// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loader import ( "bytes" "cmd/internal/bio" "cmd/internal/goobj" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/sym" "debug/elf" "fmt" "internal/abi" "io" "log" "math/bits" "os" "sort" "strings" ) var _ = fmt.Print // Sym encapsulates a global symbol index, used to identify a specific // Go symbol. The 0-valued Sym is corresponds to an invalid symbol. type Sym = sym.LoaderSym // Relocs encapsulates the set of relocations on a given symbol; an // instance of this type is returned by the Loader Relocs() method. type Relocs struct { rs []goobj.Reloc li uint32 // local index of symbol whose relocs we're examining r *oReader // object reader for containing package l *Loader // loader } // ExtReloc contains the payload for an external relocation. type ExtReloc struct { Xsym Sym Xadd int64 Type objabi.RelocType Size uint8 } // Reloc holds a "handle" to access a relocation record from an // object file. type Reloc struct { *goobj.Reloc r *oReader l *Loader } func (rel Reloc) Type() objabi.RelocType { return objabi.RelocType(rel.Reloc.Type()) &^ objabi.R_WEAK } func (rel Reloc) Weak() bool { return objabi.RelocType(rel.Reloc.Type())&objabi.R_WEAK != 0 } func (rel Reloc) SetType(t objabi.RelocType) { rel.Reloc.SetType(uint16(t)) } func (rel Reloc) Sym() Sym { return rel.l.resolve(rel.r, rel.Reloc.Sym()) } func (rel Reloc) SetSym(s Sym) { rel.Reloc.SetSym(goobj.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) } func (rel Reloc) IsMarker() bool { return rel.Siz() == 0 } // Aux holds a "handle" to access an aux symbol record from an // object file. type Aux struct { *goobj.Aux r *oReader l *Loader } func (a Aux) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) } // oReader is a wrapper type of obj.Reader, along with some // extra information. type oReader struct { *goobj.Reader unit *sym.CompilationUnit version int // version of static symbol pkgprefix string syms []Sym // Sym's global index, indexed by local index pkg []uint32 // indices of referenced package by PkgIdx (index into loader.objs array) ndef int // cache goobj.Reader.NSym() nhashed64def int // cache goobj.Reader.NHashed64Def() nhasheddef int // cache goobj.Reader.NHashedDef() objidx uint32 // index of this reader in the objs slice } // Total number of defined symbols (package symbols, hashed symbols, and // non-package symbols). func (r *oReader) NAlldef() int { return r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef() } // objSym represents a symbol in an object file. It is a tuple of // the object and the symbol's local index. // For external symbols, objidx is the index of l.extReader (extObj), // s is its index into the payload array. // {0, 0} represents the nil symbol. type objSym struct { objidx uint32 // index of the object (in l.objs array) s uint32 // local index } type nameVer struct { name string v int } type Bitmap []uint32 // set the i-th bit. func (bm Bitmap) Set(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] |= 1 << r } // unset the i-th bit. func (bm Bitmap) Unset(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] &^= (1 << r) } // whether the i-th bit is set. func (bm Bitmap) Has(i Sym) bool { n, r := uint(i)/32, uint(i)%32 return bm[n]&(1< curLen { b = append(b, MakeBitmap(reqLen+1-curLen)...) } return b } type symAndSize struct { sym Sym size uint32 } // A Loader loads new object files and resolves indexed symbol references. // // Notes on the layout of global symbol index space: // // - Go object files are read before host object files; each Go object // read adds its defined package symbols to the global index space. // Nonpackage symbols are not yet added. // // - In loader.LoadNonpkgSyms, add non-package defined symbols and // references in all object files to the global index space. // // - Host object file loading happens; the host object loader does a // name/version lookup for each symbol it finds; this can wind up // extending the external symbol index space range. The host object // loader stores symbol payloads in loader.payloads using SymbolBuilder. // // - Each symbol gets a unique global index. For duplicated and // overwriting/overwritten symbols, the second (or later) appearance // of the symbol gets the same global index as the first appearance. type Loader struct { objs []*oReader extStart Sym // from this index on, the symbols are externally defined builtinSyms []Sym // global index of builtin symbols objSyms []objSym // global index mapping to local index symsByName [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal extStaticSyms map[nameVer]Sym // externally defined static symbols, keyed by name extReader *oReader // a dummy oReader, for external symbols payloadBatch []extSymPayload payloads []*extSymPayload // contents of linker-materialized external syms values []int64 // symbol values, indexed by global sym index sects []*sym.Section // sections symSects []uint16 // symbol's section, index to sects array align []uint8 // symbol 2^N alignment, indexed by global index deferReturnTramp map[Sym]bool // whether the symbol is a trampoline of a deferreturn call objByPkg map[string]uint32 // map package path to the index of its Go object reader anonVersion int // most recently assigned ext static sym pseudo-version // Bitmaps and other side structures used to store data used to store // symbol flags/attributes; these are to be accessed via the // corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please // visit the comments on these methods for more details on the // semantics / interpretation of the specific flags or attribute. attrReachable Bitmap // reachable symbols, indexed by global index attrOnList Bitmap // "on list" symbols, indexed by global index attrLocal Bitmap // "local" symbols, indexed by global index attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by global idx attrUsedInIface Bitmap // "used in interface" symbols, indexed by global idx attrSpecial Bitmap // "special" frame symbols, indexed by global idx attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index attrDuplicateOK Bitmap // dupOK symbols, indexed by ext sym index attrShared Bitmap // shared symbols, indexed by ext sym index attrExternal Bitmap // external symbols, indexed by ext sym index generatedSyms Bitmap // symbols that generate their content, indexed by ext sym idx attrReadOnly map[Sym]bool // readonly data for this sym attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols attrCgoExportStatic map[Sym]struct{} // "cgo_export_static" symbols // Outer and Sub relations for symbols. outer []Sym // indexed by global index sub map[Sym]Sym dynimplib map[Sym]string // stores Dynimplib symbol attribute dynimpvers map[Sym]string // stores Dynimpvers symbol attribute localentry map[Sym]uint8 // stores Localentry symbol attribute extname map[Sym]string // stores Extname symbol attribute elfType map[Sym]elf.SymType // stores elf type symbol property elfSym map[Sym]int32 // stores elf sym symbol property localElfSym map[Sym]int32 // stores "local" elf sym symbol property symPkg map[Sym]string // stores package for symbol, or library for shlib-derived syms plt map[Sym]int32 // stores dynimport for pe objects got map[Sym]int32 // stores got for pe objects dynid map[Sym]int32 // stores Dynid for symbol relocVariant map[relocId]sym.RelocVariant // stores variant relocs // Used to implement field tracking; created during deadcode if // field tracking is enabled. Reachparent[K] contains the index of // the symbol that triggered the marking of symbol K as live. Reachparent []Sym // CgoExports records cgo-exported symbols by SymName. CgoExports map[string]Sym WasmExports []Sym flags uint32 strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled errorReporter *ErrorReporter npkgsyms int // number of package symbols, for accounting nhashedsyms int // number of hashed symbols, for accounting } const ( pkgDef = iota hashed64Def hashedDef nonPkgDef nonPkgRef ) // objidx const ( nilObj = iota extObj goObjStart ) // extSymPayload holds the payload (data + relocations) for linker-synthesized // external symbols (note that symbol value is stored in a separate slice). type extSymPayload struct { name string // TODO: would this be better as offset into str table? size int64 ver int kind sym.SymKind objidx uint32 // index of original object if sym made by cloneToExternal relocs []goobj.Reloc data []byte auxs []goobj.Aux } const ( // Loader.flags FlagStrictDups = 1 << iota FlagCheckLinkname ) func NewLoader(flags uint32, reporter *ErrorReporter) *Loader { nbuiltin := goobj.NBuiltin() extReader := &oReader{objidx: extObj} ldr := &Loader{ objs: []*oReader{nil, extReader}, // reserve index 0 for nil symbol, 1 for external symbols objSyms: make([]objSym, 1, 1), // This will get overwritten later. extReader: extReader, symsByName: [2]map[string]Sym{make(map[string]Sym, 80000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols objByPkg: make(map[string]uint32), sub: make(map[Sym]Sym), dynimplib: make(map[Sym]string), dynimpvers: make(map[Sym]string), localentry: make(map[Sym]uint8), extname: make(map[Sym]string), attrReadOnly: make(map[Sym]bool), elfType: make(map[Sym]elf.SymType), elfSym: make(map[Sym]int32), localElfSym: make(map[Sym]int32), symPkg: make(map[Sym]string), plt: make(map[Sym]int32), got: make(map[Sym]int32), dynid: make(map[Sym]int32), attrCgoExportDynamic: make(map[Sym]struct{}), attrCgoExportStatic: make(map[Sym]struct{}), deferReturnTramp: make(map[Sym]bool), extStaticSyms: make(map[nameVer]Sym), builtinSyms: make([]Sym, nbuiltin), flags: flags, errorReporter: reporter, sects: []*sym.Section{nil}, // reserve index 0 for nil section } reporter.ldr = ldr return ldr } // Add object file r func (l *Loader) addObj(pkg string, r *oReader) { pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path if _, ok := l.objByPkg[pkg]; !ok { l.objByPkg[pkg] = r.objidx } l.objs = append(l.objs, r) } // Add a symbol from an object file, return the global index. // If the symbol already exist, it returns the index of that symbol. func (st *loadState) addSym(name string, ver int, r *oReader, li uint32, kind int, osym *goobj.Sym) Sym { l := st.l if l.extStart != 0 { panic("addSym called after external symbol is created") } i := Sym(len(l.objSyms)) if int(i) != len(l.objSyms) { // overflow panic("too many symbols") } addToGlobal := func() { l.objSyms = append(l.objSyms, objSym{r.objidx, li}) } if name == "" && kind != hashed64Def && kind != hashedDef { addToGlobal() return i // unnamed aux symbol } if ver == r.version { // Static symbol. Add its global index but don't // add to name lookup table, as it cannot be // referenced by name. addToGlobal() return i } switch kind { case pkgDef: // Defined package symbols cannot be dup to each other. // We load all the package symbols first, so we don't need // to check dup here. // We still add it to the lookup table, as it may still be // referenced by name (e.g. through linkname). l.symsByName[ver][name] = i addToGlobal() return i case hashed64Def, hashedDef: // Hashed (content-addressable) symbol. Check the hash // but don't add to name lookup table, as they are not // referenced by name. Also no need to do overwriting // check, as same hash indicates same content. var checkHash func() (symAndSize, bool) var addToHashMap func(symAndSize) var h64 uint64 // only used for hashed64Def var h *goobj.HashType // only used for hashedDef if kind == hashed64Def { checkHash = func() (symAndSize, bool) { h64 = r.Hash64(li - uint32(r.ndef)) s, existed := st.hashed64Syms[h64] return s, existed } addToHashMap = func(ss symAndSize) { st.hashed64Syms[h64] = ss } } else { checkHash = func() (symAndSize, bool) { h = r.Hash(li - uint32(r.ndef+r.nhashed64def)) s, existed := st.hashedSyms[*h] return s, existed } addToHashMap = func(ss symAndSize) { st.hashedSyms[*h] = ss } } siz := osym.Siz() if s, existed := checkHash(); existed { // The content hash is built from symbol data and relocations. In the // object file, the symbol data may not always contain trailing zeros, // e.g. for [5]int{1,2,3} and [100]int{1,2,3}, the data is same // (although the size is different). // Also, for short symbols, the content hash is the identity function of // the 8 bytes, and trailing zeros doesn't change the hash value, e.g. // hash("A") == hash("A\0\0\0"). // So when two symbols have the same hash, we need to use the one with // larger size. if siz > s.size { // New symbol has larger size, use the new one. Rewrite the index mapping. l.objSyms[s.sym] = objSym{r.objidx, li} addToHashMap(symAndSize{s.sym, siz}) } return s.sym } addToHashMap(symAndSize{i, siz}) addToGlobal() return i } // Non-package (named) symbol. // Check if it already exists. oldi, existed := l.symsByName[ver][name] if !existed { l.symsByName[ver][name] = i addToGlobal() return i } // symbol already exists if osym.Dupok() { if l.flags&FlagStrictDups != 0 { l.checkdup(name, r, li, oldi) } // Fix for issue #47185 -- given two dupok symbols with // different sizes, favor symbol with larger size. See // also issue #46653. szdup := l.SymSize(oldi) sz := int64(r.Sym(li).Siz()) if szdup < sz { // new symbol overwrites old symbol. l.objSyms[oldi] = objSym{r.objidx, li} } return oldi } oldr, oldli := l.toLocal(oldi) oldsym := oldr.Sym(oldli) if oldsym.Dupok() { return oldi } overwrite := r.DataSize(li) != 0 if overwrite { // new symbol overwrites old symbol. oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())] if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) { log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg) } l.objSyms[oldi] = objSym{r.objidx, li} } else { // old symbol overwrites new symbol. typ := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())] if !typ.IsData() { // only allow overwriting data symbol log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg) } } return oldi } // newExtSym creates a new external sym with the specified // name/version. func (l *Loader) newExtSym(name string, ver int) Sym { i := Sym(len(l.objSyms)) if int(i) != len(l.objSyms) { // overflow panic("too many symbols") } if l.extStart == 0 { l.extStart = i } l.growValues(int(i) + 1) l.growOuter(int(i) + 1) l.growAttrBitmaps(int(i) + 1) pi := l.newPayload(name, ver) l.objSyms = append(l.objSyms, objSym{l.extReader.objidx, uint32(pi)}) l.extReader.syms = append(l.extReader.syms, i) return i } // LookupOrCreateSym looks up the symbol with the specified name/version, // returning its Sym index if found. If the lookup fails, a new external // Sym will be created, entered into the lookup tables, and returned. func (l *Loader) LookupOrCreateSym(name string, ver int) Sym { i := l.Lookup(name, ver) if i != 0 { return i } i = l.newExtSym(name, ver) static := ver >= sym.SymVerStatic || ver < 0 if static { l.extStaticSyms[nameVer{name, ver}] = i } else { l.symsByName[ver][name] = i } return i } // AddCgoExport records a cgo-exported symbol in l.CgoExports. // This table is used to identify the correct Go symbol ABI to use // to resolve references from host objects (which don't have ABIs). func (l *Loader) AddCgoExport(s Sym) { if l.CgoExports == nil { l.CgoExports = make(map[string]Sym) } l.CgoExports[l.SymName(s)] = s } // LookupOrCreateCgoExport is like LookupOrCreateSym, but if ver // indicates a global symbol, it uses the CgoExport table to determine // the appropriate symbol version (ABI) to use. ver must be either 0 // or a static symbol version. func (l *Loader) LookupOrCreateCgoExport(name string, ver int) Sym { if ver >= sym.SymVerStatic { return l.LookupOrCreateSym(name, ver) } if ver != 0 { panic("ver must be 0 or a static version") } // Look for a cgo-exported symbol from Go. if s, ok := l.CgoExports[name]; ok { return s } // Otherwise, this must just be a symbol in the host object. // Create a version 0 symbol for it. return l.LookupOrCreateSym(name, 0) } func (l *Loader) IsExternal(i Sym) bool { r, _ := l.toLocal(i) return l.isExtReader(r) } func (l *Loader) isExtReader(r *oReader) bool { return r == l.extReader } // For external symbol, return its index in the payloads array. // XXX result is actually not a global index. We (ab)use the Sym type // so we don't need conversion for accessing bitmaps. func (l *Loader) extIndex(i Sym) Sym { _, li := l.toLocal(i) return Sym(li) } // Get a new payload for external symbol, return its index in // the payloads array. func (l *Loader) newPayload(name string, ver int) int { pi := len(l.payloads) pp := l.allocPayload() pp.name = name pp.ver = ver l.payloads = append(l.payloads, pp) l.growExtAttrBitmaps() return pi } // getPayload returns a pointer to the extSymPayload struct for an // external symbol if the symbol has a payload. Will panic if the // symbol in question is bogus (zero or not an external sym). func (l *Loader) getPayload(i Sym) *extSymPayload { if !l.IsExternal(i) { panic(fmt.Sprintf("bogus symbol index %d in getPayload", i)) } pi := l.extIndex(i) return l.payloads[pi] } // allocPayload allocates a new payload. func (l *Loader) allocPayload() *extSymPayload { batch := l.payloadBatch if len(batch) == 0 { batch = make([]extSymPayload, 1000) } p := &batch[0] l.payloadBatch = batch[1:] return p } func (ms *extSymPayload) Grow(siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(ms.data)) >= siz { return } if cap(ms.data) < int(siz) { cl := len(ms.data) ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...) ms.data = ms.data[0:cl] } ms.data = ms.data[:siz] } // Convert a local index to a global index. func (l *Loader) toGlobal(r *oReader, i uint32) Sym { return r.syms[i] } // Convert a global index to a local index. func (l *Loader) toLocal(i Sym) (*oReader, uint32) { return l.objs[l.objSyms[i].objidx], l.objSyms[i].s } // Resolve a local symbol reference. Return global index. func (l *Loader) resolve(r *oReader, s goobj.SymRef) Sym { var rr *oReader switch p := s.PkgIdx; p { case goobj.PkgIdxInvalid: // {0, X} with non-zero X is never a valid sym reference from a Go object. // We steal this space for symbol references from external objects. // In this case, X is just the global index. if l.isExtReader(r) { return Sym(s.SymIdx) } if s.SymIdx != 0 { panic("bad sym ref") } return 0 case goobj.PkgIdxHashed64: i := int(s.SymIdx) + r.ndef return r.syms[i] case goobj.PkgIdxHashed: i := int(s.SymIdx) + r.ndef + r.nhashed64def return r.syms[i] case goobj.PkgIdxNone: i := int(s.SymIdx) + r.ndef + r.nhashed64def + r.nhasheddef return r.syms[i] case goobj.PkgIdxBuiltin: if bi := l.builtinSyms[s.SymIdx]; bi != 0 { return bi } l.reportMissingBuiltin(int(s.SymIdx), r.unit.Lib.Pkg) return 0 case goobj.PkgIdxSelf: rr = r default: rr = l.objs[r.pkg[p]] } return l.toGlobal(rr, s.SymIdx) } // reportMissingBuiltin issues an error in the case where we have a // relocation against a runtime builtin whose definition is not found // when the runtime package is built. The canonical example is // "runtime.racefuncenter" -- currently if you do something like // // go build -gcflags=-race myprogram.go // // the compiler will insert calls to the builtin runtime.racefuncenter, // but the version of the runtime used for linkage won't actually contain // definitions of that symbol. See issue #42396 for details. // // As currently implemented, this is a fatal error. This has drawbacks // in that if there are multiple missing builtins, the error will only // cite the first one. On the plus side, terminating the link here has // advantages in that we won't run the risk of panics or crashes later // on in the linker due to R_CALL relocations with 0-valued target // symbols. func (l *Loader) reportMissingBuiltin(bsym int, reflib string) { bname, _ := goobj.BuiltinName(bsym) log.Fatalf("reference to undefined builtin %q from package %q", bname, reflib) } // Look up a symbol by name, return global index, or 0 if not found. // This is more like Syms.ROLookup than Lookup -- it doesn't create // new symbol. func (l *Loader) Lookup(name string, ver int) Sym { if ver >= sym.SymVerStatic || ver < 0 { return l.extStaticSyms[nameVer{name, ver}] } return l.symsByName[ver][name] } // Check that duplicate symbols have same contents. func (l *Loader) checkdup(name string, r *oReader, li uint32, dup Sym) { p := r.Data(li) rdup, ldup := l.toLocal(dup) pdup := rdup.Data(ldup) reason := "same length but different contents" if len(p) != len(pdup) { reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup)) } else if bytes.Equal(p, pdup) { // For BSS symbols, we need to check size as well, see issue 46653. szdup := l.SymSize(dup) sz := int64(r.Sym(li).Siz()) if szdup == sz { return } reason = fmt.Sprintf("different sizes: new size %d != old size %d", sz, szdup) } fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason) // For the moment, allow DWARF subprogram DIEs for // auto-generated wrapper functions. What seems to happen // here is that we get different line numbers on formal // params; I am guessing that the pos is being inherited // from the spot where the wrapper is needed. allowed := strings.HasPrefix(name, "go:info.go.interface") || strings.HasPrefix(name, "go:info.go.builtin") || strings.HasPrefix(name, "go:debuglines") if !allowed { l.strictDupMsgs++ } } func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs } // Number of total symbols. func (l *Loader) NSym() int { return len(l.objSyms) } // Number of defined Go symbols. func (l *Loader) NDef() int { return int(l.extStart) } // Number of reachable symbols. func (l *Loader) NReachableSym() int { return l.attrReachable.Count() } // Returns the name of the i-th symbol. func (l *Loader) SymName(i Sym) string { if l.IsExternal(i) { pp := l.getPayload(i) return pp.name } r, li := l.toLocal(i) if r == nil { return "?" } return r.Sym(li).Name(r.Reader) } // Returns the version of the i-th symbol. func (l *Loader) SymVersion(i Sym) int { if l.IsExternal(i) { pp := l.getPayload(i) return pp.ver } r, li := l.toLocal(i) return int(abiToVer(r.Sym(li).ABI(), r.version)) } func (l *Loader) IsFileLocal(i Sym) bool { return l.SymVersion(i) >= sym.SymVerStatic } // IsFromAssembly returns true if this symbol is derived from an // object file generated by the Go assembler. func (l *Loader) IsFromAssembly(i Sym) bool { if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx] return r.FromAssembly() } return false } r, _ := l.toLocal(i) return r.FromAssembly() } // Returns the type of the i-th symbol. func (l *Loader) SymType(i Sym) sym.SymKind { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { return pp.kind } return 0 } r, li := l.toLocal(i) return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())] } // Returns the attributes of the i-th symbol. func (l *Loader) SymAttr(i Sym) uint8 { if l.IsExternal(i) { // TODO: do something? External symbols have different representation of attributes. // For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be // set by external symbol. return 0 } r, li := l.toLocal(i) return r.Sym(li).Flag() } // Returns the size of the i-th symbol. func (l *Loader) SymSize(i Sym) int64 { if l.IsExternal(i) { pp := l.getPayload(i) return pp.size } r, li := l.toLocal(i) return int64(r.Sym(li).Siz()) } // AttrReachable returns true for symbols that are transitively // referenced from the entry points. Unreachable symbols are not // written to the output. func (l *Loader) AttrReachable(i Sym) bool { return l.attrReachable.Has(i) } // SetAttrReachable sets the reachability property for a symbol (see // AttrReachable). func (l *Loader) SetAttrReachable(i Sym, v bool) { if v { l.attrReachable.Set(i) } else { l.attrReachable.Unset(i) } } // AttrOnList returns true for symbols that are on some list (such as // the list of all text symbols, or one of the lists of data symbols) // and is consulted to avoid bugs where a symbol is put on a list // twice. func (l *Loader) AttrOnList(i Sym) bool { return l.attrOnList.Has(i) } // SetAttrOnList sets the "on list" property for a symbol (see // AttrOnList). func (l *Loader) SetAttrOnList(i Sym, v bool) { if v { l.attrOnList.Set(i) } else { l.attrOnList.Unset(i) } } // AttrLocal returns true for symbols that are only visible within the // module (executable or shared library) being linked. This attribute // is applied to thunks and certain other linker-generated symbols. func (l *Loader) AttrLocal(i Sym) bool { return l.attrLocal.Has(i) } // SetAttrLocal the "local" property for a symbol (see AttrLocal above). func (l *Loader) SetAttrLocal(i Sym, v bool) { if v { l.attrLocal.Set(i) } else { l.attrLocal.Unset(i) } } // AttrUsedInIface returns true for a type symbol that is used in // an interface. func (l *Loader) AttrUsedInIface(i Sym) bool { return l.attrUsedInIface.Has(i) } func (l *Loader) SetAttrUsedInIface(i Sym, v bool) { if v { l.attrUsedInIface.Set(i) } else { l.attrUsedInIface.Unset(i) } } // SymAddr checks that a symbol is reachable, and returns its value. func (l *Loader) SymAddr(i Sym) int64 { if !l.AttrReachable(i) { panic("unreachable symbol in symaddr") } return l.values[i] } // AttrNotInSymbolTable returns true for symbols that should not be // added to the symbol table of the final generated load module. func (l *Loader) AttrNotInSymbolTable(i Sym) bool { return l.attrNotInSymbolTable.Has(i) } // SetAttrNotInSymbolTable the "not in symtab" property for a symbol // (see AttrNotInSymbolTable above). func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) { if v { l.attrNotInSymbolTable.Set(i) } else { l.attrNotInSymbolTable.Unset(i) } } // AttrVisibilityHidden symbols returns true for ELF symbols with // visibility set to STV_HIDDEN. They become local symbols in // the final executable. Only relevant when internally linking // on an ELF platform. func (l *Loader) AttrVisibilityHidden(i Sym) bool { if !l.IsExternal(i) { return false } return l.attrVisibilityHidden.Has(l.extIndex(i)) } // SetAttrVisibilityHidden sets the "hidden visibility" property for a // symbol (see AttrVisibilityHidden). func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) { if !l.IsExternal(i) { panic("tried to set visibility attr on non-external symbol") } if v { l.attrVisibilityHidden.Set(l.extIndex(i)) } else { l.attrVisibilityHidden.Unset(l.extIndex(i)) } } // AttrDuplicateOK returns true for a symbol that can be present in // multiple object files. func (l *Loader) AttrDuplicateOK(i Sym) bool { if !l.IsExternal(i) { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the object // into a larger bitmap during preload. r, li := l.toLocal(i) return r.Sym(li).Dupok() } return l.attrDuplicateOK.Has(l.extIndex(i)) } // SetAttrDuplicateOK sets the "duplicate OK" property for an external // symbol (see AttrDuplicateOK). func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) { if !l.IsExternal(i) { panic("tried to set dupok attr on non-external symbol") } if v { l.attrDuplicateOK.Set(l.extIndex(i)) } else { l.attrDuplicateOK.Unset(l.extIndex(i)) } } // AttrShared returns true for symbols compiled with the -shared option. func (l *Loader) AttrShared(i Sym) bool { if !l.IsExternal(i) { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the // object into a larger bitmap during preload. r, _ := l.toLocal(i) return r.Shared() } return l.attrShared.Has(l.extIndex(i)) } // SetAttrShared sets the "shared" property for an external // symbol (see AttrShared). func (l *Loader) SetAttrShared(i Sym, v bool) { if !l.IsExternal(i) { panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i))) } if v { l.attrShared.Set(l.extIndex(i)) } else { l.attrShared.Unset(l.extIndex(i)) } } // AttrExternal returns true for function symbols loaded from host // object files. func (l *Loader) AttrExternal(i Sym) bool { if !l.IsExternal(i) { return false } return l.attrExternal.Has(l.extIndex(i)) } // SetAttrExternal sets the "external" property for a host object // symbol (see AttrExternal). func (l *Loader) SetAttrExternal(i Sym, v bool) { if !l.IsExternal(i) { panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.SymName(i))) } if v { l.attrExternal.Set(l.extIndex(i)) } else { l.attrExternal.Unset(l.extIndex(i)) } } // AttrSpecial returns true for a symbols that do not have their // address (i.e. Value) computed by the usual mechanism of // data.go:dodata() & data.go:address(). func (l *Loader) AttrSpecial(i Sym) bool { return l.attrSpecial.Has(i) } // SetAttrSpecial sets the "special" property for a symbol (see // AttrSpecial). func (l *Loader) SetAttrSpecial(i Sym, v bool) { if v { l.attrSpecial.Set(i) } else { l.attrSpecial.Unset(i) } } // AttrCgoExportDynamic returns true for a symbol that has been // specially marked via the "cgo_export_dynamic" compiler directive // written by cgo (in response to //export directives in the source). func (l *Loader) AttrCgoExportDynamic(i Sym) bool { _, ok := l.attrCgoExportDynamic[i] return ok } // SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol // (see AttrCgoExportDynamic). func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) { if v { l.attrCgoExportDynamic[i] = struct{}{} } else { delete(l.attrCgoExportDynamic, i) } } // ForAllCgoExportDynamic calls f for every symbol that has been // marked with the "cgo_export_dynamic" compiler directive. func (l *Loader) ForAllCgoExportDynamic(f func(Sym)) { for s := range l.attrCgoExportDynamic { f(s) } } // AttrCgoExportStatic returns true for a symbol that has been // specially marked via the "cgo_export_static" directive // written by cgo. func (l *Loader) AttrCgoExportStatic(i Sym) bool { _, ok := l.attrCgoExportStatic[i] return ok } // SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol // (see AttrCgoExportStatic). func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) { if v { l.attrCgoExportStatic[i] = struct{}{} } else { delete(l.attrCgoExportStatic, i) } } // IsGeneratedSym returns true if a symbol's been previously marked as a // generator symbol through the SetIsGeneratedSym. The functions for generator // symbols are kept in the Link context. func (l *Loader) IsGeneratedSym(i Sym) bool { if !l.IsExternal(i) { return false } return l.generatedSyms.Has(l.extIndex(i)) } // SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be // stored in generated symbols, and a function is registered and called for // each of these symbols. func (l *Loader) SetIsGeneratedSym(i Sym, v bool) { if !l.IsExternal(i) { panic("only external symbols can be generated") } if v { l.generatedSyms.Set(l.extIndex(i)) } else { l.generatedSyms.Unset(l.extIndex(i)) } } func (l *Loader) AttrCgoExport(i Sym) bool { return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i) } // AttrReadOnly returns true for a symbol whose underlying data // is stored via a read-only mmap. func (l *Loader) AttrReadOnly(i Sym) bool { if v, ok := l.attrReadOnly[i]; ok { return v } if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { return l.objs[pp.objidx].ReadOnly() } return false } r, _ := l.toLocal(i) return r.ReadOnly() } // SetAttrReadOnly sets the "data is read only" property for a symbol // (see AttrReadOnly). func (l *Loader) SetAttrReadOnly(i Sym, v bool) { l.attrReadOnly[i] = v } // AttrSubSymbol returns true for symbols that are listed as a // sub-symbol of some other outer symbol. The sub/outer mechanism is // used when loading host objects (sections from the host object // become regular linker symbols and symbols go on the Sub list of // their section) and for constructing the global offset table when // internally linking a dynamic executable. // // Note that in later stages of the linker, we set Outer(S) to some // container symbol C, but don't set Sub(C). Thus we have two // distinct scenarios: // // - Outer symbol covers the address ranges of its sub-symbols. // Outer.Sub is set in this case. // - Outer symbol doesn't cover the address ranges. It is zero-sized // and doesn't have sub-symbols. In the case, the inner symbol is // not actually a "SubSymbol". (Tricky!) // // This method returns TRUE only for sub-symbols in the first scenario. // // FIXME: would be better to do away with this and have a better way // to represent container symbols. func (l *Loader) AttrSubSymbol(i Sym) bool { // we don't explicitly store this attribute any more -- return // a value based on the sub-symbol setting. o := l.OuterSym(i) if o == 0 { return false } return l.SubSym(o) != 0 } // Note that we don't have a 'SetAttrSubSymbol' method in the loader; // clients should instead use the AddInteriorSym method to establish // containment relationships for host object symbols. // Returns whether the i-th symbol has ReflectMethod attribute set. func (l *Loader) IsReflectMethod(i Sym) bool { return l.SymAttr(i)&goobj.SymFlagReflectMethod != 0 } // Returns whether the i-th symbol is nosplit. func (l *Loader) IsNoSplit(i Sym) bool { return l.SymAttr(i)&goobj.SymFlagNoSplit != 0 } // Returns whether this is a Go type symbol. func (l *Loader) IsGoType(i Sym) bool { return l.SymAttr(i)&goobj.SymFlagGoType != 0 } // Returns whether this symbol should be included in typelink. func (l *Loader) IsTypelink(i Sym) bool { return l.SymAttr(i)&goobj.SymFlagTypelink != 0 } // Returns whether this symbol is an itab symbol. func (l *Loader) IsItab(i Sym) bool { if l.IsExternal(i) { return false } r, li := l.toLocal(i) return r.Sym(li).IsItab() } // Returns whether this symbol is a dictionary symbol. func (l *Loader) IsDict(i Sym) bool { if l.IsExternal(i) { return false } r, li := l.toLocal(i) return r.Sym(li).IsDict() } // Returns whether this symbol is a compiler-generated package init func. func (l *Loader) IsPkgInit(i Sym) bool { if l.IsExternal(i) { return false } r, li := l.toLocal(i) return r.Sym(li).IsPkgInit() } // Return whether this is a trampoline of a deferreturn call. func (l *Loader) IsDeferReturnTramp(i Sym) bool { return l.deferReturnTramp[i] } // Set that i is a trampoline of a deferreturn call. func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) { l.deferReturnTramp[i] = v } // growValues grows the slice used to store symbol values. func (l *Loader) growValues(reqLen int) { curLen := len(l.values) if reqLen > curLen { l.values = append(l.values, make([]int64, reqLen+1-curLen)...) } } // SymValue returns the value of the i-th symbol. i is global index. func (l *Loader) SymValue(i Sym) int64 { return l.values[i] } // SetSymValue sets the value of the i-th symbol. i is global index. func (l *Loader) SetSymValue(i Sym, val int64) { l.values[i] = val } // AddToSymValue adds to the value of the i-th symbol. i is the global index. func (l *Loader) AddToSymValue(i Sym, val int64) { l.values[i] += val } // Returns the symbol content of the i-th symbol. i is global index. func (l *Loader) Data(i Sym) []byte { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { return pp.data } return nil } r, li := l.toLocal(i) return r.Data(li) } // Returns the symbol content of the i-th symbol as a string. i is global index. func (l *Loader) DataString(i Sym) string { if l.IsExternal(i) { pp := l.getPayload(i) return string(pp.data) } r, li := l.toLocal(i) return r.DataString(li) } // FreeData clears the symbol data of an external symbol, allowing the memory // to be freed earlier. No-op for non-external symbols. // i is global index. func (l *Loader) FreeData(i Sym) { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { pp.data = nil } } } // SymAlign returns the alignment for a symbol. func (l *Loader) SymAlign(i Sym) int32 { if int(i) >= len(l.align) { // align is extended lazily -- it the sym in question is // outside the range of the existing slice, then we assume its // alignment has not yet been set. return 0 } // TODO: would it make sense to return an arch-specific // alignment depending on section type? E.g. STEXT => 32, // SDATA => 1, etc? abits := l.align[i] if abits == 0 { return 0 } return int32(1 << (abits - 1)) } // SetSymAlign sets the alignment for a symbol. func (l *Loader) SetSymAlign(i Sym, align int32) { // Reject nonsense alignments. if align < 0 || align&(align-1) != 0 { panic("bad alignment value") } if int(i) >= len(l.align) { l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...) } if align == 0 { l.align[i] = 0 } l.align[i] = uint8(bits.Len32(uint32(align))) } // SymSect returns the section of the i-th symbol. i is global index. func (l *Loader) SymSect(i Sym) *sym.Section { if int(i) >= len(l.symSects) { // symSects is extended lazily -- it the sym in question is // outside the range of the existing slice, then we assume its // section has not yet been set. return nil } return l.sects[l.symSects[i]] } // SetSymSect sets the section of the i-th symbol. i is global index. func (l *Loader) SetSymSect(i Sym, sect *sym.Section) { if int(i) >= len(l.symSects) { l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...) } l.symSects[i] = sect.Index } // NewSection creates a new (output) section. func (l *Loader) NewSection() *sym.Section { sect := new(sym.Section) idx := len(l.sects) if idx != int(uint16(idx)) { panic("too many sections created") } sect.Index = uint16(idx) l.sects = append(l.sects, sect) return sect } // SymDynimplib returns the "dynimplib" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimplib(i Sym) string { return l.dynimplib[i] } // SetSymDynimplib sets the "dynimplib" attribute for a symbol. func (l *Loader) SetSymDynimplib(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetDynimplib") } if value == "" { delete(l.dynimplib, i) } else { l.dynimplib[i] = value } } // SymDynimpvers returns the "dynimpvers" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimpvers(i Sym) string { return l.dynimpvers[i] } // SetSymDynimpvers sets the "dynimpvers" attribute for a symbol. func (l *Loader) SetSymDynimpvers(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetDynimpvers") } if value == "" { delete(l.dynimpvers, i) } else { l.dynimpvers[i] = value } } // SymExtname returns the "extname" value for the specified // symbol. func (l *Loader) SymExtname(i Sym) string { if s, ok := l.extname[i]; ok { return s } return l.SymName(i) } // SetSymExtname sets the "extname" attribute for a symbol. func (l *Loader) SetSymExtname(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetExtname") } if value == "" { delete(l.extname, i) } else { l.extname[i] = value } } // SymElfType returns the previously recorded ELF type for a symbol // (used only for symbols read from shared libraries by ldshlibsyms). // It is not set for symbols defined by the packages being linked or // by symbols read by ldelf (and so is left as elf.STT_NOTYPE). func (l *Loader) SymElfType(i Sym) elf.SymType { if et, ok := l.elfType[i]; ok { return et } return elf.STT_NOTYPE } // SetSymElfType sets the elf type attribute for a symbol. func (l *Loader) SetSymElfType(i Sym, et elf.SymType) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymElfType") } if et == elf.STT_NOTYPE { delete(l.elfType, i) } else { l.elfType[i] = et } } // SymElfSym returns the ELF symbol index for a given loader // symbol, assigned during ELF symtab generation. func (l *Loader) SymElfSym(i Sym) int32 { return l.elfSym[i] } // SetSymElfSym sets the elf symbol index for a symbol. func (l *Loader) SetSymElfSym(i Sym, es int32) { if i == 0 { panic("bad sym index") } if es == 0 { delete(l.elfSym, i) } else { l.elfSym[i] = es } } // SymLocalElfSym returns the "local" ELF symbol index for a given loader // symbol, assigned during ELF symtab generation. func (l *Loader) SymLocalElfSym(i Sym) int32 { return l.localElfSym[i] } // SetSymLocalElfSym sets the "local" elf symbol index for a symbol. func (l *Loader) SetSymLocalElfSym(i Sym, es int32) { if i == 0 { panic("bad sym index") } if es == 0 { delete(l.localElfSym, i) } else { l.localElfSym[i] = es } } // SymPlt returns the PLT offset of symbol s. func (l *Loader) SymPlt(s Sym) int32 { if v, ok := l.plt[s]; ok { return v } return -1 } // SetPlt sets the PLT offset of symbol i. func (l *Loader) SetPlt(i Sym, v int32) { if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol for SetPlt") } if v == -1 { delete(l.plt, i) } else { l.plt[i] = v } } // SymGot returns the GOT offset of symbol s. func (l *Loader) SymGot(s Sym) int32 { if v, ok := l.got[s]; ok { return v } return -1 } // SetGot sets the GOT offset of symbol i. func (l *Loader) SetGot(i Sym, v int32) { if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol for SetGot") } if v == -1 { delete(l.got, i) } else { l.got[i] = v } } // SymDynid returns the "dynid" property for the specified symbol. func (l *Loader) SymDynid(i Sym) int32 { if s, ok := l.dynid[i]; ok { return s } return -1 } // SetSymDynid sets the "dynid" property for a symbol. func (l *Loader) SetSymDynid(i Sym, val int32) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymDynid") } if val == -1 { delete(l.dynid, i) } else { l.dynid[i] = val } } // DynidSyms returns the set of symbols for which dynID is set to an // interesting (non-default) value. This is expected to be a fairly // small set. func (l *Loader) DynidSyms() []Sym { sl := make([]Sym, 0, len(l.dynid)) for s := range l.dynid { sl = append(sl, s) } sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] }) return sl } // SymGoType returns the 'Gotype' property for a given symbol (set by // the Go compiler for variable symbols). This version relies on // reading aux symbols for the target sym -- it could be that a faster // approach would be to check for gotype during preload and copy the // results in to a map (might want to try this at some point and see // if it helps speed things up). func (l *Loader) SymGoType(i Sym) Sym { return l.aux1(i, goobj.AuxGotype) } // SymUnit returns the compilation unit for a given symbol (which will // typically be nil for external or linker-manufactured symbols). func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit { if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx] return r.unit } return nil } r, _ := l.toLocal(i) return r.unit } // SymPkg returns the package where the symbol came from (for // regular compiler-generated Go symbols), but in the case of // building with "-linkshared" (when a symbol is read from a // shared library), will hold the library name. // NOTE: this corresponds to sym.Symbol.File field. func (l *Loader) SymPkg(i Sym) string { if f, ok := l.symPkg[i]; ok { return f } if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx] return r.unit.Lib.Pkg } return "" } r, _ := l.toLocal(i) return r.unit.Lib.Pkg } // SetSymPkg sets the package/library for a symbol. This is // needed mainly for external symbols, specifically those imported // from shared libraries. func (l *Loader) SetSymPkg(i Sym, pkg string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymPkg") } l.symPkg[i] = pkg } // SymLocalentry returns an offset in bytes of the "local entry" of a symbol. // // On PPC64, a value of 1 indicates the symbol does not use or preserve a TOC // pointer in R2, nor does it have a distinct local entry. func (l *Loader) SymLocalentry(i Sym) uint8 { return l.localentry[i] } // SetSymLocalentry sets the "local entry" offset attribute for a symbol. func (l *Loader) SetSymLocalentry(i Sym, value uint8) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymLocalentry") } if value == 0 { delete(l.localentry, i) } else { l.localentry[i] = value } } // Returns the number of aux symbols given a global index. func (l *Loader) NAux(i Sym) int { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) return r.NAux(li) } // Returns the "handle" to the j-th aux symbol of the i-th symbol. func (l *Loader) Aux(i Sym, j int) Aux { if l.IsExternal(i) { return Aux{} } r, li := l.toLocal(i) if j >= r.NAux(li) { return Aux{} } return Aux{r.Aux(li, j), r, l} } // WasmImportSym returns the auxiliary WebAssembly import symbol associated with // a given function symbol. The aux sym only exists for Go function stubs that // have been annotated with the //go:wasmimport directive. The aux sym // contains the information necessary for the linker to add a WebAssembly // import statement. // (https://webassembly.github.io/spec/core/syntax/modules.html#imports) func (l *Loader) WasmImportSym(fnSymIdx Sym) Sym { if !l.SymType(fnSymIdx).IsText() { log.Fatalf("error: non-function sym %d/%s t=%s passed to WasmImportSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String()) } return l.aux1(fnSymIdx, goobj.AuxWasmImport) } func (l *Loader) WasmTypeSym(s Sym) Sym { return l.aux1(s, goobj.AuxWasmType) } // SEHUnwindSym returns the auxiliary SEH unwind symbol associated with // a given function symbol. func (l *Loader) SEHUnwindSym(fnSymIdx Sym) Sym { if !l.SymType(fnSymIdx).IsText() { log.Fatalf("error: non-function sym %d/%s t=%s passed to SEHUnwindSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String()) } return l.aux1(fnSymIdx, goobj.AuxSehUnwindInfo) } // GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF // symbols associated with a given function symbol. Prior to the // introduction of the loader, this was done purely using name // lookups, e.f. for function with name XYZ we would then look up // go.info.XYZ, etc. func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) { if !l.SymType(fnSymIdx).IsText() { log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String()) } r, auxs := l.auxs(fnSymIdx) for i := range auxs { a := &auxs[i] switch a.Type() { case goobj.AuxDwarfInfo: auxDwarfInfo = l.resolve(r, a.Sym()) if l.SymType(auxDwarfInfo) != sym.SDWARFFCN { panic("aux dwarf info sym with wrong type") } case goobj.AuxDwarfLoc: auxDwarfLoc = l.resolve(r, a.Sym()) if l.SymType(auxDwarfLoc) != sym.SDWARFLOC { panic("aux dwarf loc sym with wrong type") } case goobj.AuxDwarfRanges: auxDwarfRanges = l.resolve(r, a.Sym()) if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE { panic("aux dwarf ranges sym with wrong type") } case goobj.AuxDwarfLines: auxDwarfLines = l.resolve(r, a.Sym()) if l.SymType(auxDwarfLines) != sym.SDWARFLINES { panic("aux dwarf lines sym with wrong type") } } } return } func (l *Loader) GetVarDwarfAuxSym(i Sym) Sym { aux := l.aux1(i, goobj.AuxDwarfInfo) if aux != 0 && l.SymType(aux) != sym.SDWARFVAR { fmt.Println(l.SymName(i), l.SymType(i), l.SymType(aux), sym.SDWARFVAR) panic("aux dwarf info sym with wrong type") } return aux } // AddInteriorSym sets up 'interior' as an interior symbol of // container/payload symbol 'container'. An interior symbol does not // itself have data, but gives a name to a subrange of the data in its // container symbol. The container itself may or may not have a name. // This method is intended primarily for use in the host object // loaders, to capture the semantics of symbols and sections in an // object file. When reading a host object file, we'll typically // encounter a static section symbol (ex: ".text") containing content // for a collection of functions, then a series of ELF (or macho, etc) // symbol table entries each of which points into a sub-section // (offset and length) of its corresponding container symbol. Within // the go linker we create a loader.Sym for the container (which is // expected to have the actual content/payload) and then a set of // interior loader.Sym's that point into a portion of the container. func (l *Loader) AddInteriorSym(container Sym, interior Sym) { // Container symbols are expected to have content/data. // NB: this restriction may turn out to be too strict (it's possible // to imagine a zero-sized container with an interior symbol pointing // into it); it's ok to relax or remove it if we counter an // oddball host object that triggers this. if l.SymSize(container) == 0 && len(l.Data(container)) == 0 { panic("unexpected empty container symbol") } // The interior symbols for a container are not expected to have // content/data or relocations. if len(l.Data(interior)) != 0 { panic("unexpected non-empty interior symbol") } // Interior symbol is expected to be in the symbol table. if l.AttrNotInSymbolTable(interior) { panic("interior symbol must be in symtab") } // Only a single level of containment is allowed. if l.OuterSym(container) != 0 { panic("outer has outer itself") } // Interior sym should not already have a sibling. if l.SubSym(interior) != 0 { panic("sub set for subsym") } // Interior sym should not already point at a container. if l.OuterSym(interior) != 0 { panic("outer already set for subsym") } l.sub[interior] = l.sub[container] l.sub[container] = interior l.outer[interior] = container } // OuterSym gets the outer/container symbol. func (l *Loader) OuterSym(i Sym) Sym { return l.outer[i] } // SubSym gets the subsymbol for host object loaded symbols. func (l *Loader) SubSym(i Sym) Sym { return l.sub[i] } // growOuter grows the slice used to store outer symbol. func (l *Loader) growOuter(reqLen int) { curLen := len(l.outer) if reqLen > curLen { l.outer = append(l.outer, make([]Sym, reqLen-curLen)...) } } // SetCarrierSym declares that 'c' is the carrier or container symbol // for 's'. Carrier symbols are used in the linker to as a container // for a collection of sub-symbols where the content of the // sub-symbols is effectively concatenated to form the content of the // carrier. The carrier is given a name in the output symbol table // while the sub-symbol names are not. For example, the Go compiler // emits named string symbols (type SGOSTRING) when compiling a // package; after being deduplicated, these symbols are collected into // a single unit by assigning them a new carrier symbol named // "go:string.*" (which appears in the final symbol table for the // output load module). func (l *Loader) SetCarrierSym(s Sym, c Sym) { if c == 0 { panic("invalid carrier in SetCarrierSym") } if s == 0 { panic("invalid sub-symbol in SetCarrierSym") } // Carrier symbols are not expected to have content/data. It is // ok for them to have non-zero size (to allow for use of generator // symbols). if len(l.Data(c)) != 0 { panic("unexpected non-empty carrier symbol") } l.outer[s] = c // relocsym's foldSubSymbolOffset requires that we only // have a single level of containment-- enforce here. if l.outer[c] != 0 { panic("invalid nested carrier sym") } } // Initialize Reachable bitmap and its siblings for running deadcode pass. func (l *Loader) InitReachable() { l.growAttrBitmaps(l.NSym() + 1) } type symWithVal struct { s Sym v int64 } type bySymValue []symWithVal func (s bySymValue) Len() int { return len(s) } func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v } // SortSub walks through the sub-symbols for 's' and sorts them // in place by increasing value. Return value is the new // sub symbol for the specified outer symbol. func (l *Loader) SortSub(s Sym) Sym { if s == 0 || l.sub[s] == 0 { return s } // Sort symbols using a slice first. Use a stable sort on the off // chance that there's more than once symbol with the same value, // so as to preserve reproducible builds. sl := []symWithVal{} for ss := l.sub[s]; ss != 0; ss = l.sub[ss] { sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)}) } sort.Stable(bySymValue(sl)) // Then apply any changes needed to the sub map. ns := Sym(0) for i := len(sl) - 1; i >= 0; i-- { s := sl[i].s l.sub[s] = ns ns = s } // Update sub for outer symbol, then return l.sub[s] = sl[0].s return sl[0].s } // SortSyms sorts a list of symbols by their value. func (l *Loader) SortSyms(ss []Sym) { sort.SliceStable(ss, func(i, j int) bool { return l.SymValue(ss[i]) < l.SymValue(ss[j]) }) } // Insure that reachable bitmap and its siblings have enough size. func (l *Loader) growAttrBitmaps(reqLen int) { if reqLen > l.attrReachable.Len() { // These are indexed by global symbol l.attrReachable = growBitmap(reqLen, l.attrReachable) l.attrOnList = growBitmap(reqLen, l.attrOnList) l.attrLocal = growBitmap(reqLen, l.attrLocal) l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable) l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface) l.attrSpecial = growBitmap(reqLen, l.attrSpecial) } l.growExtAttrBitmaps() } func (l *Loader) growExtAttrBitmaps() { // These are indexed by external symbol index (e.g. l.extIndex(i)) extReqLen := len(l.payloads) if extReqLen > l.attrVisibilityHidden.Len() { l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden) l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK) l.attrShared = growBitmap(extReqLen, l.attrShared) l.attrExternal = growBitmap(extReqLen, l.attrExternal) l.generatedSyms = growBitmap(extReqLen, l.generatedSyms) } } func (relocs *Relocs) Count() int { return len(relocs.rs) } // At returns the j-th reloc for a global symbol. func (relocs *Relocs) At(j int) Reloc { if relocs.l.isExtReader(relocs.r) { return Reloc{&relocs.rs[j], relocs.r, relocs.l} } return Reloc{&relocs.rs[j], relocs.r, relocs.l} } // Relocs returns a Relocs object for the given global sym. func (l *Loader) Relocs(i Sym) Relocs { r, li := l.toLocal(i) if r == nil { panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i)) } return l.relocs(r, li) } // relocs returns a Relocs object given a local sym index and reader. func (l *Loader) relocs(r *oReader, li uint32) Relocs { var rs []goobj.Reloc if l.isExtReader(r) { pp := l.payloads[li] rs = pp.relocs } else { rs = r.Relocs(li) } return Relocs{ rs: rs, li: li, r: r, l: l, } } func (l *Loader) auxs(i Sym) (*oReader, []goobj.Aux) { if l.IsExternal(i) { pp := l.getPayload(i) return l.objs[pp.objidx], pp.auxs } else { r, li := l.toLocal(i) return r, r.Auxs(li) } } // Returns a specific aux symbol of type t for symbol i. func (l *Loader) aux1(i Sym, t uint8) Sym { r, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] if a.Type() == t { return l.resolve(r, a.Sym()) } } return 0 } func (l *Loader) Pcsp(i Sym) Sym { return l.aux1(i, goobj.AuxPcsp) } // Returns all aux symbols of per-PC data for symbol i. // tmp is a scratch space for the pcdata slice. func (l *Loader) PcdataAuxs(i Sym, tmp []Sym) (pcsp, pcfile, pcline, pcinline Sym, pcdata []Sym) { pcdata = tmp[:0] r, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] switch a.Type() { case goobj.AuxPcsp: pcsp = l.resolve(r, a.Sym()) case goobj.AuxPcline: pcline = l.resolve(r, a.Sym()) case goobj.AuxPcfile: pcfile = l.resolve(r, a.Sym()) case goobj.AuxPcinline: pcinline = l.resolve(r, a.Sym()) case goobj.AuxPcdata: pcdata = append(pcdata, l.resolve(r, a.Sym())) } } return } // Returns the number of pcdata for symbol i. func (l *Loader) NumPcdata(i Sym) int { n := 0 _, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] if a.Type() == goobj.AuxPcdata { n++ } } return n } // Returns all funcdata symbols of symbol i. // tmp is a scratch space. func (l *Loader) Funcdata(i Sym, tmp []Sym) []Sym { fd := tmp[:0] r, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] if a.Type() == goobj.AuxFuncdata { fd = append(fd, l.resolve(r, a.Sym())) } } return fd } // Returns the number of funcdata for symbol i. func (l *Loader) NumFuncdata(i Sym) int { n := 0 _, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] if a.Type() == goobj.AuxFuncdata { n++ } } return n } // FuncInfo provides hooks to access goobj.FuncInfo in the objects. type FuncInfo struct { l *Loader r *oReader data []byte lengths goobj.FuncInfoLengths } func (fi *FuncInfo) Valid() bool { return fi.r != nil } func (fi *FuncInfo) Args() int { return int((*goobj.FuncInfo)(nil).ReadArgs(fi.data)) } func (fi *FuncInfo) Locals() int { return int((*goobj.FuncInfo)(nil).ReadLocals(fi.data)) } func (fi *FuncInfo) FuncID() abi.FuncID { return (*goobj.FuncInfo)(nil).ReadFuncID(fi.data) } func (fi *FuncInfo) FuncFlag() abi.FuncFlag { return (*goobj.FuncInfo)(nil).ReadFuncFlag(fi.data) } func (fi *FuncInfo) StartLine() int32 { return (*goobj.FuncInfo)(nil).ReadStartLine(fi.data) } // Preload has to be called prior to invoking the various methods // below related to pcdata, funcdataoff, files, and inltree nodes. func (fi *FuncInfo) Preload() { fi.lengths = (*goobj.FuncInfo)(nil).ReadFuncInfoLengths(fi.data) } func (fi *FuncInfo) NumFile() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumFile } func (fi *FuncInfo) File(k int) goobj.CUFileIndex { if !fi.lengths.Initialized { panic("need to call Preload first") } return (*goobj.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k)) } // TopFrame returns true if the function associated with this FuncInfo // is an entry point, meaning that unwinders should stop when they hit // this function. func (fi *FuncInfo) TopFrame() bool { return (fi.FuncFlag() & abi.FuncFlagTopFrame) != 0 } type InlTreeNode struct { Parent int32 File goobj.CUFileIndex Line int32 Func Sym ParentPC int32 } func (fi *FuncInfo) NumInlTree() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumInlTree } func (fi *FuncInfo) InlTree(k int) InlTreeNode { if !fi.lengths.Initialized { panic("need to call Preload first") } node := (*goobj.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k)) return InlTreeNode{ Parent: node.Parent, File: node.File, Line: node.Line, Func: fi.l.resolve(fi.r, node.Func), ParentPC: node.ParentPC, } } func (l *Loader) FuncInfo(i Sym) FuncInfo { r, auxs := l.auxs(i) for j := range auxs { a := &auxs[j] if a.Type() == goobj.AuxFuncInfo { b := r.Data(a.Sym().SymIdx) return FuncInfo{l, r, b, goobj.FuncInfoLengths{}} } } return FuncInfo{} } // Preload a package: adds autolib. // Does not add defined package or non-packaged symbols to the symbol table. // These are done in LoadSyms. // Does not read symbol data. // Returns the fingerprint of the object. func (l *Loader) Preload(localSymVersion int, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj.FingerprintType { roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName) if err != nil { log.Fatal("cannot read object file:", err) } r := goobj.NewReaderFromBytes(roObject, readonly) if r == nil { if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) { log.Fatalf("found object file %s in old format", f.File().Name()) } panic("cannot read object file") } pkgprefix := objabi.PathToPrefix(lib.Pkg) + "." ndef := r.NSym() nhashed64def := r.NHashed64def() nhasheddef := r.NHasheddef() or := &oReader{ Reader: r, unit: unit, version: localSymVersion, pkgprefix: pkgprefix, syms: make([]Sym, ndef+nhashed64def+nhasheddef+r.NNonpkgdef()+r.NNonpkgref()), ndef: ndef, nhasheddef: nhasheddef, nhashed64def: nhashed64def, objidx: uint32(len(l.objs)), } if r.Unlinkable() { log.Fatalf("link: unlinkable object (from package %s) - compiler requires -p flag", lib.Pkg) } // Autolib lib.Autolib = append(lib.Autolib, r.Autolib()...) // DWARF file table nfile := r.NFile() unit.FileTable = make([]string, nfile) for i := range unit.FileTable { unit.FileTable[i] = r.File(i) } l.addObj(lib.Pkg, or) // The caller expects us consuming all the data f.MustSeek(length, io.SeekCurrent) return r.Fingerprint() } // Holds the loader along with temporary states for loading symbols. type loadState struct { l *Loader hashed64Syms map[uint64]symAndSize // short hashed (content-addressable) symbols, keyed by content hash hashedSyms map[goobj.HashType]symAndSize // hashed (content-addressable) symbols, keyed by content hash linknameVarRefs []linknameVarRef // linknamed var refererces } type linknameVarRef struct { pkg string // package of reference (not definition) name string sym Sym } // Preload symbols of given kind from an object. func (st *loadState) preloadSyms(r *oReader, kind int) { l := st.l var start, end uint32 switch kind { case pkgDef: start = 0 end = uint32(r.ndef) case hashed64Def: start = uint32(r.ndef) end = uint32(r.ndef + r.nhashed64def) case hashedDef: start = uint32(r.ndef + r.nhashed64def) end = uint32(r.ndef + r.nhashed64def + r.nhasheddef) case nonPkgDef: start = uint32(r.ndef + r.nhashed64def + r.nhasheddef) end = uint32(r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef()) default: panic("preloadSyms: bad kind") } l.growAttrBitmaps(len(l.objSyms) + int(end-start)) loadingRuntimePkg := r.unit.Lib.Pkg == "runtime" for i := start; i < end; i++ { osym := r.Sym(i) var name string var v int if kind != hashed64Def && kind != hashedDef { // we don't need the name, etc. for hashed symbols name = osym.Name(r.Reader) v = abiToVer(osym.ABI(), r.version) } gi := st.addSym(name, v, r, i, kind, osym) r.syms[i] = gi if kind == nonPkgDef && osym.IsLinkname() && r.DataSize(i) == 0 && strings.Contains(name, ".") { // This is a linknamed "var" "reference" (var x T with no data and //go:linkname x). // We want to check if a linkname reference is allowed. Here we haven't loaded all // symbol definitions, so we don't yet know all the push linknames. So we add to a // list and check later after all symbol defs are loaded. Linknamed vars are rare, // so this list won't be long. // Only check references (pull), not definitions (push, with non-zero size), // so push is always allowed. // This use of linkname is usually for referencing C symbols, so allow symbols // with no "." in its name (not a regular Go symbol). // Linkname is always a non-package reference. st.linknameVarRefs = append(st.linknameVarRefs, linknameVarRef{r.unit.Lib.Pkg, name, gi}) } if osym.Local() { l.SetAttrLocal(gi, true) } if osym.UsedInIface() { l.SetAttrUsedInIface(gi, true) } if strings.HasPrefix(name, "runtime.") || (loadingRuntimePkg && strings.HasPrefix(name, "type:")) { if bi := goobj.BuiltinIdx(name, int(osym.ABI())); bi != -1 { // This is a definition of a builtin symbol. Record where it is. l.builtinSyms[bi] = gi } } if a := int32(osym.Align()); a != 0 && a > l.SymAlign(gi) { l.SetSymAlign(gi, a) } if osym.WasmExport() { l.WasmExports = append(l.WasmExports, gi) } } } // Add syms, hashed (content-addressable) symbols, non-package symbols, and // references to external symbols (which are always named). func (l *Loader) LoadSyms(arch *sys.Arch) { // Allocate space for symbols, making a guess as to how much space we need. // This function was determined empirically by looking at the cmd/compile on // Darwin, and picking factors for hashed and hashed64 syms. var symSize, hashedSize, hashed64Size int for _, r := range l.objs[goObjStart:] { symSize += r.ndef + r.nhasheddef/2 + r.nhashed64def/2 + r.NNonpkgdef() hashedSize += r.nhasheddef / 2 hashed64Size += r.nhashed64def / 2 } // Index 0 is invalid for symbols. l.objSyms = make([]objSym, 1, symSize) st := loadState{ l: l, hashed64Syms: make(map[uint64]symAndSize, hashed64Size), hashedSyms: make(map[goobj.HashType]symAndSize, hashedSize), } for _, r := range l.objs[goObjStart:] { st.preloadSyms(r, pkgDef) } l.npkgsyms = l.NSym() for _, r := range l.objs[goObjStart:] { st.preloadSyms(r, hashed64Def) st.preloadSyms(r, hashedDef) st.preloadSyms(r, nonPkgDef) } for _, vr := range st.linknameVarRefs { l.checkLinkname(vr.pkg, vr.name, vr.sym) } l.nhashedsyms = len(st.hashed64Syms) + len(st.hashedSyms) for _, r := range l.objs[goObjStart:] { loadObjRefs(l, r, arch) } l.values = make([]int64, l.NSym(), l.NSym()+1000) // +1000 make some room for external symbols l.outer = make([]Sym, l.NSym(), l.NSym()+1000) } func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) { // load non-package refs ndef := uint32(r.NAlldef()) for i, n := uint32(0), uint32(r.NNonpkgref()); i < n; i++ { osym := r.Sym(ndef + i) name := osym.Name(r.Reader) v := abiToVer(osym.ABI(), r.version) gi := l.LookupOrCreateSym(name, v) r.syms[ndef+i] = gi if osym.IsLinkname() { // Check if a linkname reference is allowed. // Only check references (pull), not definitions (push), // so push is always allowed. // Linkname is always a non-package reference. l.checkLinkname(r.unit.Lib.Pkg, name, gi) } if osym.Local() { l.SetAttrLocal(gi, true) } if osym.UsedInIface() { l.SetAttrUsedInIface(gi, true) } } // referenced packages npkg := r.NPkg() r.pkg = make([]uint32, npkg) for i := 1; i < npkg; i++ { // PkgIdx 0 is a dummy invalid package pkg := r.Pkg(i) objidx, ok := l.objByPkg[pkg] if !ok { log.Fatalf("%v: reference to nonexistent package %s", r.unit.Lib, pkg) } r.pkg[i] = objidx } // load flags of package refs for i, n := 0, r.NRefFlags(); i < n; i++ { rf := r.RefFlags(i) gi := l.resolve(r, rf.Sym()) if rf.Flag2()&goobj.SymFlagUsedInIface != 0 { l.SetAttrUsedInIface(gi, true) } } } func abiToVer(abi uint16, localSymVersion int) int { var v int if abi == goobj.SymABIstatic { // Static v = localSymVersion } else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 { // Note that data symbols are "ABI0", which maps to version 0. v = abiver } else { log.Fatalf("invalid symbol ABI: %d", abi) } return v } // A list of blocked linknames. Some linknames are allowed only // in specific packages. This maps symbol names to allowed packages. // If a name is not in this map, it is allowed iff the definition // has a linkname (push). // If a name is in this map, it is allowed only in listed packages, // even if it has a linknamed definition. var blockedLinknames = map[string][]string{ // coroutines "runtime.coroswitch": {"iter"}, "runtime.newcoro": {"iter"}, // fips info "go:fipsinfo": {"crypto/internal/fips140/check"}, // New internal linknames in Go 1.24 // Pushed from runtime "crypto/internal/fips140.fatal": {"crypto/internal/fips140"}, "crypto/internal/fips140.getIndicator": {"crypto/internal/fips140"}, "crypto/internal/fips140.setIndicator": {"crypto/internal/fips140"}, "crypto/internal/sysrand.fatal": {"crypto/internal/sysrand"}, "crypto/rand.fatal": {"crypto/rand"}, "internal/runtime/maps.errNilAssign": {"internal/runtime/maps"}, "internal/runtime/maps.fatal": {"internal/runtime/maps"}, "internal/runtime/maps.mapKeyError": {"internal/runtime/maps"}, "internal/runtime/maps.newarray": {"internal/runtime/maps"}, "internal/runtime/maps.newobject": {"internal/runtime/maps"}, "internal/runtime/maps.typedmemclr": {"internal/runtime/maps"}, "internal/runtime/maps.typedmemmove": {"internal/runtime/maps"}, "internal/sync.fatal": {"internal/sync"}, "internal/sync.runtime_canSpin": {"internal/sync"}, "internal/sync.runtime_doSpin": {"internal/sync"}, "internal/sync.runtime_nanotime": {"internal/sync"}, "internal/sync.runtime_Semrelease": {"internal/sync"}, "internal/sync.runtime_SemacquireMutex": {"internal/sync"}, "internal/sync.throw": {"internal/sync"}, "internal/synctest.Run": {"internal/synctest"}, "internal/synctest.Wait": {"internal/synctest"}, "internal/synctest.acquire": {"internal/synctest"}, "internal/synctest.release": {"internal/synctest"}, "internal/synctest.inBubble": {"internal/synctest"}, "runtime.getStaticuint64s": {"reflect"}, "sync.runtime_SemacquireWaitGroup": {"sync"}, "time.runtimeNow": {"time"}, "time.runtimeNano": {"time"}, // Pushed to runtime from internal/runtime/maps // (other map functions are already linknamed in Go 1.23) "runtime.mapaccess1": {"runtime"}, "runtime.mapaccess1_fast32": {"runtime"}, "runtime.mapaccess1_fast64": {"runtime"}, "runtime.mapaccess1_faststr": {"runtime"}, "runtime.mapdelete_fast32": {"runtime"}, "runtime.mapdelete_fast64": {"runtime"}, "runtime.mapdelete_faststr": {"runtime"}, } // check if a linkname reference to symbol s from pkg is allowed func (l *Loader) checkLinkname(pkg, name string, s Sym) { if l.flags&FlagCheckLinkname == 0 { return } error := func() { log.Fatalf("%s: invalid reference to %s", pkg, name) } pkgs, ok := blockedLinknames[name] if ok { for _, p := range pkgs { if pkg == p { return // pkg is allowed } } error() } r, li := l.toLocal(s) if r == l.extReader { // referencing external symbol is okay return } if !r.Std() { // For now, only check for symbols defined in std return } if r.unit.Lib.Pkg == pkg { // assembly reference from same package return } osym := r.Sym(li) if osym.IsLinkname() || osym.ABIWrapper() { // Allow if the def has a linkname (push). // ABI wrapper usually wraps an assembly symbol, a linknamed symbol, // or an external symbol, or provide access of a Go symbol to assembly. // For now, allow ABI wrappers. // TODO: check the wrapped symbol? return } error() } // TopLevelSym tests a symbol (by name and kind) to determine whether // the symbol first class sym (participating in the link) or is an // anonymous aux or sub-symbol containing some sub-part or payload of // another symbol. func (l *Loader) TopLevelSym(s Sym) bool { return topLevelSym(l.SymName(s), l.SymType(s)) } // topLevelSym tests a symbol name and kind to determine whether // the symbol first class sym (participating in the link) or is an // anonymous aux or sub-symbol containing some sub-part or payload of // another symbol. func topLevelSym(sname string, skind sym.SymKind) bool { if sname != "" { return true } switch skind { case sym.SDWARFFCN, sym.SDWARFABSFCN, sym.SDWARFTYPE, sym.SDWARFCONST, sym.SDWARFCUINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC: return true default: return false } } // cloneToExternal takes the existing object file symbol (symIdx) // and creates a new external symbol payload that is a clone with // respect to name, version, type, relocations, etc. The idea here // is that if the linker decides it wants to update the contents of // a symbol originally discovered as part of an object file, it's // easier to do this if we make the updates to an external symbol // payload. func (l *Loader) cloneToExternal(symIdx Sym) { if l.IsExternal(symIdx) { panic("sym is already external, no need for clone") } // Read the particulars from object. r, li := l.toLocal(symIdx) osym := r.Sym(li) sname := osym.Name(r.Reader) sver := abiToVer(osym.ABI(), r.version) skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())] // Create new symbol, update version and kind. pi := l.newPayload(sname, sver) pp := l.payloads[pi] pp.kind = skind pp.ver = sver pp.size = int64(osym.Siz()) pp.objidx = r.objidx // If this is a def, then copy the guts. We expect this case // to be very rare (one case it may come up is with -X). if li < uint32(r.NAlldef()) { // Copy relocations relocs := l.Relocs(symIdx) pp.relocs = make([]goobj.Reloc, relocs.Count()) for i := range pp.relocs { // Copy the relocs slice. // Convert local reference to global reference. rel := relocs.At(i) pp.relocs[i].Set(rel.Off(), rel.Siz(), uint16(rel.Type()), rel.Add(), goobj.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())}) } // Copy data pp.data = r.Data(li) } // If we're overriding a data symbol, collect the associated // Gotype, so as to propagate it to the new symbol. auxs := r.Auxs(li) pp.auxs = auxs // Install new payload to global index space. // (This needs to happen at the end, as the accessors above // need to access the old symbol content.) l.objSyms[symIdx] = objSym{l.extReader.objidx, uint32(pi)} l.extReader.syms = append(l.extReader.syms, symIdx) // Some attributes were encoded in the object file. Copy them over. l.SetAttrDuplicateOK(symIdx, r.Sym(li).Dupok()) l.SetAttrShared(symIdx, r.Shared()) } // Copy the payload of symbol src to dst. Both src and dst must be external // symbols. // The intended use case is that when building/linking against a shared library, // where we do symbol name mangling, the Go object file may have reference to // the original symbol name whereas the shared library provides a symbol with // the mangled name. When we do mangling, we copy payload of mangled to original. func (l *Loader) CopySym(src, dst Sym) { if !l.IsExternal(dst) { panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst)) } if !l.IsExternal(src) { panic("src is not external") //l.cloneToExternal(src) } l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)] l.SetSymPkg(dst, l.SymPkg(src)) // TODO: other attributes? } // CreateExtSym creates a new external symbol with the specified name // without adding it to any lookup tables, returning a Sym index for it. func (l *Loader) CreateExtSym(name string, ver int) Sym { return l.newExtSym(name, ver) } // CreateStaticSym creates a new static symbol with the specified name // without adding it to any lookup tables, returning a Sym index for it. func (l *Loader) CreateStaticSym(name string) Sym { // Assign a new unique negative version -- this is to mark the // symbol so that it is not included in the name lookup table. l.anonVersion-- return l.newExtSym(name, l.anonVersion) } func (l *Loader) FreeSym(i Sym) { if l.IsExternal(i) { pp := l.getPayload(i) *pp = extSymPayload{} } } // relocId is essentially a tuple identifying the Rth // relocation of symbol S. type relocId struct { sym Sym ridx int } // SetRelocVariant sets the 'variant' property of a relocation on // some specific symbol. func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) { // sanity check if relocs := l.Relocs(s); ri >= relocs.Count() { panic("invalid relocation ID") } if l.relocVariant == nil { l.relocVariant = make(map[relocId]sym.RelocVariant) } if v != 0 { l.relocVariant[relocId{s, ri}] = v } else { delete(l.relocVariant, relocId{s, ri}) } } // RelocVariant returns the 'variant' property of a relocation on // some specific symbol. func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant { return l.relocVariant[relocId{s, ri}] } // UndefinedRelocTargets iterates through the global symbol index // space, looking for symbols with relocations targeting undefined // references. The linker's loadlib method uses this to determine if // there are unresolved references to functions in system libraries // (for example, libgcc.a), presumably due to CGO code. Return value // is a pair of lists of loader.Sym's. First list corresponds to the // corresponding to the undefined symbols themselves, the second list // is the symbol that is making a reference to the undef. The "limit" // param controls the maximum number of results returned; if "limit" // is -1, then all undefs are returned. func (l *Loader) UndefinedRelocTargets(limit int) ([]Sym, []Sym) { result, fromr := []Sym{}, []Sym{} outerloop: for si := Sym(1); si < Sym(len(l.objSyms)); si++ { relocs := l.Relocs(si) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At(ri) rs := r.Sym() if rs != 0 && l.SymType(rs) == sym.SXREF && l.SymName(rs) != ".got" { result = append(result, rs) fromr = append(fromr, si) if limit != -1 && len(result) >= limit { break outerloop } } } } return result, fromr } // AssignTextSymbolOrder populates the Textp slices within each // library and compilation unit, insuring that packages are laid down // in dependency order (internal first, then everything else). Return value // is a slice of all text syms. func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym { // Library Textp lists should be empty at this point. for _, lib := range libs { if len(lib.Textp) != 0 { panic("expected empty Textp slice for library") } if len(lib.DupTextSyms) != 0 { panic("expected empty DupTextSyms slice for library") } } // Used to record which dupok symbol we've assigned to a unit. // Can't use the onlist attribute here because it will need to // clear for the later assignment of the sym.Symbol to a unit. // NB: we can convert to using onList once we no longer have to // call the regular addToTextp. assignedToUnit := MakeBitmap(l.NSym() + 1) // Start off textp with reachable external syms. textp := []Sym{} for _, sym := range extsyms { if !l.attrReachable.Has(sym) { continue } textp = append(textp, sym) } // Walk through all text symbols from Go object files and append // them to their corresponding library's textp list. for _, r := range l.objs[goObjStart:] { lib := r.unit.Lib for i, n := uint32(0), uint32(r.NAlldef()); i < n; i++ { gi := l.toGlobal(r, i) if !l.attrReachable.Has(gi) { continue } osym := r.Sym(i) st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())] if !st.IsText() { continue } dupok := osym.Dupok() if r2, i2 := l.toLocal(gi); r2 != r || i2 != i { // A dupok text symbol is resolved to another package. // We still need to record its presence in the current // package, as the trampoline pass expects packages // are laid out in dependency order. lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi)) continue // symbol in different object } if dupok { lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi)) continue } lib.Textp = append(lib.Textp, sym.LoaderSym(gi)) } } // Now assemble global textp, and assign text symbols to units. for _, doInternal := range [2]bool{true, false} { for idx, lib := range libs { if intlibs[idx] != doInternal { continue } lists := [2][]sym.LoaderSym{lib.Textp, lib.DupTextSyms} for i, list := range lists { for _, s := range list { sym := Sym(s) if !assignedToUnit.Has(sym) { textp = append(textp, sym) unit := l.SymUnit(sym) if unit != nil { unit.Textp = append(unit.Textp, s) assignedToUnit.Set(sym) } // Dupok symbols may be defined in multiple packages; the // associated package for a dupok sym is chosen sort of // arbitrarily (the first containing package that the linker // loads). Canonicalizes its Pkg to the package with which // it will be laid down in text. if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg { l.SetSymPkg(sym, lib.Pkg) } } } } lib.Textp = nil lib.DupTextSyms = nil } } return textp } // ErrorReporter is a helper class for reporting errors. type ErrorReporter struct { ldr *Loader AfterErrorAction func() } // Errorf method logs an error message. // // After each error, the error actions function will be invoked; this // will either terminate the link immediately (if -h option given) // or it will keep a count and exit if more than 20 errors have been printed. // // Logging an error means that on exit cmd/link will delete any // output file and return a non-zero error code. func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) { if s != 0 && reporter.ldr.SymName(s) != "" { // Note: Replace is needed here because symbol names might have % in them, // due to the use of LinkString for names of instantiating types. format = strings.Replace(reporter.ldr.SymName(s), "%", "%%", -1) + ": " + format } else { format = fmt.Sprintf("sym %d: %s", s, format) } format += "\n" fmt.Fprintf(os.Stderr, format, args...) reporter.AfterErrorAction() } // GetErrorReporter returns the loader's associated error reporter. func (l *Loader) GetErrorReporter() *ErrorReporter { return l.errorReporter } // Errorf method logs an error message. See ErrorReporter.Errorf for details. func (l *Loader) Errorf(s Sym, format string, args ...interface{}) { l.errorReporter.Errorf(s, format, args...) } // Symbol statistics. func (l *Loader) Stat() string { s := fmt.Sprintf("%d symbols, %d reachable\n", l.NSym(), l.NReachableSym()) s += fmt.Sprintf("\t%d package symbols, %d hashed symbols, %d non-package symbols, %d external symbols\n", l.npkgsyms, l.nhashedsyms, int(l.extStart)-l.npkgsyms-l.nhashedsyms, l.NSym()-int(l.extStart)) return s } // For debugging. func (l *Loader) Dump() { fmt.Println("objs") for _, r := range l.objs[goObjStart:] { if r != nil { fmt.Println(r.unit.Lib) } } fmt.Println("extStart:", l.extStart) fmt.Println("Nsyms:", len(l.objSyms)) fmt.Println("syms") for i := Sym(1); i < Sym(len(l.objSyms)); i++ { pi := "" if l.IsExternal(i) { pi = fmt.Sprintf("", l.extIndex(i)) } sect := "" if l.SymSect(i) != nil { sect = l.SymSect(i).Name } fmt.Printf("%v %v %v %v %x %v\n", i, l.SymName(i), l.SymType(i), pi, l.SymValue(i), sect) } fmt.Println("symsByName") for name, i := range l.symsByName[0] { fmt.Println(i, name, 0) } for name, i := range l.symsByName[1] { fmt.Println(i, name, 1) } fmt.Println("payloads:") for i := range l.payloads { pp := l.payloads[i] fmt.Println(i, pp.name, pp.ver, pp.kind) } }