// cmd/9l/optab.c, cmd/9l/asmout.c from Vita Nuova. // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package mips import ( "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "fmt" "log" "slices" ) // ctxt0 holds state while assembling a single function. // Each function gets a fresh ctxt0. // This allows for multiple functions to be safely concurrently assembled. type ctxt0 struct { ctxt *obj.Link newprog obj.ProgAlloc cursym *obj.LSym autosize int32 instoffset int64 pc int64 } // Instruction layout. const ( mips64FuncAlign = 8 ) const ( r0iszero = 1 ) type Optab struct { as obj.As a1 uint8 a2 uint8 a3 uint8 type_ int8 size int8 param int16 family sys.ArchFamily // 0 means both sys.MIPS and sys.MIPS64 flag uint8 } const ( // Optab.flag NOTUSETMP = 1 << iota // p expands to multiple instructions, but does NOT use REGTMP ) var optab = []Optab{ {obj.ATEXT, C_LEXT, C_NONE, C_TEXTSIZE, 0, 0, 0, sys.MIPS64, 0}, {obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_REG, 1, 4, 0, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_REG, 12, 8, 0, 0, NOTUSETMP}, {AMOVBU, C_REG, C_NONE, C_REG, 13, 4, 0, 0, 0}, {AMOVWU, C_REG, C_NONE, C_REG, 14, 8, 0, sys.MIPS64, NOTUSETMP}, {ASUB, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0}, {ASUBV, C_REG, C_REG, C_REG, 2, 4, 0, sys.MIPS64, 0}, {AADD, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0}, {AADDV, C_REG, C_REG, C_REG, 2, 4, 0, sys.MIPS64, 0}, {AAND, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0}, {ASUB, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0}, {ASUBV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0}, {AADD, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0}, {AADDV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0}, {AAND, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0}, {ACMOVN, C_REG, C_REG, C_REG, 2, 4, 0, 0, 0}, {ANEGW, C_REG, C_NONE, C_REG, 2, 4, 0, 0, 0}, {ANEGV, C_REG, C_NONE, C_REG, 2, 4, 0, sys.MIPS64, 0}, {ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0}, {ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0}, {ASLLV, C_REG, C_NONE, C_REG, 9, 4, 0, sys.MIPS64, 0}, {ASLLV, C_REG, C_REG, C_REG, 9, 4, 0, sys.MIPS64, 0}, {ACLO, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0}, {AADDF, C_FREG, C_NONE, C_FREG, 32, 4, 0, 0, 0}, {AADDF, C_FREG, C_REG, C_FREG, 32, 4, 0, 0, 0}, {ACMPEQF, C_FREG, C_REG, C_NONE, 32, 4, 0, 0, 0}, {AABSF, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0}, {AMOVVF, C_FREG, C_NONE, C_FREG, 33, 4, 0, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0}, {AMOVD, C_FREG, C_NONE, C_FREG, 33, 4, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVWU, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVBU, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVWL, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVVL, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0}, {AMOVWU, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0}, {AMOVBU, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0}, {AMOVWL, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, 0, 0}, {AMOVVL, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0}, {AMOVWU, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0}, {AMOVBU, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0}, {AMOVWL, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0}, {AMOVVL, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0}, {ASC, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, 0, 0}, {ASCV, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0}, {AMOVW, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVWU, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVV, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVB, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVBU, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVWL, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVVL, C_SEXT, C_NONE, C_REG, 8, 4, REGSB, sys.MIPS64, 0}, {AMOVW, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0}, {AMOVWU, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0}, {AMOVV, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0}, {AMOVB, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0}, {AMOVBU, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0}, {AMOVWL, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, 0, 0}, {AMOVVL, C_SAUTO, C_NONE, C_REG, 8, 4, REGSP, sys.MIPS64, 0}, {AMOVW, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0}, {AMOVWU, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0}, {AMOVV, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0}, {AMOVB, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0}, {AMOVBU, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0}, {AMOVWL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0}, {AMOVVL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0}, {ALL, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, 0, 0}, {ALLV, C_SOREG, C_NONE, C_REG, 8, 4, REGZERO, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0}, {AMOVWU, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0}, {AMOVBU, C_REG, C_NONE, C_LEXT, 35, 12, REGSB, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0}, {AMOVWU, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0}, {AMOVBU, C_REG, C_NONE, C_LAUTO, 35, 12, REGSP, 0, 0}, {AMOVW, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0}, {AMOVWU, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0}, {AMOVBU, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0}, {ASC, C_REG, C_NONE, C_LOREG, 35, 12, REGZERO, 0, 0}, {AMOVW, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0}, {AMOVW, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVWU, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVV, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVB, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0}, {AMOVB, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVBU, C_REG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0}, {AMOVBU, C_REG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP}, {AMOVWU, C_REG, C_NONE, C_TLS, 53, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVV, C_REG, C_NONE, C_TLS, 53, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVB, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP}, {AMOVBU, C_REG, C_NONE, C_TLS, 53, 8, 0, 0, NOTUSETMP}, {AMOVW, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0}, {AMOVWU, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0}, {AMOVV, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0}, {AMOVB, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0}, {AMOVBU, C_LEXT, C_NONE, C_REG, 36, 12, REGSB, sys.MIPS64, 0}, {AMOVW, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0}, {AMOVWU, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, sys.MIPS64, 0}, {AMOVV, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, sys.MIPS64, 0}, {AMOVB, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0}, {AMOVBU, C_LAUTO, C_NONE, C_REG, 36, 12, REGSP, 0, 0}, {AMOVW, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0}, {AMOVWU, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, sys.MIPS64, 0}, {AMOVV, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, sys.MIPS64, 0}, {AMOVB, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0}, {AMOVBU, C_LOREG, C_NONE, C_REG, 36, 12, REGZERO, 0, 0}, {AMOVW, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0}, {AMOVW, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0}, {AMOVWU, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0}, {AMOVV, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0}, {AMOVB, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0}, {AMOVB, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0}, {AMOVBU, C_ADDR, C_NONE, C_REG, 51, 8, 0, sys.MIPS, 0}, {AMOVBU, C_ADDR, C_NONE, C_REG, 51, 12, 0, sys.MIPS64, 0}, {AMOVW, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP}, {AMOVWU, C_TLS, C_NONE, C_REG, 54, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVV, C_TLS, C_NONE, C_REG, 54, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVB, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP}, {AMOVBU, C_TLS, C_NONE, C_REG, 54, 8, 0, 0, NOTUSETMP}, {AMOVW, C_SECON, C_NONE, C_REG, 3, 4, REGSB, sys.MIPS64, 0}, {AMOVV, C_SECON, C_NONE, C_REG, 3, 4, REGSB, sys.MIPS64, 0}, {AMOVW, C_SACON, C_NONE, C_REG, 3, 4, REGSP, 0, 0}, {AMOVV, C_SACON, C_NONE, C_REG, 3, 4, REGSP, sys.MIPS64, 0}, {AMOVW, C_LECON, C_NONE, C_REG, 52, 8, REGSB, sys.MIPS, NOTUSETMP}, {AMOVW, C_LECON, C_NONE, C_REG, 52, 12, REGSB, sys.MIPS64, NOTUSETMP}, {AMOVV, C_LECON, C_NONE, C_REG, 52, 12, REGSB, sys.MIPS64, NOTUSETMP}, {AMOVW, C_LACON, C_NONE, C_REG, 26, 12, REGSP, 0, 0}, {AMOVV, C_LACON, C_NONE, C_REG, 26, 12, REGSP, sys.MIPS64, 0}, {AMOVW, C_ADDCON, C_NONE, C_REG, 3, 4, REGZERO, 0, 0}, {AMOVV, C_ADDCON, C_NONE, C_REG, 3, 4, REGZERO, sys.MIPS64, 0}, {AMOVW, C_ANDCON, C_NONE, C_REG, 3, 4, REGZERO, 0, 0}, {AMOVV, C_ANDCON, C_NONE, C_REG, 3, 4, REGZERO, sys.MIPS64, 0}, {AMOVW, C_STCON, C_NONE, C_REG, 55, 8, 0, 0, NOTUSETMP}, {AMOVV, C_STCON, C_NONE, C_REG, 55, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVW, C_UCON, C_NONE, C_REG, 24, 4, 0, 0, 0}, {AMOVV, C_UCON, C_NONE, C_REG, 24, 4, 0, sys.MIPS64, 0}, {AMOVW, C_LCON, C_NONE, C_REG, 19, 8, 0, 0, NOTUSETMP}, {AMOVV, C_LCON, C_NONE, C_REG, 19, 8, 0, sys.MIPS64, NOTUSETMP}, {AMOVW, C_HI, C_NONE, C_REG, 20, 4, 0, 0, 0}, {AMOVV, C_HI, C_NONE, C_REG, 20, 4, 0, sys.MIPS64, 0}, {AMOVW, C_LO, C_NONE, C_REG, 20, 4, 0, 0, 0}, {AMOVV, C_LO, C_NONE, C_REG, 20, 4, 0, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_HI, 21, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_HI, 21, 4, 0, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_LO, 21, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_LO, 21, 4, 0, sys.MIPS64, 0}, {AMUL, C_REG, C_REG, C_NONE, 22, 4, 0, 0, 0}, {AMUL, C_REG, C_REG, C_REG, 22, 4, 0, 0, 0}, {AMULV, C_REG, C_REG, C_NONE, 22, 4, 0, sys.MIPS64, 0}, {AADD, C_ADD0CON, C_REG, C_REG, 4, 4, 0, 0, 0}, {AADD, C_ADD0CON, C_NONE, C_REG, 4, 4, 0, 0, 0}, {AADD, C_ANDCON, C_REG, C_REG, 10, 8, 0, 0, 0}, {AADD, C_ANDCON, C_NONE, C_REG, 10, 8, 0, 0, 0}, {AADDV, C_ADD0CON, C_REG, C_REG, 4, 4, 0, sys.MIPS64, 0}, {AADDV, C_ADD0CON, C_NONE, C_REG, 4, 4, 0, sys.MIPS64, 0}, {AADDV, C_ANDCON, C_REG, C_REG, 10, 8, 0, sys.MIPS64, 0}, {AADDV, C_ANDCON, C_NONE, C_REG, 10, 8, 0, sys.MIPS64, 0}, {AAND, C_AND0CON, C_REG, C_REG, 4, 4, 0, 0, 0}, {AAND, C_AND0CON, C_NONE, C_REG, 4, 4, 0, 0, 0}, {AAND, C_ADDCON, C_REG, C_REG, 10, 8, 0, 0, 0}, {AAND, C_ADDCON, C_NONE, C_REG, 10, 8, 0, 0, 0}, {AADD, C_UCON, C_REG, C_REG, 25, 8, 0, 0, 0}, {AADD, C_UCON, C_NONE, C_REG, 25, 8, 0, 0, 0}, {AADDV, C_UCON, C_REG, C_REG, 25, 8, 0, sys.MIPS64, 0}, {AADDV, C_UCON, C_NONE, C_REG, 25, 8, 0, sys.MIPS64, 0}, {AAND, C_UCON, C_REG, C_REG, 25, 8, 0, 0, 0}, {AAND, C_UCON, C_NONE, C_REG, 25, 8, 0, 0, 0}, {AADD, C_LCON, C_NONE, C_REG, 23, 12, 0, 0, 0}, {AADDV, C_LCON, C_NONE, C_REG, 23, 12, 0, sys.MIPS64, 0}, {AAND, C_LCON, C_NONE, C_REG, 23, 12, 0, 0, 0}, {AADD, C_LCON, C_REG, C_REG, 23, 12, 0, 0, 0}, {AADDV, C_LCON, C_REG, C_REG, 23, 12, 0, sys.MIPS64, 0}, {AAND, C_LCON, C_REG, C_REG, 23, 12, 0, 0, 0}, {ASLL, C_SCON, C_REG, C_REG, 16, 4, 0, 0, 0}, {ASLL, C_SCON, C_NONE, C_REG, 16, 4, 0, 0, 0}, {ASLLV, C_SCON, C_REG, C_REG, 16, 4, 0, sys.MIPS64, 0}, {ASLLV, C_SCON, C_NONE, C_REG, 16, 4, 0, sys.MIPS64, 0}, {ASYSCALL, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0, 0}, {ABEQ, C_REG, C_REG, C_SBRA, 6, 4, 0, 0, 0}, {ABEQ, C_REG, C_NONE, C_SBRA, 6, 4, 0, 0, 0}, {ABLEZ, C_REG, C_NONE, C_SBRA, 6, 4, 0, 0, 0}, {ABFPT, C_NONE, C_NONE, C_SBRA, 6, 8, 0, 0, NOTUSETMP}, {AJMP, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, {AJAL, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, {AJMP, C_NONE, C_NONE, C_ZOREG, 18, 4, REGZERO, 0, 0}, {AJAL, C_NONE, C_NONE, C_ZOREG, 18, 4, REGLINK, 0, 0}, {AMOVW, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0}, {AMOVF, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0}, {AMOVD, C_SEXT, C_NONE, C_FREG, 27, 4, REGSB, sys.MIPS64, 0}, {AMOVW, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, sys.MIPS64, 0}, {AMOVF, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, 0, 0}, {AMOVD, C_SAUTO, C_NONE, C_FREG, 27, 4, REGSP, 0, 0}, {AMOVW, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, sys.MIPS64, 0}, {AMOVF, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, 0, 0}, {AMOVD, C_SOREG, C_NONE, C_FREG, 27, 4, REGZERO, 0, 0}, {AMOVW, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0}, {AMOVF, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0}, {AMOVD, C_LEXT, C_NONE, C_FREG, 27, 12, REGSB, sys.MIPS64, 0}, {AMOVW, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, sys.MIPS64, 0}, {AMOVF, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, 0, 0}, {AMOVD, C_LAUTO, C_NONE, C_FREG, 27, 12, REGSP, 0, 0}, {AMOVW, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, sys.MIPS64, 0}, {AMOVF, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, 0, 0}, {AMOVD, C_LOREG, C_NONE, C_FREG, 27, 12, REGZERO, 0, 0}, {AMOVF, C_ADDR, C_NONE, C_FREG, 51, 8, 0, sys.MIPS, 0}, {AMOVF, C_ADDR, C_NONE, C_FREG, 51, 12, 0, sys.MIPS64, 0}, {AMOVD, C_ADDR, C_NONE, C_FREG, 51, 8, 0, sys.MIPS, 0}, {AMOVD, C_ADDR, C_NONE, C_FREG, 51, 12, 0, sys.MIPS64, 0}, {AMOVW, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0}, {AMOVD, C_FREG, C_NONE, C_SEXT, 28, 4, REGSB, sys.MIPS64, 0}, {AMOVW, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, 0, 0}, {AMOVD, C_FREG, C_NONE, C_SAUTO, 28, 4, REGSP, 0, 0}, {AMOVW, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, 0, 0}, {AMOVD, C_FREG, C_NONE, C_SOREG, 28, 4, REGZERO, 0, 0}, {AMOVW, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0}, {AMOVD, C_FREG, C_NONE, C_LEXT, 28, 12, REGSB, sys.MIPS64, 0}, {AMOVW, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, 0, 0}, {AMOVD, C_FREG, C_NONE, C_LAUTO, 28, 12, REGSP, 0, 0}, {AMOVW, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, sys.MIPS64, 0}, {AMOVF, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, 0, 0}, {AMOVD, C_FREG, C_NONE, C_LOREG, 28, 12, REGZERO, 0, 0}, {AMOVF, C_FREG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0}, {AMOVF, C_FREG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVD, C_FREG, C_NONE, C_ADDR, 50, 8, 0, sys.MIPS, 0}, {AMOVD, C_FREG, C_NONE, C_ADDR, 50, 12, 0, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_FREG, 30, 4, 0, 0, 0}, {AMOVW, C_FREG, C_NONE, C_REG, 31, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_FREG, 47, 4, 0, sys.MIPS64, 0}, {AMOVV, C_FREG, C_NONE, C_REG, 48, 4, 0, sys.MIPS64, 0}, {AMOVW, C_ADDCON, C_NONE, C_FREG, 34, 8, 0, sys.MIPS64, 0}, {AMOVW, C_ANDCON, C_NONE, C_FREG, 34, 8, 0, sys.MIPS64, 0}, {AMOVW, C_REG, C_NONE, C_MREG, 37, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_MREG, 37, 4, 0, sys.MIPS64, 0}, {AMOVW, C_MREG, C_NONE, C_REG, 38, 4, 0, 0, 0}, {AMOVV, C_MREG, C_NONE, C_REG, 38, 4, 0, sys.MIPS64, 0}, {AWORD, C_LCON, C_NONE, C_NONE, 40, 4, 0, 0, 0}, {AMOVW, C_REG, C_NONE, C_FCREG, 41, 4, 0, 0, 0}, {AMOVV, C_REG, C_NONE, C_FCREG, 41, 4, 0, sys.MIPS64, 0}, {AMOVW, C_FCREG, C_NONE, C_REG, 42, 4, 0, 0, 0}, {AMOVV, C_FCREG, C_NONE, C_REG, 42, 4, 0, sys.MIPS64, 0}, {ATEQ, C_SCON, C_REG, C_REG, 15, 4, 0, 0, 0}, {ATEQ, C_SCON, C_NONE, C_REG, 15, 4, 0, 0, 0}, {ACMOVT, C_REG, C_NONE, C_REG, 17, 4, 0, 0, 0}, {AVMOVB, C_SCON, C_NONE, C_WREG, 56, 4, 0, sys.MIPS64, 0}, {AVMOVB, C_ADDCON, C_NONE, C_WREG, 56, 4, 0, sys.MIPS64, 0}, {AVMOVB, C_SOREG, C_NONE, C_WREG, 57, 4, 0, sys.MIPS64, 0}, {AVMOVB, C_WREG, C_NONE, C_SOREG, 58, 4, 0, sys.MIPS64, 0}, {AWSBH, C_REG, C_NONE, C_REG, 59, 4, 0, 0, 0}, {ADSBH, C_REG, C_NONE, C_REG, 59, 4, 0, sys.MIPS64, 0}, {ABREAK, C_REG, C_NONE, C_SEXT, 7, 4, REGSB, sys.MIPS64, 0}, /* really CACHE instruction */ {ABREAK, C_REG, C_NONE, C_SAUTO, 7, 4, REGSP, sys.MIPS64, 0}, {ABREAK, C_REG, C_NONE, C_SOREG, 7, 4, REGZERO, sys.MIPS64, 0}, {ABREAK, C_NONE, C_NONE, C_NONE, 5, 4, 0, 0, 0}, {obj.AUNDEF, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0, 0}, {obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0}, {obj.AFUNCDATA, C_SCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0}, {obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ANOP, C_LCON, C_NONE, C_NONE, 0, 0, 0, 0, 0}, // nop variants, see #40689 {obj.ANOP, C_REG, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ANOP, C_FREG, C_NONE, C_NONE, 0, 0, 0, 0, 0}, {obj.ADUFFZERO, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, // same as AJMP {obj.ADUFFCOPY, C_NONE, C_NONE, C_LBRA, 11, 4, 0, 0, 0}, // same as AJMP {obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0}, } var oprange [ALAST & obj.AMask][]Optab var xcmp [C_NCLASS][C_NCLASS]bool func span0(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { if ctxt.Retpoline { ctxt.Diag("-spectre=ret not supported on mips") ctxt.Retpoline = false // don't keep printing } p := cursym.Func().Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } c := ctxt0{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset + ctxt.Arch.FixedFrameSize)} if oprange[AOR&obj.AMask] == nil { c.ctxt.Diag("mips ops not initialized, call mips.buildop first") } pc := int64(0) p.Pc = pc var m int var o *Optab for p = p.Link; p != nil; p = p.Link { p.Pc = pc o = c.oplook(p) m = int(o.size) if m == 0 { if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA { c.ctxt.Diag("zero-width instruction\n%v", p) } continue } pc += int64(m) } c.cursym.Size = pc /* * if any procedure is large enough to * generate a large SBRA branch, then * generate extra passes putting branches * around jmps to fix. this is rare. */ bflag := 1 var otxt int64 var q *obj.Prog for bflag != 0 { bflag = 0 pc = 0 for p = c.cursym.Func().Text.Link; p != nil; p = p.Link { p.Pc = pc o = c.oplook(p) // very large conditional branches if o.type_ == 6 && p.To.Target() != nil { otxt = p.To.Target().Pc - pc if otxt < -(1<<17)+10 || otxt >= (1<<17)-10 { q = c.newprog() q.Link = p.Link p.Link = q q.As = AJMP q.Pos = p.Pos q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(p.To.Target()) p.To.SetTarget(q) q = c.newprog() q.Link = p.Link p.Link = q q.As = AJMP q.Pos = p.Pos q.To.Type = obj.TYPE_BRANCH q.To.SetTarget(q.Link.Link) c.addnop(p.Link) c.addnop(p) bflag = 1 } } m = int(o.size) if m == 0 { if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA { c.ctxt.Diag("zero-width instruction\n%v", p) } continue } pc += int64(m) } c.cursym.Size = pc } if c.ctxt.Arch.Family == sys.MIPS64 { pc += -pc & (mips64FuncAlign - 1) } c.cursym.Size = pc /* * lay out the code, emitting code and data relocations. */ c.cursym.Grow(c.cursym.Size) bp := c.cursym.P var i int32 var out [4]uint32 for p := c.cursym.Func().Text.Link; p != nil; p = p.Link { c.pc = p.Pc o = c.oplook(p) if int(o.size) > 4*len(out) { log.Fatalf("out array in span0 is too small, need at least %d for %v", o.size/4, p) } c.asmout(p, o, out[:]) for i = 0; i < int32(o.size/4); i++ { c.ctxt.Arch.ByteOrder.PutUint32(bp, out[i]) bp = bp[4:] } } // Mark nonpreemptible instruction sequences. // We use REGTMP as a scratch register during call injection, // so instruction sequences that use REGTMP are unsafe to // preempt asynchronously. obj.MarkUnsafePoints(c.ctxt, c.cursym.Func().Text, c.newprog, c.isUnsafePoint, c.isRestartable) } // isUnsafePoint returns whether p is an unsafe point. func (c *ctxt0) isUnsafePoint(p *obj.Prog) bool { // If p explicitly uses REGTMP, it's unsafe to preempt, because the // preemption sequence clobbers REGTMP. return p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP } // isRestartable returns whether p is a multi-instruction sequence that, // if preempted, can be restarted. func (c *ctxt0) isRestartable(p *obj.Prog) bool { if c.isUnsafePoint(p) { return false } // If p is a multi-instruction sequence with uses REGTMP inserted by // the assembler in order to materialize a large constant/offset, we // can restart p (at the start of the instruction sequence), recompute // the content of REGTMP, upon async preemption. Currently, all cases // of assembler-inserted REGTMP fall into this category. // If p doesn't use REGTMP, it can be simply preempted, so we don't // mark it. o := c.oplook(p) return o.size > 4 && o.flag&NOTUSETMP == 0 } func isint32(v int64) bool { return int64(int32(v)) == v } func isuint32(v uint64) bool { return uint64(uint32(v)) == v } func (c *ctxt0) aclass(a *obj.Addr) int { switch a.Type { case obj.TYPE_NONE: return C_NONE case obj.TYPE_REG: if REG_R0 <= a.Reg && a.Reg <= REG_R31 { return C_REG } if REG_F0 <= a.Reg && a.Reg <= REG_F31 { return C_FREG } if REG_M0 <= a.Reg && a.Reg <= REG_M31 { return C_MREG } if REG_FCR0 <= a.Reg && a.Reg <= REG_FCR31 { return C_FCREG } if REG_W0 <= a.Reg && a.Reg <= REG_W31 { return C_WREG } if a.Reg == REG_LO { return C_LO } if a.Reg == REG_HI { return C_HI } return C_GOK case obj.TYPE_MEM: switch a.Name { case obj.NAME_EXTERN, obj.NAME_STATIC: if a.Sym == nil { break } c.instoffset = a.Offset if a.Sym != nil { // use relocation if a.Sym.Type == objabi.STLSBSS { return C_TLS } return C_ADDR } return C_LEXT case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset if c.instoffset >= -BIG && c.instoffset < BIG { return C_SAUTO } return C_LAUTO case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize if c.instoffset >= -BIG && c.instoffset < BIG { return C_SAUTO } return C_LAUTO case obj.NAME_NONE: c.instoffset = a.Offset if c.instoffset == 0 { return C_ZOREG } if c.instoffset >= -BIG && c.instoffset < BIG { return C_SOREG } return C_LOREG } return C_GOK case obj.TYPE_TEXTSIZE: return C_TEXTSIZE case obj.TYPE_CONST, obj.TYPE_ADDR: switch a.Name { case obj.NAME_NONE: c.instoffset = a.Offset if a.Reg != obj.REG_NONE { if -BIG <= c.instoffset && c.instoffset <= BIG { return C_SACON } if isint32(c.instoffset) { return C_LACON } return C_DACON } case obj.NAME_EXTERN, obj.NAME_STATIC: s := a.Sym if s == nil { return C_GOK } c.instoffset = a.Offset if s.Type == objabi.STLSBSS { return C_STCON // address of TLS variable } return C_LECON case obj.NAME_AUTO: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-SP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset if c.instoffset >= -BIG && c.instoffset < BIG { return C_SACON } return C_LACON case obj.NAME_PARAM: if a.Reg == REGSP { // unset base register for better printing, since // a.Offset is still relative to pseudo-FP. a.Reg = obj.REG_NONE } c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.Arch.FixedFrameSize if c.instoffset >= -BIG && c.instoffset < BIG { return C_SACON } return C_LACON default: return C_GOK } if c.instoffset >= 0 { if c.instoffset == 0 { return C_ZCON } if c.instoffset <= 0x7fff { return C_SCON } if c.instoffset <= 0xffff { return C_ANDCON } if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && ((instoffset & (1<<31)) == 0) */ return C_UCON } if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) { return C_LCON } return C_LCON // C_DCON } if c.instoffset >= -0x8000 { return C_ADDCON } if c.instoffset&0xffff == 0 && isint32(c.instoffset) { return C_UCON } if isint32(c.instoffset) { return C_LCON } return C_LCON // C_DCON case obj.TYPE_BRANCH: return C_SBRA } return C_GOK } func prasm(p *obj.Prog) { fmt.Printf("%v\n", p) } func (c *ctxt0) oplook(p *obj.Prog) *Optab { if oprange[AOR&obj.AMask] == nil { c.ctxt.Diag("mips ops not initialized, call mips.buildop first") } a1 := int(p.Optab) if a1 != 0 { return &optab[a1-1] } a1 = int(p.From.Class) if a1 == 0 { a1 = c.aclass(&p.From) + 1 p.From.Class = int8(a1) } a1-- a3 := int(p.To.Class) if a3 == 0 { a3 = c.aclass(&p.To) + 1 p.To.Class = int8(a3) } a3-- a2 := C_NONE if p.Reg != obj.REG_NONE { a2 = C_REG } ops := oprange[p.As&obj.AMask] c1 := &xcmp[a1] c3 := &xcmp[a3] for i := range ops { op := &ops[i] if int(op.a2) == a2 && c1[op.a1] && c3[op.a3] && (op.family == 0 || c.ctxt.Arch.Family == op.family) { p.Optab = uint16(cap(optab) - cap(ops) + i + 1) return op } } c.ctxt.Diag("illegal combination %v %v %v %v", p.As, DRconv(a1), DRconv(a2), DRconv(a3)) prasm(p) // Turn illegal instruction into an UNDEF, avoid crashing in asmout. return &Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 49, 4, 0, 0, 0} } func cmp(a int, b int) bool { if a == b { return true } switch a { case C_LCON: if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON { return true } case C_ADD0CON: if b == C_ADDCON { return true } fallthrough case C_ADDCON: if b == C_ZCON || b == C_SCON { return true } case C_AND0CON: if b == C_ANDCON { return true } fallthrough case C_ANDCON: if b == C_ZCON || b == C_SCON { return true } case C_UCON: if b == C_ZCON { return true } case C_SCON: if b == C_ZCON { return true } case C_LACON: if b == C_SACON { return true } case C_LBRA: if b == C_SBRA { return true } case C_LEXT: if b == C_SEXT { return true } case C_LAUTO: if b == C_SAUTO { return true } case C_REG: if b == C_ZCON { return r0iszero != 0 /*TypeKind(100016)*/ } case C_LOREG: if b == C_ZOREG || b == C_SOREG { return true } case C_SOREG: if b == C_ZOREG { return true } } return false } func ocmp(p1, p2 Optab) int { if p1.as != p2.as { return int(p1.as) - int(p2.as) } if p1.a1 != p2.a1 { return int(p1.a1) - int(p2.a1) } if p1.a2 != p2.a2 { return int(p1.a2) - int(p2.a2) } if p1.a3 != p2.a3 { return int(p1.a3) - int(p2.a3) } return 0 } func opset(a, b0 obj.As) { oprange[a&obj.AMask] = oprange[b0] } func buildop(ctxt *obj.Link) { if oprange[AOR&obj.AMask] != nil { // Already initialized; stop now. // This happens in the cmd/asm tests, // each of which re-initializes the arch. return } var n int for i := 0; i < C_NCLASS; i++ { for n = 0; n < C_NCLASS; n++ { if cmp(n, i) { xcmp[i][n] = true } } } for n = 0; optab[n].as != obj.AXXX; n++ { } slices.SortFunc(optab[:n], ocmp) for i := 0; i < n; i++ { r := optab[i].as r0 := r & obj.AMask start := i for optab[i].as == r { i++ } oprange[r0] = optab[start:i] i-- switch r { default: ctxt.Diag("unknown op in build: %v", r) ctxt.DiagFlush() log.Fatalf("bad code") case AABSF: opset(AMOVFD, r0) opset(AMOVDF, r0) opset(AMOVWF, r0) opset(AMOVFW, r0) opset(AMOVWD, r0) opset(AMOVDW, r0) opset(ANEGF, r0) opset(ANEGD, r0) opset(AABSD, r0) opset(ATRUNCDW, r0) opset(ATRUNCFW, r0) opset(ASQRTF, r0) opset(ASQRTD, r0) case AMOVVF: opset(AMOVVD, r0) opset(AMOVFV, r0) opset(AMOVDV, r0) opset(ATRUNCDV, r0) opset(ATRUNCFV, r0) case AADD: opset(ASGT, r0) opset(ASGTU, r0) opset(AADDU, r0) case AADDV: opset(AADDVU, r0) case AADDF: opset(ADIVF, r0) opset(ADIVD, r0) opset(AMULF, r0) opset(AMULD, r0) opset(ASUBF, r0) opset(ASUBD, r0) opset(AADDD, r0) case AAND: opset(AOR, r0) opset(AXOR, r0) case ABEQ: opset(ABNE, r0) case ABLEZ: opset(ABGEZ, r0) opset(ABGEZAL, r0) opset(ABLTZ, r0) opset(ABLTZAL, r0) opset(ABGTZ, r0) case AMOVB: opset(AMOVH, r0) case AMOVBU: opset(AMOVHU, r0) case AMUL: opset(AREM, r0) opset(AREMU, r0) opset(ADIVU, r0) opset(AMULU, r0) opset(ADIV, r0) opset(AMADD, r0) opset(AMSUB, r0) case AMULV: opset(ADIVV, r0) opset(ADIVVU, r0) opset(AMULVU, r0) opset(AREMV, r0) opset(AREMVU, r0) case ASLL: opset(ASRL, r0) opset(ASRA, r0) opset(AROTR, r0) case ASLLV: opset(ASRAV, r0) opset(ASRLV, r0) opset(AROTRV, r0) case ASUB: opset(ASUBU, r0) opset(ANOR, r0) case ASUBV: opset(ASUBVU, r0) case ASYSCALL: opset(ASYNC, r0) opset(ANOOP, r0) opset(ATLBP, r0) opset(ATLBR, r0) opset(ATLBWI, r0) opset(ATLBWR, r0) case ACMPEQF: opset(ACMPGTF, r0) opset(ACMPGTD, r0) opset(ACMPGEF, r0) opset(ACMPGED, r0) opset(ACMPEQD, r0) case ABFPT: opset(ABFPF, r0) case AMOVWL: opset(AMOVWR, r0) case AMOVVL: opset(AMOVVR, r0) case AVMOVB: opset(AVMOVH, r0) opset(AVMOVW, r0) opset(AVMOVD, r0) case AMOVW, AMOVD, AMOVF, AMOVV, ABREAK, ARFE, AJAL, AJMP, AMOVWU, ALL, ALLV, ASC, ASCV, ANEGW, ANEGV, AWORD, obj.ANOP, obj.ATEXT, obj.AUNDEF, obj.AFUNCDATA, obj.APCDATA, obj.ADUFFZERO, obj.ADUFFCOPY: break case ACMOVN: opset(ACMOVZ, r0) case ACMOVT: opset(ACMOVF, r0) case ACLO: opset(ACLZ, r0) case ATEQ: opset(ATNE, r0) case AWSBH: opset(ASEB, r0) opset(ASEH, r0) case ADSBH: opset(ADSHD, r0) } } } func OP(x uint32, y uint32) uint32 { return x<<3 | y<<0 } func SP(x uint32, y uint32) uint32 { return x<<29 | y<<26 } func BCOND(x uint32, y uint32) uint32 { return x<<19 | y<<16 } func MMU(x uint32, y uint32) uint32 { return SP(2, 0) | 16<<21 | x<<3 | y<<0 } func FPF(x uint32, y uint32) uint32 { return SP(2, 1) | 16<<21 | x<<3 | y<<0 } func FPD(x uint32, y uint32) uint32 { return SP(2, 1) | 17<<21 | x<<3 | y<<0 } func FPW(x uint32, y uint32) uint32 { return SP(2, 1) | 20<<21 | x<<3 | y<<0 } func FPV(x uint32, y uint32) uint32 { return SP(2, 1) | 21<<21 | x<<3 | y<<0 } func OP_RRR(op uint32, r1 int16, r2 int16, r3 int16) uint32 { return op | uint32(r1&31)<<16 | uint32(r2&31)<<21 | uint32(r3&31)<<11 } func OP_IRR(op uint32, i uint32, r2 int16, r3 int16) uint32 { return op | i&0xFFFF | uint32(r2&31)<<21 | uint32(r3&31)<<16 } func OP_SRR(op uint32, s uint32, r2 int16, r3 int16) uint32 { return op | (s&31)<<6 | uint32(r2&31)<<16 | uint32(r3&31)<<11 } func OP_FRRR(op uint32, r1 int16, r2 int16, r3 int16) uint32 { return op | uint32(r1&31)<<16 | uint32(r2&31)<<11 | uint32(r3&31)<<6 } func OP_JMP(op uint32, i uint32) uint32 { return op | i&0x3FFFFFF } func OP_VI10(op uint32, df uint32, s10 int32, wd uint32, minor uint32) uint32 { return 0x1e<<26 | (op&7)<<23 | (df&3)<<21 | uint32(s10&0x3FF)<<11 | (wd&31)<<6 | minor&0x3F } func OP_VMI10(s10 int32, rs uint32, wd uint32, minor uint32, df uint32) uint32 { return 0x1e<<26 | uint32(s10&0x3FF)<<16 | (rs&31)<<11 | (wd&31)<<6 | (minor&15)<<2 | df&3 } func (c *ctxt0) asmout(p *obj.Prog, o *Optab, out []uint32) { o1 := uint32(0) o2 := uint32(0) o3 := uint32(0) o4 := uint32(0) add := AADDU if c.ctxt.Arch.Family == sys.MIPS64 { add = AADDVU } switch o.type_ { default: c.ctxt.Diag("unknown type %d %v", o.type_) prasm(p) case 0: /* pseudo ops */ break case 1: /* mov r1,r2 ==> OR r1,r0,r2 */ a := AOR if p.As == AMOVW && c.ctxt.Arch.Family == sys.MIPS64 { // on MIPS64, most of the 32-bit instructions have unpredictable behavior, // but SLL is special that the result is always sign-extended to 64-bit. a = ASLL } o1 = OP_RRR(c.oprrr(a), p.From.Reg, REGZERO, p.To.Reg) case 2: /* add/sub r1,[r2],r3 */ r := p.Reg if p.As == ANEGW || p.As == ANEGV { r = REGZERO } if r == obj.REG_NONE { r = p.To.Reg } o1 = OP_RRR(c.oprrr(p.As), p.From.Reg, r, p.To.Reg) case 3: /* mov $soreg, r ==> or/add $i,o,r */ a := add if o.a1 == C_ANDCON { a = AOR } r := p.From.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(a), uint32(v), r, p.To.Reg) case 4: /* add $scon,[r1],r2 */ r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(p.As), uint32(v), r, p.To.Reg) case 5: /* syscall */ o1 = c.oprrr(p.As) case 6: /* beq r1,[r2],sbra */ v := int32(0) if p.To.Target() == nil { v = int32(-4) >> 2 } else { v = int32(p.To.Target().Pc-p.Pc-4) >> 2 } if (v<<16)>>16 != v { c.ctxt.Diag("short branch too far\n%v", p) } o1 = OP_IRR(c.opirr(p.As), uint32(v), p.From.Reg, p.Reg) // for ABFPT and ABFPF only: always fill delay slot with 0 // see comments in func preprocess for details. o2 = 0 case 7: /* mov r, soreg ==> sw o(r) */ r := p.To.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.To) o1 = OP_IRR(c.opirr(p.As), uint32(v), r, p.From.Reg) case 8: /* mov soreg, r ==> lw o(r) */ r := p.From.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(-p.As), uint32(v), r, p.To.Reg) case 9: /* sll r1,[r2],r3 */ r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } o1 = OP_RRR(c.oprrr(p.As), r, p.From.Reg, p.To.Reg) case 10: /* add $con,[r1],r2 ==> mov $con, t; add t,[r1],r2 */ v := c.regoff(&p.From) a := AOR if v < 0 { a = AADDU } o1 = OP_IRR(c.opirr(a), uint32(v), obj.REG_NONE, REGTMP) r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } o2 = OP_RRR(c.oprrr(p.As), REGTMP, r, p.To.Reg) case 11: /* jmp lbra */ v := int32(0) if c.aclass(&p.To) == C_SBRA && p.To.Sym == nil && p.As == AJMP { // use PC-relative branch for short branches // BEQ R0, R0, sbra if p.To.Target() == nil { v = int32(-4) >> 2 } else { v = int32(p.To.Target().Pc-p.Pc-4) >> 2 } if (v<<16)>>16 == v { o1 = OP_IRR(c.opirr(ABEQ), uint32(v), REGZERO, REGZERO) break } } if p.To.Target() == nil { v = int32(p.Pc) >> 2 } else { v = int32(p.To.Target().Pc) >> 2 } o1 = OP_JMP(c.opirr(p.As), uint32(v)) if p.To.Sym == nil { p.To.Sym = c.cursym.Func().Text.From.Sym p.To.Offset = p.To.Target().Pc } typ := objabi.R_JMPMIPS if p.As == AJAL { typ = objabi.R_CALLMIPS } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: typ, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) case 12: /* movbs r,r */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. v := 16 if p.As == AMOVB { v = 24 } o1 = OP_SRR(c.opirr(ASLL), uint32(v), p.From.Reg, p.To.Reg) o2 = OP_SRR(c.opirr(ASRA), uint32(v), p.To.Reg, p.To.Reg) case 13: /* movbu r,r */ if p.As == AMOVBU { o1 = OP_IRR(c.opirr(AAND), uint32(0xff), p.From.Reg, p.To.Reg) } else { o1 = OP_IRR(c.opirr(AAND), uint32(0xffff), p.From.Reg, p.To.Reg) } case 14: /* movwu r,r */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = OP_SRR(c.opirr(-ASLLV), 0, p.From.Reg, p.To.Reg) o2 = OP_SRR(c.opirr(-ASRLV), 0, p.To.Reg, p.To.Reg) case 15: /* teq $c r,r */ r := p.Reg if r == obj.REG_NONE { r = REGZERO } v := c.regoff(&p.From) /* only use 10 bits of trap code */ o1 = OP_IRR(c.opirr(p.As), (uint32(v)&0x3FF)<<6, r, p.To.Reg) case 16: /* sll $c,[r1],r2 */ r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } v := c.regoff(&p.From) /* OP_SRR will use only the low 5 bits of the shift value */ if v >= 32 && vshift(p.As) { o1 = OP_SRR(c.opirr(-p.As), uint32(v-32), r, p.To.Reg) } else { o1 = OP_SRR(c.opirr(p.As), uint32(v), r, p.To.Reg) } case 17: o1 = OP_RRR(c.oprrr(p.As), REGZERO, p.From.Reg, p.To.Reg) case 18: /* jmp [r1],0(r2) */ r := p.Reg if r == obj.REG_NONE { r = o.param } o1 = OP_RRR(c.oprrr(p.As), obj.REG_NONE, p.To.Reg, r) if p.As == obj.ACALL { c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_CALLIND, Off: int32(c.pc), }) } case 19: /* mov $lcon,r ==> lu+or */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), REGZERO, p.To.Reg) o2 = OP_IRR(c.opirr(AOR), uint32(v), p.To.Reg, p.To.Reg) case 20: /* mov lo/hi,r */ a := OP(2, 0) /* mfhi */ if p.From.Reg == REG_LO { a = OP(2, 2) /* mflo */ } o1 = OP_RRR(a, REGZERO, REGZERO, p.To.Reg) case 21: /* mov r,lo/hi */ a := OP(2, 1) /* mthi */ if p.To.Reg == REG_LO { a = OP(2, 3) /* mtlo */ } o1 = OP_RRR(a, REGZERO, p.From.Reg, REGZERO) case 22: /* mul r1,r2 [r3]*/ if p.To.Reg != obj.REG_NONE { r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } a := SP(3, 4) | 2 /* mul */ o1 = OP_RRR(a, p.From.Reg, r, p.To.Reg) } else { o1 = OP_RRR(c.oprrr(p.As), p.From.Reg, p.Reg, REGZERO) } case 23: /* add $lcon,r1,r2 ==> lu+or+add */ v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), REGZERO, REGTMP) o2 = OP_IRR(c.opirr(AOR), uint32(v), REGTMP, REGTMP) r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } o3 = OP_RRR(c.oprrr(p.As), REGTMP, r, p.To.Reg) case 24: /* mov $ucon,r ==> lu r */ v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), REGZERO, p.To.Reg) case 25: /* add/and $ucon,[r1],r2 ==> lu $con,t; add t,[r1],r2 */ v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), REGZERO, REGTMP) r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } o2 = OP_RRR(c.oprrr(p.As), REGTMP, r, p.To.Reg) case 26: /* mov $lsext/auto/oreg,r ==> lu+or+add */ v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32(v>>16), REGZERO, REGTMP) o2 = OP_IRR(c.opirr(AOR), uint32(v), REGTMP, REGTMP) r := p.From.Reg if r == obj.REG_NONE { r = o.param } o3 = OP_RRR(c.oprrr(add), REGTMP, r, p.To.Reg) case 27: /* mov [sl]ext/auto/oreg,fr ==> lwc1 o(r) */ a := -AMOVF if p.As == AMOVD { a = -AMOVD } r := p.From.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.From) switch o.size { case 12: o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), REGZERO, REGTMP) o2 = OP_RRR(c.oprrr(add), r, REGTMP, REGTMP) o3 = OP_IRR(c.opirr(a), uint32(v), REGTMP, p.To.Reg) case 4: o1 = OP_IRR(c.opirr(a), uint32(v), r, p.To.Reg) } case 28: /* mov fr,[sl]ext/auto/oreg ==> swc1 o(r) */ a := AMOVF if p.As == AMOVD { a = AMOVD } r := p.To.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.To) switch o.size { case 12: o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), REGZERO, REGTMP) o2 = OP_RRR(c.oprrr(add), r, REGTMP, REGTMP) o3 = OP_IRR(c.opirr(a), uint32(v), REGTMP, p.From.Reg) case 4: o1 = OP_IRR(c.opirr(a), uint32(v), r, p.From.Reg) } case 30: /* movw r,fr */ a := SP(2, 1) | (4 << 21) /* mtc1 */ o1 = OP_RRR(a, p.From.Reg, obj.REG_NONE, p.To.Reg) case 31: /* movw fr,r */ a := SP(2, 1) | (0 << 21) /* mtc1 */ o1 = OP_RRR(a, p.To.Reg, obj.REG_NONE, p.From.Reg) case 32: /* fadd fr1,[fr2],fr3 */ r := p.Reg if r == obj.REG_NONE { r = p.To.Reg } o1 = OP_FRRR(c.oprrr(p.As), p.From.Reg, r, p.To.Reg) case 33: /* fabs fr1, fr3 */ o1 = OP_FRRR(c.oprrr(p.As), obj.REG_NONE, p.From.Reg, p.To.Reg) case 34: /* mov $con,fr ==> or/add $i,t; mov t,fr */ a := AADDU if o.a1 == C_ANDCON { a = AOR } v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(a), uint32(v), obj.REG_NONE, REGTMP) o2 = OP_RRR(SP(2, 1)|(4<<21), REGTMP, obj.REG_NONE, p.To.Reg) /* mtc1 */ case 35: /* mov r,lext/auto/oreg ==> sw o(REGTMP) */ r := p.To.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.To) o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), REGZERO, REGTMP) o2 = OP_RRR(c.oprrr(add), r, REGTMP, REGTMP) o3 = OP_IRR(c.opirr(p.As), uint32(v), REGTMP, p.From.Reg) case 36: /* mov lext/auto/oreg,r ==> lw o(REGTMP) */ r := p.From.Reg if r == obj.REG_NONE { r = o.param } v := c.regoff(&p.From) o1 = OP_IRR(c.opirr(ALUI), uint32((v+1<<15)>>16), REGZERO, REGTMP) o2 = OP_RRR(c.oprrr(add), r, REGTMP, REGTMP) o3 = OP_IRR(c.opirr(-p.As), uint32(v), REGTMP, p.To.Reg) case 37: /* movw r,mr */ a := SP(2, 0) | (4 << 21) /* mtc0 */ if p.As == AMOVV { a = SP(2, 0) | (5 << 21) /* dmtc0 */ } o1 = OP_RRR(a, p.From.Reg, obj.REG_NONE, p.To.Reg) case 38: /* movw mr,r */ a := SP(2, 0) | (0 << 21) /* mfc0 */ if p.As == AMOVV { a = SP(2, 0) | (1 << 21) /* dmfc0 */ } o1 = OP_RRR(a, p.To.Reg, obj.REG_NONE, p.From.Reg) case 40: /* word */ o1 = uint32(c.regoff(&p.From)) case 41: /* movw f,fcr */ o1 = OP_RRR(SP(2, 1)|(6<<21), p.From.Reg, obj.REG_NONE, p.To.Reg) /* mtcc1 */ case 42: /* movw fcr,r */ o1 = OP_RRR(SP(2, 1)|(2<<21), p.To.Reg, obj.REG_NONE, p.From.Reg) /* mfcc1 */ case 47: /* movv r,fr */ a := SP(2, 1) | (5 << 21) /* dmtc1 */ o1 = OP_RRR(a, p.From.Reg, obj.REG_NONE, p.To.Reg) case 48: /* movv fr,r */ a := SP(2, 1) | (1 << 21) /* dmtc1 */ o1 = OP_RRR(a, p.To.Reg, obj.REG_NONE, p.From.Reg) case 49: /* undef */ o1 = 52 /* trap -- teq r0, r0 */ /* relocation operations */ case 50: /* mov r,addr ==> lu + add REGSB, REGTMP + sw o(REGTMP) */ o1 = OP_IRR(c.opirr(ALUI), 0, REGZERO, REGTMP) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSU, Off: int32(c.pc), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) o2 = OP_IRR(c.opirr(p.As), 0, REGTMP, p.From.Reg) off := int32(c.pc + 4) if o.size == 12 { o3 = o2 o2 = OP_RRR(c.oprrr(AADDVU), REGSB, REGTMP, REGTMP) off += 4 } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPS, Off: off, Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) case 51: /* mov addr,r ==> lu + add REGSB, REGTMP + lw o(REGTMP) */ o1 = OP_IRR(c.opirr(ALUI), 0, REGZERO, REGTMP) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSU, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o2 = OP_IRR(c.opirr(-p.As), 0, REGTMP, p.To.Reg) off := int32(c.pc + 4) if o.size == 12 { o3 = o2 o2 = OP_RRR(c.oprrr(AADDVU), REGSB, REGTMP, REGTMP) off += 4 } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPS, Off: off, Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 52: /* mov $lext, r ==> lu + add REGSB, r + add */ // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = OP_IRR(c.opirr(ALUI), 0, REGZERO, p.To.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSU, Off: int32(c.pc), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) o2 = OP_IRR(c.opirr(add), 0, p.To.Reg, p.To.Reg) off := int32(c.pc + 4) if o.size == 12 { o3 = o2 o2 = OP_RRR(c.oprrr(AADDVU), REGSB, p.To.Reg, p.To.Reg) off += 4 } c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPS, Off: off, Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 53: /* mov r, tlsvar ==> rdhwr + sw o(r3) */ // clobbers R3 ! // load thread pointer with RDHWR, R3 is used for fast kernel emulation on Linux // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3 o2 = OP_IRR(c.opirr(p.As), 0, REG_R3, p.From.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSTLS, Off: int32(c.pc + 4), Siz: 4, Sym: p.To.Sym, Add: p.To.Offset, }) case 54: /* mov tlsvar, r ==> rdhwr + lw o(r3) */ // clobbers R3 ! // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3 o2 = OP_IRR(c.opirr(-p.As), 0, REG_R3, p.To.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSTLS, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 55: /* mov $tlsvar, r ==> rdhwr + add */ // clobbers R3 ! // NOTE: this case does not use REGTMP. If it ever does, // remove the NOTUSETMP flag in optab. o1 = (037<<26 + 073) | (29 << 11) | (3 << 16) // rdhwr $29, r3 o2 = OP_IRR(c.opirr(add), 0, REG_R3, p.To.Reg) c.cursym.AddRel(c.ctxt, obj.Reloc{ Type: objabi.R_ADDRMIPSTLS, Off: int32(c.pc + 4), Siz: 4, Sym: p.From.Sym, Add: p.From.Offset, }) case 56: /* vmov{b,h,w,d} $scon, wr */ v := c.regoff(&p.From) o1 = OP_VI10(110, c.twobitdf(p.As), v, uint32(p.To.Reg), 7) case 57: /* vld $soreg, wr */ v := c.lsoffset(p.As, c.regoff(&p.From)) o1 = OP_VMI10(v, uint32(p.From.Reg), uint32(p.To.Reg), 8, c.twobitdf(p.As)) case 58: /* vst wr, $soreg */ v := c.lsoffset(p.As, c.regoff(&p.To)) o1 = OP_VMI10(v, uint32(p.To.Reg), uint32(p.From.Reg), 9, c.twobitdf(p.As)) case 59: o1 = OP_RRR(c.oprrr(p.As), p.From.Reg, REGZERO, p.To.Reg) } out[0] = o1 out[1] = o2 out[2] = o3 out[3] = o4 } func (c *ctxt0) vregoff(a *obj.Addr) int64 { c.instoffset = 0 c.aclass(a) return c.instoffset } func (c *ctxt0) regoff(a *obj.Addr) int32 { return int32(c.vregoff(a)) } func (c *ctxt0) oprrr(a obj.As) uint32 { switch a { case AADD: return OP(4, 0) case AADDU: return OP(4, 1) case ASGT: return OP(5, 2) case ASGTU: return OP(5, 3) case AAND: return OP(4, 4) case AOR: return OP(4, 5) case AXOR: return OP(4, 6) case ASUB: return OP(4, 2) case ASUBU, ANEGW: return OP(4, 3) case ANOR: return OP(4, 7) case ASLL: return OP(0, 4) case ASRL: return OP(0, 6) case ASRA: return OP(0, 7) case AROTR: return OP(8, 6) case ASLLV: return OP(2, 4) case ASRLV: return OP(2, 6) case ASRAV: return OP(2, 7) case AROTRV: return OP(10, 6) case AADDV: return OP(5, 4) case AADDVU: return OP(5, 5) case ASUBV: return OP(5, 6) case ASUBVU, ANEGV: return OP(5, 7) case AREM, ADIV: return OP(3, 2) case AREMU, ADIVU: return OP(3, 3) case AMUL: return OP(3, 0) case AMULU: return OP(3, 1) case AREMV, ADIVV: return OP(3, 6) case AREMVU, ADIVVU: return OP(3, 7) case AMULV: return OP(3, 4) case AMULVU: return OP(3, 5) case AJMP: return OP(1, 0) case AJAL: return OP(1, 1) case ABREAK: return OP(1, 5) case ASYSCALL: return OP(1, 4) case ATLBP: return MMU(1, 0) case ATLBR: return MMU(0, 1) case ATLBWI: return MMU(0, 2) case ATLBWR: return MMU(0, 6) case ARFE: return MMU(2, 0) case ADIVF: return FPF(0, 3) case ADIVD: return FPD(0, 3) case AMULF: return FPF(0, 2) case AMULD: return FPD(0, 2) case ASUBF: return FPF(0, 1) case ASUBD: return FPD(0, 1) case AADDF: return FPF(0, 0) case AADDD: return FPD(0, 0) case ATRUNCFV: return FPF(1, 1) case ATRUNCDV: return FPD(1, 1) case ATRUNCFW: return FPF(1, 5) case ATRUNCDW: return FPD(1, 5) case AMOVFV: return FPF(4, 5) case AMOVDV: return FPD(4, 5) case AMOVVF: return FPV(4, 0) case AMOVVD: return FPV(4, 1) case AMOVFW: return FPF(4, 4) case AMOVDW: return FPD(4, 4) case AMOVWF: return FPW(4, 0) case AMOVDF: return FPD(4, 0) case AMOVWD: return FPW(4, 1) case AMOVFD: return FPF(4, 1) case AABSF: return FPF(0, 5) case AABSD: return FPD(0, 5) case AMOVF: return FPF(0, 6) case AMOVD: return FPD(0, 6) case ANEGF: return FPF(0, 7) case ANEGD: return FPD(0, 7) case ACMPEQF: return FPF(6, 2) case ACMPEQD: return FPD(6, 2) case ACMPGTF: return FPF(7, 4) case ACMPGTD: return FPD(7, 4) case ACMPGEF: return FPF(7, 6) case ACMPGED: return FPD(7, 6) case ASQRTF: return FPF(0, 4) case ASQRTD: return FPD(0, 4) case ASYNC: return OP(1, 7) case ANOOP: return 0 case ACMOVN: return OP(1, 3) case ACMOVZ: return OP(1, 2) case ACMOVT: return OP(0, 1) | (1 << 16) case ACMOVF: return OP(0, 1) | (0 << 16) case ACLO: return SP(3, 4) | OP(4, 1) case ACLZ: return SP(3, 4) | OP(4, 0) case AMADD: return SP(3, 4) | OP(0, 0) case AMSUB: return SP(3, 4) | OP(0, 4) case AWSBH: return SP(3, 7) | OP(20, 0) case ADSBH: return SP(3, 7) | OP(20, 4) case ADSHD: return SP(3, 7) | OP(44, 4) case ASEB: return SP(3, 7) | OP(132, 0) case ASEH: return SP(3, 7) | OP(196, 0) } if a < 0 { c.ctxt.Diag("bad rrr opcode -%v", -a) } else { c.ctxt.Diag("bad rrr opcode %v", a) } return 0 } func (c *ctxt0) opirr(a obj.As) uint32 { switch a { case AADD: return SP(1, 0) case AADDU: return SP(1, 1) case ASGT: return SP(1, 2) case ASGTU: return SP(1, 3) case AAND: return SP(1, 4) case AOR: return SP(1, 5) case AXOR: return SP(1, 6) case ALUI: return SP(1, 7) case ASLL: return OP(0, 0) case ASRL: return OP(0, 2) case ASRA: return OP(0, 3) case AROTR: return OP(0, 2) | 1<<21 case AADDV: return SP(3, 0) case AADDVU: return SP(3, 1) case AJMP: return SP(0, 2) case AJAL, obj.ADUFFZERO, obj.ADUFFCOPY: return SP(0, 3) case ABEQ: return SP(0, 4) case -ABEQ: return SP(2, 4) /* likely */ case ABNE: return SP(0, 5) case -ABNE: return SP(2, 5) /* likely */ case ABGEZ: return SP(0, 1) | BCOND(0, 1) case -ABGEZ: return SP(0, 1) | BCOND(0, 3) /* likely */ case ABGEZAL: return SP(0, 1) | BCOND(2, 1) case -ABGEZAL: return SP(0, 1) | BCOND(2, 3) /* likely */ case ABGTZ: return SP(0, 7) case -ABGTZ: return SP(2, 7) /* likely */ case ABLEZ: return SP(0, 6) case -ABLEZ: return SP(2, 6) /* likely */ case ABLTZ: return SP(0, 1) | BCOND(0, 0) case -ABLTZ: return SP(0, 1) | BCOND(0, 2) /* likely */ case ABLTZAL: return SP(0, 1) | BCOND(2, 0) case -ABLTZAL: return SP(0, 1) | BCOND(2, 2) /* likely */ case ABFPT: return SP(2, 1) | (257 << 16) case -ABFPT: return SP(2, 1) | (259 << 16) /* likely */ case ABFPF: return SP(2, 1) | (256 << 16) case -ABFPF: return SP(2, 1) | (258 << 16) /* likely */ case AMOVB, AMOVBU: return SP(5, 0) case AMOVH, AMOVHU: return SP(5, 1) case AMOVW, AMOVWU: return SP(5, 3) case AMOVV: return SP(7, 7) case AMOVF: return SP(7, 1) case AMOVD: return SP(7, 5) case AMOVWL: return SP(5, 2) case AMOVWR: return SP(5, 6) case AMOVVL: return SP(5, 4) case AMOVVR: return SP(5, 5) case ABREAK: return SP(5, 7) case -AMOVWL: return SP(4, 2) case -AMOVWR: return SP(4, 6) case -AMOVVL: return SP(3, 2) case -AMOVVR: return SP(3, 3) case -AMOVB: return SP(4, 0) case -AMOVBU: return SP(4, 4) case -AMOVH: return SP(4, 1) case -AMOVHU: return SP(4, 5) case -AMOVW: return SP(4, 3) case -AMOVWU: return SP(4, 7) case -AMOVV: return SP(6, 7) case -AMOVF: return SP(6, 1) case -AMOVD: return SP(6, 5) case ASLLV: return OP(7, 0) case ASRLV: return OP(7, 2) case ASRAV: return OP(7, 3) case AROTRV: return OP(7, 2) | 1<<21 case -ASLLV: return OP(7, 4) case -ASRLV: return OP(7, 6) case -ASRAV: return OP(7, 7) case -AROTRV: return OP(7, 6) | 1<<21 case ATEQ: return OP(6, 4) case ATNE: return OP(6, 6) case -ALL: return SP(6, 0) case -ALLV: return SP(6, 4) case ASC: return SP(7, 0) case ASCV: return SP(7, 4) } if a < 0 { c.ctxt.Diag("bad irr opcode -%v", -a) } else { c.ctxt.Diag("bad irr opcode %v", a) } return 0 } func vshift(a obj.As) bool { switch a { case ASLLV, ASRLV, ASRAV, AROTRV: return true } return false } // MSA Two-bit Data Format Field Encoding func (c *ctxt0) twobitdf(a obj.As) uint32 { switch a { case AVMOVB: return 0 case AVMOVH: return 1 case AVMOVW: return 2 case AVMOVD: return 3 default: c.ctxt.Diag("unsupported data format %v", a) } return 0 } // MSA Load/Store offset have to be multiple of size of data format func (c *ctxt0) lsoffset(a obj.As, o int32) int32 { var mod int32 switch a { case AVMOVB: mod = 1 case AVMOVH: mod = 2 case AVMOVW: mod = 4 case AVMOVD: mod = 8 default: c.ctxt.Diag("unsupported instruction:%v", a) } if o%mod != 0 { c.ctxt.Diag("invalid offset for %v: %d is not a multiple of %d", a, o, mod) } return o / mod }