// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package ed25519 implements the Ed25519 signature algorithm. See // https://ed25519.cr.yp.to/. // // These functions are also compatible with the “Ed25519” function defined in // RFC 8032. However, unlike RFC 8032's formulation, this package's private key // representation includes a public key suffix to make multiple signing // operations with the same key more efficient. This package refers to the RFC // 8032 private key as the “seed”. // // Operations involving private keys are implemented using constant-time // algorithms. package ed25519 import ( "bytes" "crypto" "crypto/internal/edwards25519" cryptorand "crypto/rand" "crypto/sha512" "crypto/subtle" "errors" "io" "strconv" ) const ( // PublicKeySize is the size, in bytes, of public keys as used in this package. PublicKeySize = 32 // PrivateKeySize is the size, in bytes, of private keys as used in this package. PrivateKeySize = 64 // SignatureSize is the size, in bytes, of signatures generated and verified by this package. SignatureSize = 64 // SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032. SeedSize = 32 ) // PublicKey is the type of Ed25519 public keys. type PublicKey []byte // Any methods implemented on PublicKey might need to also be implemented on // PrivateKey, as the latter embeds the former and will expose its methods. // Equal reports whether pub and x have the same value. func (pub PublicKey) Equal(x crypto.PublicKey) bool { xx, ok := x.(PublicKey) if !ok { return false } return subtle.ConstantTimeCompare(pub, xx) == 1 } // PrivateKey is the type of Ed25519 private keys. It implements [crypto.Signer]. type PrivateKey []byte // Public returns the [PublicKey] corresponding to priv. func (priv PrivateKey) Public() crypto.PublicKey { publicKey := make([]byte, PublicKeySize) copy(publicKey, priv[32:]) return PublicKey(publicKey) } // Equal reports whether priv and x have the same value. func (priv PrivateKey) Equal(x crypto.PrivateKey) bool { xx, ok := x.(PrivateKey) if !ok { return false } return subtle.ConstantTimeCompare(priv, xx) == 1 } // Seed returns the private key seed corresponding to priv. It is provided for // interoperability with RFC 8032. RFC 8032's private keys correspond to seeds // in this package. func (priv PrivateKey) Seed() []byte { return bytes.Clone(priv[:SeedSize]) } // Sign signs the given message with priv. rand is ignored and can be nil. // // If opts.HashFunc() is [crypto.SHA512], the pre-hashed variant Ed25519ph is used // and message is expected to be a SHA-512 hash, otherwise opts.HashFunc() must // be [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // A value of type [Options] can be used as opts, or crypto.Hash(0) or // crypto.SHA512 directly to select plain Ed25519 or Ed25519ph, respectively. func (priv PrivateKey) Sign(rand io.Reader, message []byte, opts crypto.SignerOpts) (signature []byte, err error) { hash := opts.HashFunc() context := "" if opts, ok := opts.(*Options); ok { context = opts.Context } switch { case hash == crypto.SHA512: // Ed25519ph if l := len(message); l != sha512.Size { return nil, errors.New("ed25519: bad Ed25519ph message hash length: " + strconv.Itoa(l)) } if l := len(context); l > 255 { return nil, errors.New("ed25519: bad Ed25519ph context length: " + strconv.Itoa(l)) } signature := make([]byte, SignatureSize) sign(signature, priv, message, domPrefixPh, context) return signature, nil case hash == crypto.Hash(0) && context != "": // Ed25519ctx if l := len(context); l > 255 { return nil, errors.New("ed25519: bad Ed25519ctx context length: " + strconv.Itoa(l)) } signature := make([]byte, SignatureSize) sign(signature, priv, message, domPrefixCtx, context) return signature, nil case hash == crypto.Hash(0): // Ed25519 return Sign(priv, message), nil default: return nil, errors.New("ed25519: expected opts.HashFunc() zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } } // Options can be used with [PrivateKey.Sign] or [VerifyWithOptions] // to select Ed25519 variants. type Options struct { // Hash can be zero for regular Ed25519, or crypto.SHA512 for Ed25519ph. Hash crypto.Hash // Context, if not empty, selects Ed25519ctx or provides the context string // for Ed25519ph. It can be at most 255 bytes in length. Context string } // HashFunc returns o.Hash. func (o *Options) HashFunc() crypto.Hash { return o.Hash } // GenerateKey generates a public/private key pair using entropy from rand. // If rand is nil, [crypto/rand.Reader] will be used. // // The output of this function is deterministic, and equivalent to reading // [SeedSize] bytes from rand, and passing them to [NewKeyFromSeed]. func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) { if rand == nil { rand = cryptorand.Reader } seed := make([]byte, SeedSize) if _, err := io.ReadFull(rand, seed); err != nil { return nil, nil, err } privateKey := NewKeyFromSeed(seed) publicKey := make([]byte, PublicKeySize) copy(publicKey, privateKey[32:]) return publicKey, privateKey, nil } // NewKeyFromSeed calculates a private key from a seed. It will panic if // len(seed) is not [SeedSize]. This function is provided for interoperability // with RFC 8032. RFC 8032's private keys correspond to seeds in this // package. func NewKeyFromSeed(seed []byte) PrivateKey { // Outline the function body so that the returned key can be stack-allocated. privateKey := make([]byte, PrivateKeySize) newKeyFromSeed(privateKey, seed) return privateKey } func newKeyFromSeed(privateKey, seed []byte) { if l := len(seed); l != SeedSize { panic("ed25519: bad seed length: " + strconv.Itoa(l)) } h := sha512.Sum512(seed) s, err := edwards25519.NewScalar().SetBytesWithClamping(h[:32]) if err != nil { panic("ed25519: internal error: setting scalar failed") } A := (&edwards25519.Point{}).ScalarBaseMult(s) publicKey := A.Bytes() copy(privateKey, seed) copy(privateKey[32:], publicKey) } // Sign signs the message with privateKey and returns a signature. It will // panic if len(privateKey) is not [PrivateKeySize]. func Sign(privateKey PrivateKey, message []byte) []byte { // Outline the function body so that the returned signature can be // stack-allocated. signature := make([]byte, SignatureSize) sign(signature, privateKey, message, domPrefixPure, "") return signature } // Domain separation prefixes used to disambiguate Ed25519/Ed25519ph/Ed25519ctx. // See RFC 8032, Section 2 and Section 5.1. const ( // domPrefixPure is empty for pure Ed25519. domPrefixPure = "" // domPrefixPh is dom2(phflag=1) for Ed25519ph. It must be followed by the // uint8-length prefixed context. domPrefixPh = "SigEd25519 no Ed25519 collisions\x01" // domPrefixCtx is dom2(phflag=0) for Ed25519ctx. It must be followed by the // uint8-length prefixed context. domPrefixCtx = "SigEd25519 no Ed25519 collisions\x00" ) func sign(signature, privateKey, message []byte, domPrefix, context string) { if l := len(privateKey); l != PrivateKeySize { panic("ed25519: bad private key length: " + strconv.Itoa(l)) } seed, publicKey := privateKey[:SeedSize], privateKey[SeedSize:] h := sha512.Sum512(seed) s, err := edwards25519.NewScalar().SetBytesWithClamping(h[:32]) if err != nil { panic("ed25519: internal error: setting scalar failed") } prefix := h[32:] mh := sha512.New() if domPrefix != domPrefixPure { mh.Write([]byte(domPrefix)) mh.Write([]byte{byte(len(context))}) mh.Write([]byte(context)) } mh.Write(prefix) mh.Write(message) messageDigest := make([]byte, 0, sha512.Size) messageDigest = mh.Sum(messageDigest) r, err := edwards25519.NewScalar().SetUniformBytes(messageDigest) if err != nil { panic("ed25519: internal error: setting scalar failed") } R := (&edwards25519.Point{}).ScalarBaseMult(r) kh := sha512.New() if domPrefix != domPrefixPure { kh.Write([]byte(domPrefix)) kh.Write([]byte{byte(len(context))}) kh.Write([]byte(context)) } kh.Write(R.Bytes()) kh.Write(publicKey) kh.Write(message) hramDigest := make([]byte, 0, sha512.Size) hramDigest = kh.Sum(hramDigest) k, err := edwards25519.NewScalar().SetUniformBytes(hramDigest) if err != nil { panic("ed25519: internal error: setting scalar failed") } S := edwards25519.NewScalar().MultiplyAdd(k, s, r) copy(signature[:32], R.Bytes()) copy(signature[32:], S.Bytes()) } // Verify reports whether sig is a valid signature of message by publicKey. It // will panic if len(publicKey) is not [PublicKeySize]. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func Verify(publicKey PublicKey, message, sig []byte) bool { return verify(publicKey, message, sig, domPrefixPure, "") } // VerifyWithOptions reports whether sig is a valid signature of message by // publicKey. A valid signature is indicated by returning a nil error. It will // panic if len(publicKey) is not [PublicKeySize]. // // If opts.Hash is [crypto.SHA512], the pre-hashed variant Ed25519ph is used and // message is expected to be a SHA-512 hash, otherwise opts.Hash must be // [crypto.Hash](0) and the message must not be hashed, as Ed25519 performs two // passes over messages to be signed. // // The inputs are not considered confidential, and may leak through timing side // channels, or if an attacker has control of part of the inputs. func VerifyWithOptions(publicKey PublicKey, message, sig []byte, opts *Options) error { switch { case opts.Hash == crypto.SHA512: // Ed25519ph if l := len(message); l != sha512.Size { return errors.New("ed25519: bad Ed25519ph message hash length: " + strconv.Itoa(l)) } if l := len(opts.Context); l > 255 { return errors.New("ed25519: bad Ed25519ph context length: " + strconv.Itoa(l)) } if !verify(publicKey, message, sig, domPrefixPh, opts.Context) { return errors.New("ed25519: invalid signature") } return nil case opts.Hash == crypto.Hash(0) && opts.Context != "": // Ed25519ctx if l := len(opts.Context); l > 255 { return errors.New("ed25519: bad Ed25519ctx context length: " + strconv.Itoa(l)) } if !verify(publicKey, message, sig, domPrefixCtx, opts.Context) { return errors.New("ed25519: invalid signature") } return nil case opts.Hash == crypto.Hash(0): // Ed25519 if !verify(publicKey, message, sig, domPrefixPure, "") { return errors.New("ed25519: invalid signature") } return nil default: return errors.New("ed25519: expected opts.Hash zero (unhashed message, for standard Ed25519) or SHA-512 (for Ed25519ph)") } } func verify(publicKey PublicKey, message, sig []byte, domPrefix, context string) bool { if l := len(publicKey); l != PublicKeySize { panic("ed25519: bad public key length: " + strconv.Itoa(l)) } if len(sig) != SignatureSize || sig[63]&224 != 0 { return false } A, err := (&edwards25519.Point{}).SetBytes(publicKey) if err != nil { return false } kh := sha512.New() if domPrefix != domPrefixPure { kh.Write([]byte(domPrefix)) kh.Write([]byte{byte(len(context))}) kh.Write([]byte(context)) } kh.Write(sig[:32]) kh.Write(publicKey) kh.Write(message) hramDigest := make([]byte, 0, sha512.Size) hramDigest = kh.Sum(hramDigest) k, err := edwards25519.NewScalar().SetUniformBytes(hramDigest) if err != nil { panic("ed25519: internal error: setting scalar failed") } S, err := edwards25519.NewScalar().SetCanonicalBytes(sig[32:]) if err != nil { return false } // [S]B = R + [k]A --> [k](-A) + [S]B = R minusA := (&edwards25519.Point{}).Negate(A) R := (&edwards25519.Point{}).VarTimeDoubleScalarBaseMult(k, minusA, S) return bytes.Equal(sig[:32], R.Bytes()) }