Mark&branchLoopHead != 0 && pc&(loopAlign-1) != 0 && !(prev.As == obj.APCALIGN && prev.From.Offset >= loopAlign) { q := c.newprog() prev.Link = q q.Link = p q.Pc = pc q.As = obj.APCALIGN q.From.Type = obj.TYPE_CONST q.From.Offset = loopAlign // Don't associate the synthesized PCALIGN with // the original source position, for deterministic // mapping between source and corresponding asm. // q.Pos = p.Pos // Manually make the PCALIGN come into effect, // since this loop iteration is for p. pc += int64(pcAlignPadLength(ctxt, pc, loopAlign)) p.Pc = pc rescan = true } // very large conditional branches // // if any procedure is large enough to generate a large SBRA branch, then // generate extra passes putting branches around jmps to fix. this is rare. if o.type_ == 6 && p.To.Target() != nil { otxt := p.To.Target().Pc - pc // On loong64, the immediate value field of the conditional branch instructions // BFPT and BFPT is 21 bits, and the others are 16 bits. The jump target address // is to logically shift the immediate value in the instruction code to the left // by 2 bits and then sign extend. bound := int64(1 << (18 - 1)) switch p.As { case ABFPT, ABFPF: bound = int64(1 << (23 - 1)) } if otxt < -bound || otxt >= bound { q := c.newprog() q.Link = p.Link p.Link = q q.As = AJMP q.Pos = p.Pos q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(p.To.Target()) p.To.SetTarget(q) q = c.newprog() q.Link = p.Link p.Link = q q.As = AJMP q.Pos = p.Pos q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(q.Link.Link) rescan = true } } m = int(o.size) if m == 0 { switch p.As { case obj.APCALIGN: alignedValue := p.From.Offset m = pcAlignPadLength(ctxt, pc, alignedValue) break case obj.ANOP, obj.AFUNCDATA, obj.APCDATA: continue default: c.ctxt.Diag("zero-width instruction\n%v", p) } } pc += int64(m) } c.cursym.Size = pc if !rescan { break } } pc += -pc & (FuncAlign - 1) c.cursym.Size = pc // lay out the code, emitting code and data relocations. c.cursym.Grow(c.cursym.Size) bp := c.cursym.P var i int32 var out [5]uint32 for p := c.cursym.Func().Text.Link; p != nil; p = p.Link { c.pc = p.Pc o = c.oplook(p) if int(o.size) > 4*len(out) { log.Fatalf("out array in span0 is too small, need at least %d for %v", o.size/4, p) } if p.As == obj.APCALIGN { alignedValue := p.From.Offset v := pcAlignPadLength(c.ctxt, p.Pc, alignedValue) for i = 0; i < int32(v/4); i++ { // emit ANOOP instruction by the padding size c.ctxt.Arch.ByteOrder.PutUint32(bp, OP_12IRR(c.opirr(AAND), 0, 0, 0)) bp = bp[4:] } continue } c.asmout(p, o, out[:]) for i = 0; i < int32(o.size/4); i++ { c.ctxt.Arch.ByteOrder.PutUint32(bp, out[i]) bp = bp[4:] } } // Mark nonpreemptible instruction sequences. // We use REGTMP as a scratch register during call injection, // so instruction sequences that use REGTMP are unsafe to // preempt asynchronously. obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, c.isRestartable) } // isUnsafePoint returns whether p is an unsafe point. func (c *ctxt0) isUnsafePoint(p *obj.Prog) bool { // If p explicitly uses REGTMP, it's unsafe to preempt, because the // preemption sequence clobbers REGTMP. return p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP } // isRestartable returns whether p is a multi-instruction sequence that, // if preempted, can be restarted. func (c *ctxt0) isRestartable(p *obj.Prog) bool { if c.isUnsafePoint(p) { return false } // If p is a multi-instruction sequence with uses REGTMP inserted by // the assembler in order to materialize a large constant/offset, we // can restart p (at the start of the instruction sequence), recompute // the content of REGTMP, upon async preemption. Currently, all cases // of assembler-inserted REGTMP fall into this category. // If p doesn't use REGTMP, it can be simply preempted, so we don't // mark it. o := c.oplook(p) return o.size > 4 && o.flag&NOTUSETMP == 0 } func isint32(v int64) bool { return int64(int32(v)) == v } func isuint32(v uint64) bool { return uint64(uint32(v)) == v } func (c *ctxt0) aclass(a *obj.Addr) int { switch a.Type { case obj.TYPE_NONE: return C_NONE case obj.TYPE_REG: return c.rclass(a.Reg) case obj.TYPE_MEM: switch a.Name { case obj.NAME_EXTERN, obj.NAME_STATIC: if a.Sym == nil { break } c.instoffset = a.Offset if a.Sym.Type == objabi.STLSBSS { if c.ctxt.Flag_shared { return C_TLS_IE } else { return C_TLS_LE } } return C_ADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset if c.instoffset >= -BIG && c.instoffset < BIG { return C_SAUTO } return C_LAUTO case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize if c.instoffset >= -BIG && c.instoffset < BIG { return C_SAUTO } return C_LAUTO case obj.NAME_NONE: if a.Index != 0 { if a.Offset != 0 { return C_GOK } // register offset return C_ROFF } c.instoffset = a.Offset if c.instoffset == 0 { return C_ZOREG } if c.instoffset >= -BIG && c.instoffset < BIG { return C_SOREG } return C_LOREG case obj.NAME_GOTREF: return C_GOTADDR } return C_GOK case obj.TYPE_TEXTSIZE: return C_TEXTSIZE case obj.TYPE_CONST, obj.TYPE_ADDR: switch a.Name { case obj.NAME_NONE: c.instoffset = a.Offset if a.Reg != 0 { if -BIG <= c.instoffset && c.instoffset <= BIG { return C_SACON } if isint32(c.instoffset) { return C_LACON } return C_DACON } case obj.NAME_EXTERN, obj.NAME_STATIC: s := a.Sym if s == nil { return C_GOK } c.instoffset = a.Offset if s.Type == objabi.STLSBSS { c.ctxt.Diag("taking address of TLS variable is not supported") } return C_EXTADDR case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset if c.instoffset >= -BIG && c.instoffset < BIG { return C_SACON } return C_LACON case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize if c.instoffset >= -BIG && c.instoffset < BIG { return C_SACON } return C_LACON default: return C_GOK } if c.instoffset != int64(int32(c.instoffset)) { return C_DCON } if c.instoffset >= 0 { if c.instoffset == 0 { return C_ZCON } if c.instoffset <= 0x7ff { return C_SCON } if c.instoffset <= 0xfff { return C_ANDCON } if c.instoffset&0xfff == 0 && isuint32(uint64(c.instoffset)) { // && ((instoffset & (1<<31)) == 0) return C_UCON } if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) { return C_LCON } return C_LCON } if c.instoffset >= -0x800 { return C_ADDCON } if c.instoffset&0xfff == 0 && isint32(c.instoffset) { return C_UCON } if isint32(c.instoffset) { return C_LCON } return C_LCON case obj.TYPE_BRANCH: return C_BRAN } return C_GOK } // In Loong64,there are 8 CFRs, denoted as fcc0-fcc7. // There are 4 FCSRs, denoted as fcsr0-fcsr3. func (c *ctxt0) rclass(r int16) int { switch { case REG_R0 <= r && r <= REG_R31: return C_REG case REG_F0 <= r && r <= REG_F31: return C_FREG case REG_FCC0 <= r && r <= REG_FCC7: return C_FCCREG case REG_FCSR0 <= r && r <= REG_FCSR3: return C_FCSRREG case REG_V0 <= r && r <= REG_V31: return C_VREG case REG_X0 <= r && r <= REG_X31: return C_XREG case r >= REG_ARNG && r < REG_ELEM: return C_ARNG case r >= REG_ELEM && r < REG_ELEM_END: return C_ELEM } return C_GOK } func oclass(a *obj.Addr) int { return int(a.Class) - 1 } func prasm(p *obj.Prog) { fmt.Printf("%v\n", p) } func (c *ctxt0) oplook(p *obj.Prog) *Optab { if oprange[AOR&obj.AMask] == nil { c.ctxt.Diag("loong64 ops not initialized, call loong64.buildop first") } a1 := int(p.Optab) if a1 != 0 { return &optab[a1-1] } // first source operand a1 = int(p.From.Class) if a1 == 0 { a1 = c.aclass(&p.From) + 1 p.From.Class = int8(a1) } a1-- // first destination operand a4 := int(p.To.Class) if a4 == 0 { a4 = c.aclass(&p.To) + 1 p.To.Class = int8(a4) } a4-- // 2nd source operand a2 := C_NONE if p.Reg != 0 { a2 = c.rclass(p.Reg) } // 2nd destination operand a5 := C_NONE if p.RegTo2 != 0 { a5 = C_REG } // 3rd source operand a3 := C_NONE if len(p.RestArgs) > 0 { a3 = int(p.RestArgs[0].Class) if a3 == 0 { a3 = c.aclass(&p.RestArgs[0].Addr) + 1 p.RestArgs[0].Class = int8(a3) } a3-- } ops := oprange[p.As&obj.AMask] c1 := &xcmp[a1] c4 := &xcmp[a4] for i := range ops { op := &ops[i] if (int(op.reg) == a2) && int(op.from3) == a3 && c1[op.from1] && c4[op.to1] && (int(op.to2) == a5) { p.Optab = uint16(cap(optab) - cap(ops) + i + 1) return op } } c.ctxt.Diag("illegal combination %v %v %v %v %v %v", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4), DRconv(a5)) prasm(p) // Turn illegal instruction into an UNDEF, avoid crashing in asmout. return &Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0} } func cmp(a int, b int) bool { if a == b { return true } switch a { case C_DCON: if b == C_LCON { return true } fallthrough case C_LCON: if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON { return true } case C_ADD0CON: if b == C_ADDCON { return true } fallthrough case C_ADDCON: if b == C_ZCON || b == C_SCON { return true } case C_AND0CON: if b == C_ANDCON { return true } fallthrough case C_ANDCON: if b == C_ZCON || b == C_SCON { return true } case C_UCON: if b == C_ZCON { return true } case C_SCON: if b == C_ZCON { return true } case C_LACON: if b == C_SACON { return true } case C_LAUTO: if b == C_SAUTO { return true } case C_REG: if b == C_ZCON { return true } case C_LOREG: if b == C_ZOREG || b == C_SOREG { return true } case C_SOREG: if b == C_ZOREG { return true } } return false } func ocmp(p1, p2 Optab) int { if p1.as != p2.as { return int(p1.as) - int(p2.as) } if p1.from1 != p2.from1 { return int(p1.from1) - int(p2.from1) } if p1.reg != p2.reg { return int(p1.reg) - int(p2.reg) } if p1.to1 != p2.to1 { return int(p1.to1) - int(p2.to1) } return 0 } func opset(a, b0 obj.As) { oprange[a&obj.AMask] = oprange[b0] } func buildop(ctxt *obj.Link) { if ctxt.DiagFunc == nil { ctxt.DiagFunc = func(format string, args ...interface{}) { log.Printf(format, args...) } } if oprange[AOR&obj.AMask] != nil { // Already initialized; stop now. // This happens in the cmd/asm tests, // each of which re-initializes the arch. return } var n int for i := 0; i < C_NCLASS; i++ { for n = 0; n < C_NCLASS; n++ { if cmp(n, i) { xcmp[i][n] = true } } } for n = 0; optab[n].as != obj.AXXX; n++ { } slices.SortFunc(optab[:n], ocmp) for i := 0; i < n; i++ { r := optab[i].as r0 := r & obj.AMask start := i for optab[i].as == r { i++ } oprange[r0] = optab[start:i] i-- switch r { default: ctxt.Diag("unknown op in build: %v", r) ctxt.DiagFlush() log.Fatalf("bad code") case AABSF: opset(AMOVFD, r0) opset(AMOVDF, r0) opset(AMOVWF, r0) opset(AMOVFW, r0) opset(AMOVWD, r0) opset(AMOVDW, r0) opset(ANEGF, r0) opset(ANEGD, r0) opset(AABSD, r0) opset(ATRUNCDW, r0) opset(ATRUNCFW, r0) opset(ASQRTF, r0) opset(ASQRTD, r0) opset(AFCLASSF, r0) opset(AFCLASSD, r0) opset(AFLOGBF, r0) opset(AFLOGBD, r0) case AMOVVF: opset(AMOVVD, r0) opset(AMOVFV, r0) opset(AMOVDV, r0) opset(ATRUNCDV, r0) opset(ATRUNCFV, r0) opset(AFFINTFW, r0) opset(AFFINTFV, r0) opset(AFFINTDW, r0) opset(AFFINTDV, r0) opset(AFTINTWF, r0) opset(AFTINTWD, r0) opset(AFTINTVF, r0) opset(AFTINTVD, r0) opset(AFTINTRPWF, r0) opset(AFTINTRPWD, r0) opset(AFTINTRPVF, r0) opset(AFTINTRPVD, r0) opset(AFTINTRMWF, r0) opset(AFTINTRMWD, r0) opset(AFTINTRMVF, r0) opset(AFTINTRMVD, r0) opset(AFTINTRZWF, r0) opset(AFTINTRZWD, r0) opset(AFTINTRZVF, r0) opset(AFTINTRZVD, r0) opset(AFTINTRNEWF, r0) opset(AFTINTRNEWD, r0) opset(AFTINTRNEVF, r0) opset(AFTINTRNEVD, r0) case AADD: opset(ASGT, r0) opset(ASGTU, r0) opset(AADDU, r0) case AADDV: opset(AADDVU, r0) case AADDF: opset(ADIVF, r0) opset(ADIVD, r0) opset(AMULF, r0) opset(AMULD, r0) opset(ASUBF, r0) opset(ASUBD, r0) opset(AADDD, r0) opset(AFMINF, r0) opset(AFMIND, r0) opset(AFMAXF, r0) opset(AFMAXD, r0) opset(AFCOPYSGF, r0) opset(AFCOPYSGD, r0) opset(AFSCALEBF, r0) opset(AFSCALEBD, r0) case AFMADDF: opset(AFMADDD, r0) opset(AFMSUBF, r0) opset(AFMSUBD, r0) opset(AFNMADDF, r0) opset(AFNMADDD, r0) opset(AFNMSUBF, r0) opset(AFNMSUBD, r0) case AAND: opset(AOR, r0) opset(AXOR, r0) opset(AORN, r0) opset(AANDN, r0) case ABEQ: opset(ABNE, r0) opset(ABLT, r0) opset(ABGE, r0) opset(ABGEU, r0) opset(ABLTU, r0) case ABLEZ: opset(ABGEZ, r0) opset(ABLTZ, r0) opset(ABGTZ, r0) case AMOVB: opset(AMOVH, r0) case AMOVBU: opset(AMOVHU, r0) case AMUL: opset(AMULU, r0) opset(AMULH, r0) opset(AMULHU, r0) opset(AREM, r0) opset(AREMU, r0) opset(ADIV, r0) opset(ADIVU, r0) case AMULV: opset(AMULVU, r0) opset(AMULHV, r0) opset(AMULHVU, r0) opset(AREMV, r0) opset(AREMVU, r0) opset(ADIVV, r0) opset(ADIVVU, r0) case ASLL: opset(ASRL, r0) opset(ASRA, r0) opset(AROTR, r0) case ASLLV: opset(ASRAV, r0) opset(ASRLV, r0) opset(AROTRV, r0) case ABSTRPICKW: opset(ABSTRPICKV, r0) opset(ABSTRINSW, r0) opset(ABSTRINSV, r0) case ASUB: opset(ASUBU, r0) opset(ANOR, r0) case ASUBV: opset(ASUBVU, r0) case ASYSCALL: opset(ADBAR, r0) opset(ABREAK, r0) case ACMPEQF: opset(ACMPGTF, r0) opset(ACMPGTD, r0) opset(ACMPGEF, r0) opset(ACMPGED, r0) opset(ACMPEQD, r0) case ABFPT: opset(ABFPF, r0) case AMOVW, AMOVD, AMOVF, AMOVV, ARFE, AJAL, AJMP, AMOVWU, AVMOVQ, AXVMOVQ, ALL, ALLV, ASC, ASCV, ANEGW, ANEGV, AWORD, obj.ANOP, obj.ATEXT, obj.AFUNCDATA, obj.APCALIGN, obj.APCDATA, obj.ADUFFZERO, obj.ADUFFCOPY: break case ARDTIMELW: opset(ARDTIMEHW, r0) opset(ARDTIMED, r0) case ACLOW: opset(ACLZW, r0) opset(ACTOW, r0) opset(ACTZW, r0) opset(ACLOV, r0) opset(ACLZV, r0) opset(ACTOV, r0) opset(ACTZV, r0) opset(AREVB2H, r0) opset(AREVB4H, r0) opset(AREVB2W, r0) opset(AREVBV, r0) opset(AREVH2W, r0) opset(AREVHV, r0) opset(ABITREV4B, r0) opset(ABITREV8B, r0) opset(ABITREVW, r0) opset(ABITREVV, r0) opset(AEXTWB, r0) opset(AEXTWH, r0) opset(ACPUCFG, r0) case ATEQ: opset(ATNE, r0) case AMASKEQZ: opset(AMASKNEZ, r0) opset(ACRCWBW, r0) opset(ACRCWHW, r0) opset(ACRCWWW, r0) opset(ACRCWVW, r0) opset(ACRCCWBW, r0) opset(ACRCCWHW, r0) opset(ACRCCWWW, r0) opset(ACRCCWVW, r0) case ANOOP: opset(obj.AUNDEF, r0) case AAMSWAPW: for i := range atomicInst { if i == AAMSWAPW { continue } opset(i, r0) } case AVSEQB: opset(AVSEQH, r0) opset(AVSEQW, r0) opset(AVSEQV, r0) case AXVSEQB: opset(AXVSEQH, r0) opset(AXVSEQW, r0) opset(AXVSEQV, r0) case AVPCNTB: opset(AVPCNTH, r0) opset(AVPCNTW, r0) opset(AVPCNTV, r0) case AXVPCNTB: opset(AXVPCNTH, r0) opset(AXVPCNTW, r0) opset(AXVPCNTV, r0) } } } func OP_RRRR(op uint32, r1 uint32, r2 uint32, r3 uint32, r4 uint32) uint32 { return op | (r1&0x1F)<<15 | (r2&0x1F)<<10 | (r3&0x1F)<<5 | (r4 & 0x1F) } // r1 -> rk // r2 -> rj // r3 -> rd func OP_RRR(op uint32, r1 uint32, r2 uint32, r3 uint32) uint32 { return op | (r1&0x1F)<<10 | (r2&0x1F)<<5 | (r3&0x1F)<<0 } // r2 -> rj // r3 -> rd func OP_RR(op uint32, r2 uint32, r3 uint32) uint32 { return op | (r2&0x1F)<<5 | (r3&0x1F)<<0 } func OP_16IR_5I(op uint32, i uint32, r2 uint32) uint32 { return op | (i&0xFFFF)<<10 | (r2&0x1F)<<5 | ((i >> 16) & 0x1F) } func OP_16IRR(op uint32, i uint32, r2 uint32, r3 uint32) uint32 { return op | (i&0xFFFF)<<10 | (r2&0x1F)<<5 | (r3&0x1F)<<0 } func OP_12IRR(op uint32, i uint32, r2 uint32, r3 uint32) uint32 { return op | (i&0xFFF)<<10 | (r2&0x1F)<<5 | (r3&0x1F)<<0 } func OP_IR(op uint32, i uint32, r2 uint32) uint32 { return op | (i&0xFFFFF)<<5 | (r2&0x1F)<<0 // ui20, rd5 } func OP_15I(op uint32, i uint32) uint32 { return op | (i&0x7FFF)<<0 } // i1 -> msb // r2 -> rj // i3 -> lsb // r4 -> rd func OP_IRIR(op uint32, i1 uint32, r2 uint32, i3 uint32, r4 uint32) uint32 { return op | (i1 << 16) | (r2&0x1F)<<5 | (i3 << 10) | (r4&0x1F)<<0 } // Encoding for the 'b' or 'bl' instruction. func OP_B_BL(op uint32, i uint32) uint32 { return op | ((i & 0xFFFF) << 10) | ((i >> 16) & 0x3FF) } func (c *ctxt0) asmout(p *obj.Prog, o *Optab, out []uint32) { o1 := uint32(0) o2 := uint32(0) o3 := uint32(0) o4 := uint32(0) o5 := uint32(0) add := AADDU add = AADDVU switch o.type_ { default: c.ctxt.Diag("unknown type %d %v", o.type_) prasm(p) case 0: // pseudo ops break case 1: // mov r1,r2 ==> OR r1,r0,r2 a := AOR if p.As == AMOVW { a = ASLL } o1 = OP_RRR(c.oprrr(a), uint32(REGZERO), uint32(p.From.Reg), uint32(p.To.Reg)) case 2: // add/sub r1,[r2],r3 r := int(p.Reg) if p.As == ANEGW || p.As == ANEGV { r = REGZERO } if r == 0 { r = int(p.To.Reg) } o1 = OP_RRR(c.oprrr(p.As), uint32(p.From.Reg), uint32(r), uint32(p.To.Reg)) case 3: // mov $soreg, r ==> or/add $i,o,r v := c.regoff(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } a := add if o.from1 == C_ANDCON { a = AOR } o1 = OP_12IRR(c.opirr(a), uint32(v), uint32(r), uint32(p.To.Reg)) case 4: // add $scon,[r1],r2 v := c.regoff(&p.From) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o1 = OP_12IRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.To.Reg)) case 5: // syscall v := c.regoff(&p.From) o1 = OP_15I(c.opi(p.As), uint32(v)) case 6: // beq r1,[r2],sbra v := int32(0) if p.To.Target() != nil { v = int32(p.To.Target().Pc-p.Pc) >> 2 } as, rd, rj, width := p.As, p.Reg, p.From.Reg, 16 switch as { case ABGTZ, ABLEZ: rd, rj = rj, rd case ABFPT, ABFPF: width = 21 // FCC0 is the implicit source operand, now that we // don't register-allocate from the FCC bank. rj = REG_FCC0 case ABEQ, ABNE: if rd == 0 || rd == REGZERO || rj == REGZERO { // BEQZ/BNEZ can be encoded with 21-bit offsets. width = 21 as = -as if rj == 0 || rj == REGZERO { rj = rd } } } switch width { case 21: if (v<<11)>>11 != v { c.ctxt.Diag("21 bit-width, short branch too far\n%v", p) } o1 = OP_16IR_5I(c.opirr(as), uint32(v), uint32(rj)) case 16: if (v<<16)>>16 != v { c.ctxt.Diag("16 bit-width, short branch too far\n%v", p) } o1 = OP_16IRR(c.opirr(as), uint32(v), uint32(rj), uint32(rd)) default: c.ctxt.Diag("unexpected branch encoding\n%v", p) } case 7: // mov r, soreg r := int(p.To.Reg) if r == 0 { r = int(o.param) } v := c.regoff(&p.To) o1 = OP_12IRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.From.Reg)) case 8: // mov soreg, r r := int(p.From.Reg) if r == 0 { r = int(o.param) } v := c.regoff(&p.From) o1 = OP_12IRR(c.opirr(-p.As), uint32(v), uint32(r), uint32(p.To.Reg)) case 9: // sll r1,[r2],r3 o1 = OP_RR(c.oprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg)) case 10: // add $con,[r1],r2 ==> mov $con, t; add t,[r1],r2 v := c.regoff(&p.From) a := AOR if v < 0 { a = AADDU } o1 = OP_12IRR(c.opirr(a), uint32(v), uint32(0), uint32(REGTMP)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o2 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg)) case 11: // jmp lbra v := int32(0) if p.To.Target() != nil { v = int32(p.To.Target().Pc-p.Pc) >> 2 } o1 = OP_B_BL(c.opirr(p.As), uint32(v)) if p.To.Sym != nil { c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_CALLLOONG64, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) } case 12: // movbs r,r switch p.As { case AMOVB: o1 = OP_RR(c.oprr(AEXTWB), uint32(p.From.Reg), uint32(p.To.Reg)) case AMOVH: o1 = OP_RR(c.oprr(AEXTWH), uint32(p.From.Reg), uint32(p.To.Reg)) case AMOVBU: o1 = OP_12IRR(c.opirr(AAND), uint32(0xff), uint32(p.From.Reg), uint32(p.To.Reg)) case AMOVHU: o1 = OP_IRIR(c.opirir(ABSTRPICKV), 15, uint32(p.From.Reg), 0, uint32(p.To.Reg)) case AMOVWU: o1 = OP_IRIR(c.opirir(ABSTRPICKV), 31, uint32(p.From.Reg), 0, uint32(p.To.Reg)) default: c.ctxt.Diag("unexpected encoding\n%v", p) } case 15: // teq $c r,r v := c.regoff(&p.From) r := int(p.Reg) if r == 0 { r = REGZERO } /* teq c, r1, r2 fallthrough ==> bne r1, r2, 2 break c fallthrough */ if p.As == ATEQ { o1 = OP_16IRR(c.opirr(ABNE), uint32(2), uint32(r), uint32(p.To.Reg)) } else { // ATNE o1 = OP_16IRR(c.opirr(ABEQ), uint32(2), uint32(r), uint32(p.To.Reg)) } o2 = OP_15I(c.opi(ABREAK), uint32(v)) case 16: // sll $c,[r1],r2 v := c.regoff(&p.From) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } // instruction ending with V:6-digit immediate, others:5-digit immediate if v >= 32 && vshift(p.As) { o1 = OP_16IRR(c.opirr(p.As), uint32(v)&0x3f, uint32(r), uint32(p.To.Reg)) } else { o1 = OP_16IRR(c.opirr(p.As), uint32(v)&0x1f, uint32(r), uint32(p.To.Reg)) } case 17: // bstrpickw $msbw, r1, $lsbw, r2 rd, rj := p.To.Reg, p.Reg if rj == obj.REG_NONE { rj = rd } msb, lsb := p.From.Offset, p.GetFrom3().Offset // check the range of msb and lsb var b uint32 if p.As == ABSTRPICKW || p.As == ABSTRINSW { b = 32 } else { b = 64 } if lsb < 0 || uint32(lsb) >= b || msb < 0 || uint32(msb) >= b || uint32(lsb) > uint32(msb) { c.ctxt.Diag("illegal bit number\n%v", p) } o1 = OP_IRIR(c.opirir(p.As), uint32(msb), uint32(rj), uint32(lsb), uint32(rd)) case 18: // jmp [r1],0(r2) r := int(p.Reg) if r == 0 { r = int(o.param) } o1 = OP_RRR(c.oprrr(p.As), uint32(0), uint32(p.To.Reg), uint32(r)) if p.As == obj.ACALL { c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_CALLIND, Off: int32(c.pc), }) } case 19: // mov $lcon,r // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. v := c.regoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(p.To.Reg)) o2 = OP_12IRR(c.opirr(AOR), uint32(v), uint32(p.To.Reg), uint32(p.To.Reg)) case 20: // mov Rsrc, (Rbase)(Roff) o1 = OP_RRR(c.oprrr(p.As), uint32(p.To.Index), uint32(p.To.Reg), uint32(p.From.Reg)) case 21: // mov (Rbase)(Roff), Rdst o1 = OP_RRR(c.oprrr(-p.As), uint32(p.From.Index), uint32(p.From.Reg), uint32(p.To.Reg)) case 23: // add $lcon,r1,r2 v := c.regoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(REGTMP)) o2 = OP_12IRR(c.opirr(AOR), uint32(v), uint32(REGTMP), uint32(REGTMP)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o3 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg)) case 24: // mov $ucon,r v := c.regoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(p.To.Reg)) case 25: // add/and $ucon,[r1],r2 v := c.regoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(REGTMP)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o2 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg)) case 26: // mov $lsext/auto/oreg,r v := c.regoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(REGTMP)) o2 = OP_12IRR(c.opirr(AOR), uint32(v), uint32(REGTMP), uint32(REGTMP)) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o3 = OP_RRR(c.oprrr(add), uint32(REGTMP), uint32(r), uint32(p.To.Reg)) case 27: // mov [sl]ext/auto/oreg,fr v := c.regoff(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } switch o.size { case 12: o1 = OP_IR(c.opir(ALU12IW), uint32((v+1<<11)>>12), uint32(REGTMP)) o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP)) o3 = OP_12IRR(c.opirr(-p.As), uint32(v), uint32(REGTMP), uint32(p.To.Reg)) case 4: o1 = OP_12IRR(c.opirr(-p.As), uint32(v), uint32(r), uint32(p.To.Reg)) } case 28: // mov fr,[sl]ext/auto/oreg v := c.regoff(&p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } switch o.size { case 12: o1 = OP_IR(c.opir(ALU12IW), uint32((v+1<<11)>>12), uint32(REGTMP)) o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP)) o3 = OP_12IRR(c.opirr(p.As), uint32(v), uint32(REGTMP), uint32(p.From.Reg)) case 4: o1 = OP_12IRR(c.opirr(p.As), uint32(v), uint32(r), uint32(p.From.Reg)) } case 30: // mov gr/fr/fcc/fcsr, fr/fcc/fcsr/gr a := c.specialFpMovInst(p.As, oclass(&p.From), oclass(&p.To)) o1 = OP_RR(a, uint32(p.From.Reg), uint32(p.To.Reg)) case 34: // mov $con,fr v := c.regoff(&p.From) a := AADDU if o.from1 == C_ANDCON { a = AOR } a2 := c.specialFpMovInst(p.As, C_REG, oclass(&p.To)) o1 = OP_12IRR(c.opirr(a), uint32(v), uint32(0), uint32(REGTMP)) o2 = OP_RR(a2, uint32(REGTMP), uint32(p.To.Reg)) case 35: // mov r,lext/auto/oreg v := c.regoff(&p.To) r := int(p.To.Reg) if r == 0 { r = int(o.param) } o1 = OP_IR(c.opir(ALU12IW), uint32((v+1<<11)>>12), uint32(REGTMP)) o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP)) o3 = OP_12IRR(c.opirr(p.As), uint32(v), uint32(REGTMP), uint32(p.From.Reg)) case 36: // mov lext/auto/oreg,r v := c.regoff(&p.From) r := int(p.From.Reg) if r == 0 { r = int(o.param) } o1 = OP_IR(c.opir(ALU12IW), uint32((v+1<<11)>>12), uint32(REGTMP)) o2 = OP_RRR(c.oprrr(add), uint32(r), uint32(REGTMP), uint32(REGTMP)) o3 = OP_12IRR(c.opirr(-p.As), uint32(v), uint32(REGTMP), uint32(p.To.Reg)) case 37: // fmadd r1, r2, [r3], r4 r := int(p.To.Reg) if len(p.RestArgs) > 0 { r = int(p.GetFrom3().Reg) } o1 = OP_RRRR(c.oprrrr(p.As), uint32(p.From.Reg), uint32(p.Reg), uint32(r), uint32(p.To.Reg)) case 38: // word o1 = uint32(c.regoff(&p.From)) case 39: // vmov Rn, Vd.[index] v, m := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Rj := uint32(p.From.Reg & EXT_REG_MASK) Vd := uint32(p.To.Reg & EXT_REG_MASK) index := uint32(p.To.Index) c.checkindex(p, index, m) o1 = v | (index << 10) | (Rj << 5) | Vd case 40: // vmov Vd.[index], Rn v, m := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Vj := uint32(p.From.Reg & EXT_REG_MASK) Rd := uint32(p.To.Reg & EXT_REG_MASK) index := uint32(p.From.Index) c.checkindex(p, index, m) o1 = v | (index << 10) | (Vj << 5) | Rd case 41: // vmov Rn, Vd. v, _ := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Rj := uint32(p.From.Reg & EXT_REG_MASK) Vd := uint32(p.To.Reg & EXT_REG_MASK) o1 = v | (Rj << 5) | Vd case 42: // vmov xj, xd. v, _ := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Xj := uint32(p.From.Reg & EXT_REG_MASK) Xd := uint32(p.To.Reg & EXT_REG_MASK) o1 = v | (Xj << 5) | Xd case 43: // vmov xj, xd.[index] v, m := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Xj := uint32(p.From.Reg & EXT_REG_MASK) Xd := uint32(p.To.Reg & EXT_REG_MASK) index := uint32(p.To.Index) c.checkindex(p, index, m) o1 = v | (index << 10) | (Xj << 5) | Xd case 44: // vmov xj.[index], xd v, m := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } Xj := uint32(p.From.Reg & EXT_REG_MASK) Xd := uint32(p.To.Reg & EXT_REG_MASK) index := uint32(p.From.Index) c.checkindex(p, index, m) o1 = v | (index << 10) | (Xj << 5) | Xd case 45: // vmov vj.[index], vd. v, m := c.specialLsxMovInst(p.As, p.From.Reg, p.To.Reg) if v == 0 { c.ctxt.Diag("illegal arng type combination: %v\n", p) } vj := uint32(p.From.Reg & EXT_REG_MASK) vd := uint32(p.To.Reg & EXT_REG_MASK) index := uint32(p.From.Index) c.checkindex(p, index, m) o1 = v | (index << 10) | (vj << 5) | vd case 49: if p.As == ANOOP { // andi r0, r0, 0 o1 = OP_12IRR(c.opirr(AAND), 0, 0, 0) } else { // undef o1 = OP_15I(c.opi(ABREAK), 0) } // relocation operations case 50: // mov r,addr ==> pcalau12i + sw o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_HI, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) o2 = OP_12IRR(c.opirr(p.As), uint32(0), uint32(REGTMP), uint32(p.From.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) case 51: // mov addr,r ==> pcalau12i + lw o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_HI, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o2 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(p.To.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 52: // mov $ext, r // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(p.To.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_HI, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o2 = OP_12IRR(c.opirr(add), uint32(0), uint32(p.To.Reg), uint32(p.To.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_ADDR_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 53: // mov r, tlsvar ==> lu12i.w + ori + add r2, regtmp + sw o(regtmp) // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = OP_IR(c.opir(ALU12IW), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_LE_HI, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) o2 = OP_12IRR(c.opirr(AOR), uint32(0), uint32(REGTMP), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_LE_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) o3 = OP_RRR(c.oprrr(AADDV), uint32(REG_R2), uint32(REGTMP), uint32(REGTMP)) o4 = OP_12IRR(c.opirr(p.As), uint32(0), uint32(REGTMP), uint32(p.From.Reg)) case 54: // lu12i.w + ori + add r2, regtmp + lw o(regtmp) // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = OP_IR(c.opir(ALU12IW), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_LE_HI, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o2 = OP_12IRR(c.opirr(AOR), uint32(0), uint32(REGTMP), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_LE_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o3 = OP_RRR(c.oprrr(AADDV), uint32(REG_R2), uint32(REGTMP), uint32(REGTMP)) o4 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(p.To.Reg)) case 56: // mov r, tlsvar IE model ==> (pcalau12i + ld.d)tlsvar@got + add.d + st.d o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_IE_HI, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, }) o2 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_IE_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.To.Sym, }) o3 = OP_RRR(c.oprrr(AADDVU), uint32(REGTMP), uint32(REG_R2), uint32(REGTMP)) o4 = OP_12IRR(c.opirr(p.As), uint32(0), uint32(REGTMP), uint32(p.From.Reg)) case 57: // mov tlsvar, r IE model ==> (pcalau12i + ld.d)tlsvar@got + add.d + ld.d o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_IE_HI, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, }) o2 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(REGTMP)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_TLS_IE_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, }) o3 = OP_RRR(c.oprrr(AADDVU), uint32(REGTMP), uint32(REG_R2), uint32(REGTMP)) o4 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(REGTMP), uint32(p.To.Reg)) case 59: // mov $dcon,r // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. v := c.vregoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(p.To.Reg)) o2 = OP_12IRR(c.opirr(AOR), uint32(v), uint32(p.To.Reg), uint32(p.To.Reg)) o3 = OP_IR(c.opir(ALU32ID), uint32(v>>32), uint32(p.To.Reg)) o4 = OP_12IRR(c.opirr(ALU52ID), uint32(v>>52), uint32(p.To.Reg), uint32(p.To.Reg)) case 60: // add $dcon,r1,r2 v := c.vregoff(&p.From) o1 = OP_IR(c.opir(ALU12IW), uint32(v>>12), uint32(REGTMP)) o2 = OP_12IRR(c.opirr(AOR), uint32(v), uint32(REGTMP), uint32(REGTMP)) o3 = OP_IR(c.opir(ALU32ID), uint32(v>>32), uint32(REGTMP)) o4 = OP_12IRR(c.opirr(ALU52ID), uint32(v>>52), uint32(REGTMP), uint32(REGTMP)) r := int(p.Reg) if r == 0 { r = int(p.To.Reg) } o5 = OP_RRR(c.oprrr(p.As), uint32(REGTMP), uint32(r), uint32(p.To.Reg)) case 61: // word C_DCON o1 = uint32(c.vregoff(&p.From)) o2 = uint32(c.vregoff(&p.From) >> 32) case 62: // rdtimex rd, rj o1 = OP_RR(c.oprr(p.As), uint32(p.To.Reg), uint32(p.RegTo2)) case 65: // mov sym@GOT, r ==> pcalau12i + ld.d o1 = OP_IR(c.opir(APCALAU12I), uint32(0), uint32(p.To.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_GOT_HI, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, }) o2 = OP_12IRR(c.opirr(-p.As), uint32(0), uint32(p.To.Reg), uint32(p.To.Reg)) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_LOONG64_GOT_LO, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, }) case 66: // am* From, To, RegTo2 ==> am* RegTo2, From, To rk := p.From.Reg rj := p.To.Reg rd := p.RegTo2 // See section 2.2.7.1 of https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html // for the register usage constraints. if rd == rj || rd == rk { c.ctxt.Diag("illegal register combination: %v\n", p) } o1 = OP_RRR(atomicInst[p.As], uint32(rk), uint32(rj), uint32(rd)) } out[0] = o1 out[1] = o2 out[2] = o3 out[3] = o4 out[4] = o5 } // checkindex checks if index >= 0 && index <= maxindex func (c *ctxt0) checkindex(p *obj.Prog, index uint32, mask uint32) { if (index & ^mask) != 0 { c.ctxt.Diag("register element index out of range 0 to %d: %v", mask, p) } } func (c *ctxt0) vregoff(a *obj.Addr) int64 { c.instoffset = 0 c.aclass(a) return c.instoffset } func (c *ctxt0) regoff(a *obj.Addr) int32 { return int32(c.vregoff(a)) } func (c *ctxt0) oprrrr(a obj.As) uint32 { switch a { case AFMADDF: return 0x81 << 20 // fmadd.s case AFMADDD: return 0x82 << 20 // fmadd.d case AFMSUBF: return 0x85 << 20 // fmsub.s case AFMSUBD: return 0x86 << 20 // fmsub.d case AFNMADDF: return 0x89 << 20 // fnmadd.f case AFNMADDD: return 0x8a << 20 // fnmadd.d case AFNMSUBF: return 0x8d << 20 // fnmsub.s case AFNMSUBD: return 0x8e << 20 // fnmsub.d } c.ctxt.Diag("bad rrrr opcode %v", a) return 0 } func (c *ctxt0) oprrr(a obj.As) uint32 { switch a { case AADD: return 0x20 << 15 case AADDU: return 0x20 << 15 case ASGT: return 0x24 << 15 // SLT case ASGTU: return 0x25 << 15 // SLTU case AMASKEQZ: return 0x26 << 15 case AMASKNEZ: return 0x27 << 15 case AAND: return 0x29 << 15 case AOR: return 0x2a << 15 case AXOR: return 0x2b << 15 case AORN: return 0x2c << 15 // orn case AANDN: return 0x2d << 15 // andn case ASUB: return 0x22 << 15 case ASUBU, ANEGW: return 0x22 << 15 case ANOR: return 0x28 << 15 case ASLL: return 0x2e << 15 case ASRL: return 0x2f << 15 case ASRA: return 0x30 << 15 case AROTR: return 0x36 << 15 case ASLLV: return 0x31 << 15 case ASRLV: return 0x32 << 15 case ASRAV: return 0x33 << 15 case AROTRV: return 0x37 << 15 case AADDV: return 0x21 << 15 case AADDVU: return 0x21 << 15 case ASUBV: return 0x23 << 15 case ASUBVU, ANEGV: return 0x23 << 15 case AMUL: return 0x38 << 15 // mul.w case AMULU: return 0x38 << 15 // mul.w case AMULH: return 0x39 << 15 // mulh.w case AMULHU: return 0x3a << 15 // mulhu.w case AMULV: return 0x3b << 15 // mul.d case AMULVU: return 0x3b << 15 // mul.d case AMULHV: return 0x3c << 15 // mulh.d case AMULHVU: return 0x3d << 15 // mulhu.d case ADIV: return 0x40 << 15 // div.w case ADIVU: return 0x42 << 15 // div.wu case ADIVV: return 0x44 << 15 // div.d case ADIVVU: return 0x46 << 15 // div.du case AREM: return 0x41 << 15 // mod.w case AREMU: return 0x43 << 15 // mod.wu case AREMV: return 0x45 << 15 // mod.d case AREMVU: return 0x47 << 15 // mod.du case ACRCWBW: return 0x48 << 15 // crc.w.b.w case ACRCWHW: return 0x49 << 15 // crc.w.h.w case ACRCWWW: return 0x4a << 15 // crc.w.w.w case ACRCWVW: return 0x4b << 15 // crc.w.d.w case ACRCCWBW: return 0x4c << 15 // crcc.w.b.w case ACRCCWHW: return 0x4d << 15 // crcc.w.h.w case ACRCCWWW: return 0x4e << 15 // crcc.w.w.w case ACRCCWVW: return 0x4f << 15 // crcc.w.d.w case AJMP: return 0x13 << 26 // jirl r0, rj, 0 case AJAL: return (0x13 << 26) | 1 // jirl r1, rj, 0 case ADIVF: return 0x20d << 15 case ADIVD: return 0x20e << 15 case AMULF: return 0x209 << 15 case AMULD: return 0x20a << 15 case ASUBF: return 0x205 << 15 case ASUBD: return 0x206 << 15 case AADDF: return 0x201 << 15 case AADDD: return 0x202 << 15 case ACMPEQF: return 0x0c1<<20 | 0x4<<15 // FCMP.CEQ.S case ACMPEQD: return 0x0c2<<20 | 0x4<<15 // FCMP.CEQ.D case ACMPGED: return 0x0c2<<20 | 0x7<<15 // FCMP.SLE.D case ACMPGEF: return 0x0c1<<20 | 0x7<<15 // FCMP.SLE.S case ACMPGTD: return 0x0c2<<20 | 0x3<<15 // FCMP.SLT.D case ACMPGTF: return 0x0c1<<20 | 0x3<<15 // FCMP.SLT.S case AFMINF: return 0x215 << 15 // fmin.s case AFMIND: return 0x216 << 15 // fmin.d case AFMAXF: return 0x211 << 15 // fmax.s case AFMAXD: return 0x212 << 15 // fmax.d case AFSCALEBF: return 0x221 << 15 // fscaleb.s case AFSCALEBD: return 0x222 << 15 // fscaleb.d case AFCOPYSGF: return 0x225 << 15 // fcopysign.s case AFCOPYSGD: return 0x226 << 15 // fcopysign.d case -AMOVB: return 0x07000 << 15 // ldx.b case -AMOVH: return 0x07008 << 15 // ldx.h case -AMOVW: return 0x07010 << 15 // ldx.w case -AMOVV: return 0x07018 << 15 // ldx.d case -AMOVBU: return 0x07040 << 15 // ldx.bu case -AMOVHU: return 0x07048 << 15 // ldx.hu case -AMOVWU: return 0x07050 << 15 // ldx.wu case AMOVB: return 0x07020 << 15 // stx.b case AMOVH: return 0x07028 << 15 // stx.h case AMOVW: return 0x07030 << 15 // stx.w case AMOVV: return 0x07038 << 15 // stx.d case -AMOVF: return 0x07060 << 15 // fldx.s case -AMOVD: return 0x07068 << 15 // fldx.d case AMOVF: return 0x07070 << 15 // fstx.s case AMOVD: return 0x07078 << 15 // fstx.d case -AVMOVQ: return 0x07080 << 15 // vldx case -AXVMOVQ: return 0x07090 << 15 // xvldx case AVMOVQ: return 0x07088 << 15 // vstx case AXVMOVQ: return 0x07098 << 15 // xvstx case AVSEQB: return 0x0e000 << 15 // vseq.b case AXVSEQB: return 0x0e800 << 15 // xvseq.b case AVSEQH: return 0x0e001 << 15 // vseq.h case AXVSEQH: return 0x0e801 << 15 // xvseq.h case AVSEQW: return 0x0e002 << 15 // vseq.w case AXVSEQW: return 0x0e802 << 15 // xvseq.w case AVSEQV: return 0x0e003 << 15 // vseq.d case AXVSEQV: return 0x0e803 << 15 // xvseq.d } if a < 0 { c.ctxt.Diag("bad rrr opcode -%v", -a) } else { c.ctxt.Diag("bad rrr opcode %v", a) } return 0 } func (c *ctxt0) oprr(a obj.As) uint32 { switch a { case ACLOW: return 0x4 << 10 // clo.w case ACLZW: return 0x5 << 10 // clz.w case ACTOW: return 0x6 << 10 // cto.w case ACTZW: return 0x7 << 10 // ctz.w case ACLOV: return 0x8 << 10 // clo.d case ACLZV: return 0x9 << 10 // clz.d case ACTOV: return 0xa << 10 // cto.d case ACTZV: return 0xb << 10 // ctz.d case AREVB2H: return 0xc << 10 // revb.2h case AREVB4H: return 0xd << 10 // revb.4h case AREVB2W: return 0xe << 10 // revb.2w case AREVBV: return 0xf << 10 // revb.d case AREVH2W: return 0x10 << 10 // revh.2w case AREVHV: return 0x11 << 10 // revh.d case ABITREV4B: return 0x12 << 10 // bitrev.4b case ABITREV8B: return 0x13 << 10 // bitrev.8b case ABITREVW: return 0x14 << 10 // bitrev.w case ABITREVV: return 0x15 << 10 // bitrev.d case AEXTWH: return 0x16 << 10 // ext.w.h case AEXTWB: return 0x17 << 10 // ext.w.h case ACPUCFG: return 0x1b << 10 case ARDTIMELW: return 0x18 << 10 case ARDTIMEHW: return 0x19 << 10 case ARDTIMED: return 0x1a << 10 case ATRUNCFV: return 0x46a9 << 10 case ATRUNCDV: return 0x46aa << 10 case ATRUNCFW: return 0x46a1 << 10 case ATRUNCDW: return 0x46a2 << 10 case AMOVFV: return 0x46c9 << 10 case AMOVDV: return 0x46ca << 10 case AMOVVF: return 0x4746 << 10 case AMOVVD: return 0x474a << 10 case AMOVFW: return 0x46c1 << 10 case AMOVDW: return 0x46c2 << 10 case AMOVWF: return 0x4744 << 10 case AMOVDF: return 0x4646 << 10 case AMOVWD: return 0x4748 << 10 case AMOVFD: return 0x4649 << 10 case AABSF: return 0x4501 << 10 case AABSD: return 0x4502 << 10 case AMOVF: return 0x4525 << 10 case AMOVD: return 0x4526 << 10 case ANEGF: return 0x4505 << 10 case ANEGD: return 0x4506 << 10 case ASQRTF: return 0x4511 << 10 case ASQRTD: return 0x4512 << 10 case AFLOGBF: return 0x4509 << 10 // flogb.s case AFLOGBD: return 0x450a << 10 // flogb.d case AFCLASSF: return 0x450d << 10 // fclass.s case AFCLASSD: return 0x450e << 10 // fclass.d case AFFINTFW: return 0x4744 << 10 // ffint.s.w case AFFINTFV: return 0x4746 << 10 // ffint.s.l case AFFINTDW: return 0x4748 << 10 // ffint.d.w case AFFINTDV: return 0x474a << 10 // ffint.d.l case AFTINTWF: return 0x46c1 << 10 // ftint.w.s case AFTINTWD: return 0x46c2 << 10 // ftint.w.d case AFTINTVF: return 0x46c9 << 10 // ftint.l.s case AFTINTVD: return 0x46ca << 10 // ftint.l.d case AFTINTRMWF: return 0x4681 << 10 // ftintrm.w.s case AFTINTRMWD: return 0x4682 << 10 // ftintrm.w.d case AFTINTRMVF: return 0x4689 << 10 // ftintrm.l.s case AFTINTRMVD: return 0x468a << 10 // ftintrm.l.d case AFTINTRPWF: return 0x4691 << 10 // ftintrp.w.s case AFTINTRPWD: return 0x4692 << 10 // ftintrp.w.d case AFTINTRPVF: return 0x4699 << 10 // ftintrp.l.s case AFTINTRPVD: return 0x469a << 10 // ftintrp.l.d case AFTINTRZWF: return 0x46a1 << 10 // ftintrz.w.s case AFTINTRZWD: return 0x46a2 << 10 // ftintrz.w.d case AFTINTRZVF: return 0x46a9 << 10 // ftintrz.l.s case AFTINTRZVD: return 0x46aa << 10 // ftintrz.l.d case AFTINTRNEWF: return 0x46b1 << 10 // ftintrne.w.s case AFTINTRNEWD: return 0x46b2 << 10 // ftintrne.w.d case AFTINTRNEVF: return 0x46b9 << 10 // ftintrne.l.s case AFTINTRNEVD: return 0x46ba << 10 // ftintrne.l.d case AVPCNTB: return 0x1ca708 << 10 // vpcnt.b case AVPCNTH: return 0x1ca709 << 10 // vpcnt.h case AVPCNTW: return 0x1ca70a << 10 // vpcnt.w case AVPCNTV: return 0x1ca70b << 10 // vpcnt.v case AXVPCNTB: return 0x1da708 << 10 // xvpcnt.b case AXVPCNTH: return 0x1da709 << 10 // xvpcnt.h case AXVPCNTW: return 0x1da70a << 10 // xvpcnt.w case AXVPCNTV: return 0x1da70b << 10 // xvpcnt.v } c.ctxt.Diag("bad rr opcode %v", a) return 0 } func (c *ctxt0) opi(a obj.As) uint32 { switch a { case ASYSCALL: return 0x56 << 15 case ABREAK: return 0x54 << 15 case ADBAR: return 0x70e4 << 15 } c.ctxt.Diag("bad ic opcode %v", a) return 0 } func (c *ctxt0) opir(a obj.As) uint32 { switch a { case ALU12IW: return 0x0a << 25 case ALU32ID: return 0x0b << 25 case APCALAU12I: return 0x0d << 25 case APCADDU12I: return 0x0e << 25 } return 0 } func (c *ctxt0) opirr(a obj.As) uint32 { switch a { case AADD, AADDU: return 0x00a << 22 case ASGT: return 0x008 << 22 case ASGTU: return 0x009 << 22 case AAND: return 0x00d << 22 case AOR: return 0x00e << 22 case ALU52ID: return 0x00c << 22 case AXOR: return 0x00f << 22 case ASLL: return 0x00081 << 15 case ASRL: return 0x00089 << 15 case ASRA: return 0x00091 << 15 case AROTR: return 0x00099 << 15 case AADDV: return 0x00b << 22 case AADDVU: return 0x00b << 22 case AJMP: return 0x14 << 26 case AJAL, obj.ADUFFZERO, obj.ADUFFCOPY: return 0x15 << 26 case AJIRL: return 0x13 << 26 case ABLTU: return 0x1a << 26 case ABLT, ABLTZ, ABGTZ: return 0x18 << 26 case ABGEU: return 0x1b << 26 case ABGE, ABGEZ, ABLEZ: return 0x19 << 26 case -ABEQ: // beqz return 0x10 << 26 case -ABNE: // bnez return 0x11 << 26 case ABEQ: return 0x16 << 26 case ABNE: return 0x17 << 26 case ABFPT: return 0x12<<26 | 0x1<<8 case ABFPF: return 0x12<<26 | 0x0<<8 case AMOVB, AMOVBU: return 0x0a4 << 22 case AMOVH, AMOVHU: return 0x0a5 << 22 case AMOVW, AMOVWU: return 0x0a6 << 22 case AMOVV: return 0x0a7 << 22 case AMOVF: return 0x0ad << 22 case AMOVD: return 0x0af << 22 case -AMOVB: return 0x0a0 << 22 case -AMOVBU: return 0x0a8 << 22 case -AMOVH: return 0x0a1 << 22 case -AMOVHU: return 0x0a9 << 22 case -AMOVW: return 0x0a2 << 22 case -AMOVWU: return 0x0aa << 22 case -AMOVV: return 0x0a3 << 22 case -AMOVF: return 0x0ac << 22 case -AMOVD: return 0x0ae << 22 case -AVMOVQ: return 0x0b0 << 22 // vld case -AXVMOVQ: return 0x0b2 << 22 // xvld case AVMOVQ: return 0x0b1 << 22 // vst case AXVMOVQ: return 0x0b3 << 22 // xvst case ASLLV: return 0x0041 << 16 case ASRLV: return 0x0045 << 16 case ASRAV: return 0x0049 << 16 case AROTRV: return 0x004d << 16 case -ALL: return 0x020 << 24 case -ALLV: return 0x022 << 24 case ASC: return 0x021 << 24 case ASCV: return 0x023 << 24 } if a < 0 { c.ctxt.Diag("bad irr opcode -%v", -a) } else { c.ctxt.Diag("bad irr opcode %v", a) } return 0 } func (c *ctxt0) opirir(a obj.As) uint32 { switch a { case ABSTRINSW: return 0x3<<21 | 0x0<<15 // bstrins.w case ABSTRINSV: return 0x2 << 22 // bstrins.d case ABSTRPICKW: return 0x3<<21 | 0x1<<15 // bstrpick.w case ABSTRPICKV: return 0x3 << 22 // bstrpick.d } return 0 } func (c *ctxt0) specialFpMovInst(a obj.As, fclass int, tclass int) uint32 { switch a { case AMOVV: switch fclass { case C_REG: switch tclass { case C_FREG: return 0x452a << 10 // movgr2fr.d case C_FCCREG: return 0x4536 << 10 // movgr2cf case C_FCSRREG: return 0x4530 << 10 // movgr2fcsr } case C_FREG: switch tclass { case C_REG: return 0x452e << 10 // movfr2gr.d case C_FCCREG: return 0x4534 << 10 // movfr2cf } case C_FCCREG: switch tclass { case C_REG: return 0x4537 << 10 // movcf2gr case C_FREG: return 0x4535 << 10 // movcf2fr } case C_FCSRREG: switch tclass { case C_REG: return 0x4532 << 10 // movfcsr2gr } } case AMOVW: switch fclass { case C_REG: switch tclass { case C_FREG: return 0x4529 << 10 // movgr2fr.w } case C_FREG: switch tclass { case C_REG: return 0x452d << 10 // movfr2gr.s } } } c.ctxt.Diag("bad class combination: %s %s,%s\n", a, fclass, tclass) return 0 } func (c *ctxt0) specialLsxMovInst(a obj.As, fReg, tReg int16) (op_code, index_mask uint32) { farng := (fReg >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK tarng := (tReg >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK fclass := c.rclass(fReg) tclass := c.rclass(tReg) switch fclass | (tclass << 16) { case C_REG | (C_ELEM << 16): // vmov Rn, Vd.[index] switch a { case AVMOVQ: switch tarng { case ARNG_B: return (0x01CBAE << 14), 0xf // vinsgr2vr.b case ARNG_H: return (0x03975E << 13), 0x7 // vinsgr2vr.h case ARNG_W: return (0x072EBE << 12), 0x3 // vinsgr2vr.w case ARNG_V: return (0x0E5D7E << 11), 0x1 // vinsgr2vr.d } case AXVMOVQ: switch tarng { case ARNG_W: return (0x03B75E << 13), 0x7 // xvinsgr2vr.w case ARNG_V: return (0x076EBE << 12), 0x3 // xvinsgr2vr.d } } case C_ELEM | (C_REG << 16): // vmov Vd.[index], Rn switch a { case AVMOVQ: switch farng { case ARNG_B: return (0x01CBBE << 14), 0xf // vpickve2gr.b case ARNG_H: return (0x03977E << 13), 0x7 // vpickve2gr.h case ARNG_W: return (0x072EFE << 12), 0x3 // vpickve2gr.w case ARNG_V: return (0x0E5DFE << 11), 0x1 // vpickve2gr.d case ARNG_BU: return (0x01CBCE << 14), 0xf // vpickve2gr.bu case ARNG_HU: return (0x03979E << 13), 0x7 // vpickve2gr.hu case ARNG_WU: return (0x072F3E << 12), 0x3 // vpickve2gr.wu case ARNG_VU: return (0x0E5E7E << 11), 0x1 // vpickve2gr.du } case AXVMOVQ: switch farng { case ARNG_W: return (0x03B77E << 13), 0x7 // xvpickve2gr.w case ARNG_V: return (0x076EFE << 12), 0x3 // xvpickve2gr.d case ARNG_WU: return (0x03B79E << 13), 0x7 // xvpickve2gr.wu case ARNG_VU: return (0x076F3E << 12), 0x3 // xvpickve2gr.du } } case C_REG | (C_ARNG << 16): // vmov Rn, Vd. switch a { case AVMOVQ: switch tarng { case ARNG_16B: return (0x1CA7C0 << 10), 0x0 // vreplgr2vr.b case ARNG_8H: return (0x1CA7C1 << 10), 0x0 // vreplgr2vr.h case ARNG_4W: return (0x1CA7C2 << 10), 0x0 // vreplgr2vr.w case ARNG_2V: return (0x1CA7C3 << 10), 0x0 // vreplgr2vr.d } case AXVMOVQ: switch tarng { case ARNG_32B: return (0x1DA7C0 << 10), 0x0 // xvreplgr2vr.b case ARNG_16H: return (0x1DA7C1 << 10), 0x0 // xvreplgr2vr.h case ARNG_8W: return (0x1DA7C2 << 10), 0x0 // xvreplgr2vr.w case ARNG_4V: return (0x1DA7C3 << 10), 0x0 // xvreplgr2vr.d } } case C_XREG | (C_ARNG << 16): // vmov xj, xd. switch a { case AVMOVQ: return 0, 0 // unsupported op case AXVMOVQ: switch tarng { case ARNG_32B: return (0x1DC1C0 << 10), 0x0 // xvreplve0.b case ARNG_16H: return (0x1DC1E0 << 10), 0x0 // xvreplve0.h case ARNG_8W: return (0x1DC1F0 << 10), 0x0 // xvreplve0.w case ARNG_4V: return (0x1DC1F8 << 10), 0x0 // xvreplve0.d case ARNG_2Q: return (0x1DC1FC << 10), 0x0 // xvreplve0.q } } case C_XREG | (C_ELEM << 16): // vmov xj, xd.[index] switch a { case AVMOVQ: return 0, 0 // unsupported op case AXVMOVQ: switch tarng { case ARNG_W: return (0x03B7FE << 13), 0x7 // xvinsve0.w case ARNG_V: return (0x076FFE << 12), 0x3 // xvinsve0.d } } case C_ELEM | (C_XREG << 16): // vmov xj.[index], xd switch a { case AVMOVQ: return 0, 0 // unsupported op case AXVMOVQ: switch farng { case ARNG_W: return (0x03B81E << 13), 0x7 // xvpickve.w case ARNG_V: return (0x07703E << 12), 0x3 // xvpickve.d } } case C_ELEM | (C_ARNG << 16): // vmov vj.[index], vd. switch a { case AVMOVQ: switch int32(farng) | (int32(tarng) << 16) { case int32(ARNG_B) | (int32(ARNG_16B) << 16): return (0x01CBDE << 14), 0xf // vreplvei.b case int32(ARNG_H) | (int32(ARNG_8H) << 16): return (0x0397BE << 13), 0x7 // vreplvei.h case int32(ARNG_W) | (int32(ARNG_4W) << 16): return (0x072F7E << 12), 0x3 // vreplvei.w case int32(ARNG_V) | (int32(ARNG_2V) << 16): return (0x0E5EFE << 11), 0x1 // vreplvei.d } case AXVMOVQ: return 0, 0 // unsupported op } } return 0, 0 } func vshift(a obj.As) bool { switch a { case ASLLV, ASRLV, ASRAV, AROTRV: return true } return false }