// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build boringcrypto && linux && (amd64 || arm64) && !android && !msan package boring /* #include "goboringcrypto.h" int _goboringcrypto_gosha1(void *p, size_t n, void *out) { GO_SHA_CTX ctx; _goboringcrypto_SHA1_Init(&ctx); return _goboringcrypto_SHA1_Update(&ctx, p, n) && _goboringcrypto_SHA1_Final(out, &ctx); } int _goboringcrypto_gosha224(void *p, size_t n, void *out) { GO_SHA256_CTX ctx; _goboringcrypto_SHA224_Init(&ctx); return _goboringcrypto_SHA224_Update(&ctx, p, n) && _goboringcrypto_SHA224_Final(out, &ctx); } int _goboringcrypto_gosha256(void *p, size_t n, void *out) { GO_SHA256_CTX ctx; _goboringcrypto_SHA256_Init(&ctx); return _goboringcrypto_SHA256_Update(&ctx, p, n) && _goboringcrypto_SHA256_Final(out, &ctx); } int _goboringcrypto_gosha384(void *p, size_t n, void *out) { GO_SHA512_CTX ctx; _goboringcrypto_SHA384_Init(&ctx); return _goboringcrypto_SHA384_Update(&ctx, p, n) && _goboringcrypto_SHA384_Final(out, &ctx); } int _goboringcrypto_gosha512(void *p, size_t n, void *out) { GO_SHA512_CTX ctx; _goboringcrypto_SHA512_Init(&ctx); return _goboringcrypto_SHA512_Update(&ctx, p, n) && _goboringcrypto_SHA512_Final(out, &ctx); } */ import "C" import ( "errors" "hash" "internal/byteorder" "unsafe" ) // NOTE: The cgo calls in this file are arranged to avoid marking the parameters as escaping. // To do that, we call noescape (including via addr). // We must also make sure that the data pointer arguments have the form unsafe.Pointer(&...) // so that cgo does not annotate them with cgoCheckPointer calls. If it did that, it might look // beyond the byte slice and find Go pointers in unprocessed parts of a larger allocation. // To do both of these simultaneously, the idiom is unsafe.Pointer(&*addr(p)), // where addr returns the base pointer of p, substituting a non-nil pointer for nil, // and applying a noescape along the way. // This is all to preserve compatibility with the allocation behavior of the non-boring implementations. func SHA1(p []byte) (sum [20]byte) { if C._goboringcrypto_gosha1(unsafe.Pointer(&*addr(p)), C.size_t(len(p)), unsafe.Pointer(&*addr(sum[:]))) == 0 { panic("boringcrypto: SHA1 failed") } return } func SHA224(p []byte) (sum [28]byte) { if C._goboringcrypto_gosha224(unsafe.Pointer(&*addr(p)), C.size_t(len(p)), unsafe.Pointer(&*addr(sum[:]))) == 0 { panic("boringcrypto: SHA224 failed") } return } func SHA256(p []byte) (sum [32]byte) { if C._goboringcrypto_gosha256(unsafe.Pointer(&*addr(p)), C.size_t(len(p)), unsafe.Pointer(&*addr(sum[:]))) == 0 { panic("boringcrypto: SHA256 failed") } return } func SHA384(p []byte) (sum [48]byte) { if C._goboringcrypto_gosha384(unsafe.Pointer(&*addr(p)), C.size_t(len(p)), unsafe.Pointer(&*addr(sum[:]))) == 0 { panic("boringcrypto: SHA384 failed") } return } func SHA512(p []byte) (sum [64]byte) { if C._goboringcrypto_gosha512(unsafe.Pointer(&*addr(p)), C.size_t(len(p)), unsafe.Pointer(&*addr(sum[:]))) == 0 { panic("boringcrypto: SHA512 failed") } return } // NewSHA1 returns a new SHA1 hash. func NewSHA1() hash.Hash { h := new(sha1Hash) h.Reset() return h } type sha1Hash struct { ctx C.GO_SHA_CTX out [20]byte } type sha1Ctx struct { h [5]uint32 nl, nh uint32 x [64]byte nx uint32 } func (h *sha1Hash) noescapeCtx() *C.GO_SHA_CTX { return (*C.GO_SHA_CTX)(noescape(unsafe.Pointer(&h.ctx))) } func (h *sha1Hash) Reset() { C._goboringcrypto_SHA1_Init(h.noescapeCtx()) } func (h *sha1Hash) Size() int { return 20 } func (h *sha1Hash) BlockSize() int { return 64 } func (h *sha1Hash) Sum(dst []byte) []byte { return h.sum(dst) } func (h *sha1Hash) Write(p []byte) (int, error) { if len(p) > 0 && C._goboringcrypto_SHA1_Update(h.noescapeCtx(), unsafe.Pointer(&*addr(p)), C.size_t(len(p))) == 0 { panic("boringcrypto: SHA1_Update failed") } return len(p), nil } func (h0 *sha1Hash) sum(dst []byte) []byte { h := *h0 // make copy so future Write+Sum is valid if C._goboringcrypto_SHA1_Final((*C.uint8_t)(noescape(unsafe.Pointer(&h.out[0]))), h.noescapeCtx()) == 0 { panic("boringcrypto: SHA1_Final failed") } return append(dst, h.out[:]...) } const ( sha1Magic = "sha\x01" sha1MarshaledSize = len(sha1Magic) + 5*4 + 64 + 8 ) func (h *sha1Hash) MarshalBinary() ([]byte, error) { return h.AppendBinary(make([]byte, 0, sha1MarshaledSize)) } func (h *sha1Hash) AppendBinary(b []byte) ([]byte, error) { d := (*sha1Ctx)(unsafe.Pointer(&h.ctx)) b = append(b, sha1Magic...) b = byteorder.BeAppendUint32(b, d.h[0]) b = byteorder.BeAppendUint32(b, d.h[1]) b = byteorder.BeAppendUint32(b, d.h[2]) b = byteorder.BeAppendUint32(b, d.h[3]) b = byteorder.BeAppendUint32(b, d.h[4]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-int(d.nx))...) b = byteorder.BeAppendUint64(b, uint64(d.nl)>>3|uint64(d.nh)<<29) return b, nil } func (h *sha1Hash) UnmarshalBinary(b []byte) error { if len(b) < len(sha1Magic) || string(b[:len(sha1Magic)]) != sha1Magic { return errors.New("crypto/sha1: invalid hash state identifier") } if len(b) != sha1MarshaledSize { return errors.New("crypto/sha1: invalid hash state size") } d := (*sha1Ctx)(unsafe.Pointer(&h.ctx)) b = b[len(sha1Magic):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b = b[copy(d.x[:], b):] b, n := consumeUint64(b) d.nl = uint32(n << 3) d.nh = uint32(n >> 29) d.nx = uint32(n) % 64 return nil } // NewSHA224 returns a new SHA224 hash. func NewSHA224() hash.Hash { h := new(sha224Hash) h.Reset() return h } type sha224Hash struct { ctx C.GO_SHA256_CTX out [224 / 8]byte } func (h *sha224Hash) noescapeCtx() *C.GO_SHA256_CTX { return (*C.GO_SHA256_CTX)(noescape(unsafe.Pointer(&h.ctx))) } func (h *sha224Hash) Reset() { C._goboringcrypto_SHA224_Init(h.noescapeCtx()) } func (h *sha224Hash) Size() int { return 224 / 8 } func (h *sha224Hash) BlockSize() int { return 64 } func (h *sha224Hash) Sum(dst []byte) []byte { return h.sum(dst) } func (h *sha224Hash) Write(p []byte) (int, error) { if len(p) > 0 && C._goboringcrypto_SHA224_Update(h.noescapeCtx(), unsafe.Pointer(&*addr(p)), C.size_t(len(p))) == 0 { panic("boringcrypto: SHA224_Update failed") } return len(p), nil } func (h0 *sha224Hash) sum(dst []byte) []byte { h := *h0 // make copy so future Write+Sum is valid if C._goboringcrypto_SHA224_Final((*C.uint8_t)(noescape(unsafe.Pointer(&h.out[0]))), h.noescapeCtx()) == 0 { panic("boringcrypto: SHA224_Final failed") } return append(dst, h.out[:]...) } // NewSHA256 returns a new SHA256 hash. func NewSHA256() hash.Hash { h := new(sha256Hash) h.Reset() return h } type sha256Hash struct { ctx C.GO_SHA256_CTX out [256 / 8]byte } func (h *sha256Hash) noescapeCtx() *C.GO_SHA256_CTX { return (*C.GO_SHA256_CTX)(noescape(unsafe.Pointer(&h.ctx))) } func (h *sha256Hash) Reset() { C._goboringcrypto_SHA256_Init(h.noescapeCtx()) } func (h *sha256Hash) Size() int { return 256 / 8 } func (h *sha256Hash) BlockSize() int { return 64 } func (h *sha256Hash) Sum(dst []byte) []byte { return h.sum(dst) } func (h *sha256Hash) Write(p []byte) (int, error) { if len(p) > 0 && C._goboringcrypto_SHA256_Update(h.noescapeCtx(), unsafe.Pointer(&*addr(p)), C.size_t(len(p))) == 0 { panic("boringcrypto: SHA256_Update failed") } return len(p), nil } func (h0 *sha256Hash) sum(dst []byte) []byte { h := *h0 // make copy so future Write+Sum is valid if C._goboringcrypto_SHA256_Final((*C.uint8_t)(noescape(unsafe.Pointer(&h.out[0]))), h.noescapeCtx()) == 0 { panic("boringcrypto: SHA256_Final failed") } return append(dst, h.out[:]...) } const ( magic224 = "sha\x02" magic256 = "sha\x03" marshaledSize256 = len(magic256) + 8*4 + 64 + 8 ) type sha256Ctx struct { h [8]uint32 nl, nh uint32 x [64]byte nx uint32 } func (h *sha224Hash) MarshalBinary() ([]byte, error) { return h.AppendBinary(make([]byte, 0, marshaledSize256)) } func (h *sha224Hash) AppendBinary(b []byte) ([]byte, error) { d := (*sha256Ctx)(unsafe.Pointer(&h.ctx)) b = append(b, magic224...) b = byteorder.BeAppendUint32(b, d.h[0]) b = byteorder.BeAppendUint32(b, d.h[1]) b = byteorder.BeAppendUint32(b, d.h[2]) b = byteorder.BeAppendUint32(b, d.h[3]) b = byteorder.BeAppendUint32(b, d.h[4]) b = byteorder.BeAppendUint32(b, d.h[5]) b = byteorder.BeAppendUint32(b, d.h[6]) b = byteorder.BeAppendUint32(b, d.h[7]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-int(d.nx))...) b = byteorder.BeAppendUint64(b, uint64(d.nl)>>3|uint64(d.nh)<<29) return b, nil } func (h *sha256Hash) MarshalBinary() ([]byte, error) { return h.AppendBinary(make([]byte, 0, marshaledSize256)) } func (h *sha256Hash) AppendBinary(b []byte) ([]byte, error) { d := (*sha256Ctx)(unsafe.Pointer(&h.ctx)) b = append(b, magic256...) b = byteorder.BeAppendUint32(b, d.h[0]) b = byteorder.BeAppendUint32(b, d.h[1]) b = byteorder.BeAppendUint32(b, d.h[2]) b = byteorder.BeAppendUint32(b, d.h[3]) b = byteorder.BeAppendUint32(b, d.h[4]) b = byteorder.BeAppendUint32(b, d.h[5]) b = byteorder.BeAppendUint32(b, d.h[6]) b = byteorder.BeAppendUint32(b, d.h[7]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-int(d.nx))...) b = byteorder.BeAppendUint64(b, uint64(d.nl)>>3|uint64(d.nh)<<29) return b, nil } func (h *sha224Hash) UnmarshalBinary(b []byte) error { if len(b) < len(magic224) || string(b[:len(magic224)]) != magic224 { return errors.New("crypto/sha256: invalid hash state identifier") } if len(b) != marshaledSize256 { return errors.New("crypto/sha256: invalid hash state size") } d := (*sha256Ctx)(unsafe.Pointer(&h.ctx)) b = b[len(magic224):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b, d.h[5] = consumeUint32(b) b, d.h[6] = consumeUint32(b) b, d.h[7] = consumeUint32(b) b = b[copy(d.x[:], b):] b, n := consumeUint64(b) d.nl = uint32(n << 3) d.nh = uint32(n >> 29) d.nx = uint32(n) % 64 return nil } func (h *sha256Hash) UnmarshalBinary(b []byte) error { if len(b) < len(magic256) || string(b[:len(magic256)]) != magic256 { return errors.New("crypto/sha256: invalid hash state identifier") } if len(b) != marshaledSize256 { return errors.New("crypto/sha256: invalid hash state size") } d := (*sha256Ctx)(unsafe.Pointer(&h.ctx)) b = b[len(magic256):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b, d.h[5] = consumeUint32(b) b, d.h[6] = consumeUint32(b) b, d.h[7] = consumeUint32(b) b = b[copy(d.x[:], b):] b, n := consumeUint64(b) d.nl = uint32(n << 3) d.nh = uint32(n >> 29) d.nx = uint32(n) % 64 return nil } // NewSHA384 returns a new SHA384 hash. func NewSHA384() hash.Hash { h := new(sha384Hash) h.Reset() return h } type sha384Hash struct { ctx C.GO_SHA512_CTX out [384 / 8]byte } func (h *sha384Hash) noescapeCtx() *C.GO_SHA512_CTX { return (*C.GO_SHA512_CTX)(noescape(unsafe.Pointer(&h.ctx))) } func (h *sha384Hash) Reset() { C._goboringcrypto_SHA384_Init(h.noescapeCtx()) } func (h *sha384Hash) Size() int { return 384 / 8 } func (h *sha384Hash) BlockSize() int { return 128 } func (h *sha384Hash) Sum(dst []byte) []byte { return h.sum(dst) } func (h *sha384Hash) Write(p []byte) (int, error) { if len(p) > 0 && C._goboringcrypto_SHA384_Update(h.noescapeCtx(), unsafe.Pointer(&*addr(p)), C.size_t(len(p))) == 0 { panic("boringcrypto: SHA384_Update failed") } return len(p), nil } func (h0 *sha384Hash) sum(dst []byte) []byte { h := *h0 // make copy so future Write+Sum is valid if C._goboringcrypto_SHA384_Final((*C.uint8_t)(noescape(unsafe.Pointer(&h.out[0]))), h.noescapeCtx()) == 0 { panic("boringcrypto: SHA384_Final failed") } return append(dst, h.out[:]...) } // NewSHA512 returns a new SHA512 hash. func NewSHA512() hash.Hash { h := new(sha512Hash) h.Reset() return h } type sha512Hash struct { ctx C.GO_SHA512_CTX out [512 / 8]byte } func (h *sha512Hash) noescapeCtx() *C.GO_SHA512_CTX { return (*C.GO_SHA512_CTX)(noescape(unsafe.Pointer(&h.ctx))) } func (h *sha512Hash) Reset() { C._goboringcrypto_SHA512_Init(h.noescapeCtx()) } func (h *sha512Hash) Size() int { return 512 / 8 } func (h *sha512Hash) BlockSize() int { return 128 } func (h *sha512Hash) Sum(dst []byte) []byte { return h.sum(dst) } func (h *sha512Hash) Write(p []byte) (int, error) { if len(p) > 0 && C._goboringcrypto_SHA512_Update(h.noescapeCtx(), unsafe.Pointer(&*addr(p)), C.size_t(len(p))) == 0 { panic("boringcrypto: SHA512_Update failed") } return len(p), nil } func (h0 *sha512Hash) sum(dst []byte) []byte { h := *h0 // make copy so future Write+Sum is valid if C._goboringcrypto_SHA512_Final((*C.uint8_t)(noescape(unsafe.Pointer(&h.out[0]))), h.noescapeCtx()) == 0 { panic("boringcrypto: SHA512_Final failed") } return append(dst, h.out[:]...) } type sha512Ctx struct { h [8]uint64 nl, nh uint64 x [128]byte nx uint32 } const ( magic384 = "sha\x04" magic512_224 = "sha\x05" magic512_256 = "sha\x06" magic512 = "sha\x07" marshaledSize512 = len(magic512) + 8*8 + 128 + 8 ) func (h *sha384Hash) MarshalBinary() ([]byte, error) { return h.AppendBinary(make([]byte, 0, marshaledSize512)) } func (h *sha384Hash) AppendBinary(b []byte) ([]byte, error) { d := (*sha512Ctx)(unsafe.Pointer(&h.ctx)) b = append(b, magic384...) b = byteorder.BeAppendUint64(b, d.h[0]) b = byteorder.BeAppendUint64(b, d.h[1]) b = byteorder.BeAppendUint64(b, d.h[2]) b = byteorder.BeAppendUint64(b, d.h[3]) b = byteorder.BeAppendUint64(b, d.h[4]) b = byteorder.BeAppendUint64(b, d.h[5]) b = byteorder.BeAppendUint64(b, d.h[6]) b = byteorder.BeAppendUint64(b, d.h[7]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-int(d.nx))...) b = byteorder.BeAppendUint64(b, d.nl>>3|d.nh<<61) return b, nil } func (h *sha512Hash) MarshalBinary() ([]byte, error) { return h.AppendBinary(make([]byte, 0, marshaledSize512)) } func (h *sha512Hash) AppendBinary(b []byte) ([]byte, error) { d := (*sha512Ctx)(unsafe.Pointer(&h.ctx)) b = append(b, magic512...) b = byteorder.BeAppendUint64(b, d.h[0]) b = byteorder.BeAppendUint64(b, d.h[1]) b = byteorder.BeAppendUint64(b, d.h[2]) b = byteorder.BeAppendUint64(b, d.h[3]) b = byteorder.BeAppendUint64(b, d.h[4]) b = byteorder.BeAppendUint64(b, d.h[5]) b = byteorder.BeAppendUint64(b, d.h[6]) b = byteorder.BeAppendUint64(b, d.h[7]) b = append(b, d.x[:d.nx]...) b = append(b, make([]byte, len(d.x)-int(d.nx))...) b = byteorder.BeAppendUint64(b, d.nl>>3|d.nh<<61) return b, nil } func (h *sha384Hash) UnmarshalBinary(b []byte) error { if len(b) < len(magic512) { return errors.New("crypto/sha512: invalid hash state identifier") } if string(b[:len(magic384)]) != magic384 { return errors.New("crypto/sha512: invalid hash state identifier") } if len(b) != marshaledSize512 { return errors.New("crypto/sha512: invalid hash state size") } d := (*sha512Ctx)(unsafe.Pointer(&h.ctx)) b = b[len(magic512):] b, d.h[0] = consumeUint64(b) b, d.h[1] = consumeUint64(b) b, d.h[2] = consumeUint64(b) b, d.h[3] = consumeUint64(b) b, d.h[4] = consumeUint64(b) b, d.h[5] = consumeUint64(b) b, d.h[6] = consumeUint64(b) b, d.h[7] = consumeUint64(b) b = b[copy(d.x[:], b):] b, n := consumeUint64(b) d.nl = n << 3 d.nh = n >> 61 d.nx = uint32(n) % 128 return nil } func (h *sha512Hash) UnmarshalBinary(b []byte) error { if len(b) < len(magic512) { return errors.New("crypto/sha512: invalid hash state identifier") } if string(b[:len(magic512)]) != magic512 { return errors.New("crypto/sha512: invalid hash state identifier") } if len(b) != marshaledSize512 { return errors.New("crypto/sha512: invalid hash state size") } d := (*sha512Ctx)(unsafe.Pointer(&h.ctx)) b = b[len(magic512):] b, d.h[0] = consumeUint64(b) b, d.h[1] = consumeUint64(b) b, d.h[2] = consumeUint64(b) b, d.h[3] = consumeUint64(b) b, d.h[4] = consumeUint64(b) b, d.h[5] = consumeUint64(b) b, d.h[6] = consumeUint64(b) b, d.h[7] = consumeUint64(b) b = b[copy(d.x[:], b):] b, n := consumeUint64(b) d.nl = n << 3 d.nh = n >> 61 d.nx = uint32(n) % 128 return nil } func consumeUint64(b []byte) ([]byte, uint64) { return b[8:], byteorder.BeUint64(b) } func consumeUint32(b []byte) ([]byte, uint32) { return b[4:], byteorder.BeUint32(b) }