// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build !purego #include "textflag.h" // This is a port of the s390x asm implementation. // to ppc64le. // Some changes were needed due to differences in // the Go opcodes and/or available instructions // between s390x and ppc64le. // 1. There were operand order differences in the // VSUBUQM, VSUBCUQ, and VSEL instructions. // 2. ppc64 does not have a multiply high and low // like s390x, so those were implemented using // macros to compute the equivalent values. // 3. The LVX, STVX instructions on ppc64 require // 16 byte alignment of the data. To avoid that // requirement, data is loaded using LXVD2X and // STXVD2X with VPERM to reorder bytes correctly. // I have identified some areas where I believe // changes would be needed to make this work for big // endian; however additional changes beyond what I // have noted are most likely needed to make it work. // - The string used with VPERM to swap the byte order // for loads and stores. // - The constants that are loaded from CPOOL. // // The following constants are defined in an order // that is correct for use with LXVD2X/STXVD2X // on little endian. DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256 DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256 DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256 DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256 DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0 DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0 DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x00(SB)/8, $0x00000000ffffffff // P256 original DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256 DATA p256mul<>+0x10(SB)/8, $0xffffffff00000001 // P256 original DATA p256mul<>+0x18(SB)/8, $0x0000000000000000 // P256 DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0 DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0 DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0 DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0 DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1 DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1 DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0 DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0 DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0 DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0 DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0 DATA p256mul<>+0x80(SB)/8, $0xffffffff00000000 // (1*2^256)%P256 DATA p256mul<>+0x88(SB)/8, $0x0000000000000001 // (1*2^256)%P256 DATA p256mul<>+0x90(SB)/8, $0x00000000fffffffe // (1*2^256)%P256 DATA p256mul<>+0x98(SB)/8, $0xffffffffffffffff // (1*2^256)%P256 // External declarations for constants GLOBL p256ord<>(SB), 8, $32 GLOBL p256<>(SB), 8, $80 GLOBL p256mul<>(SB), 8, $160 // The following macros are used to implement the ppc64le // equivalent function from the corresponding s390x // instruction for vector multiply high, low, and add, // since there aren't exact equivalent instructions. // The corresponding s390x instructions appear in the // comments. // Implementation for big endian would have to be // investigated, I think it would be different. // // // Vector multiply word // // VMLF x0, x1, out_low // VMLHF x0, x1, out_hi #define VMULT(x1, x2, out_low, out_hi) \ VMULEUW x1, x2, TMP1; \ VMULOUW x1, x2, TMP2; \ VMRGEW TMP1, TMP2, out_hi; \ VMRGOW TMP1, TMP2, out_low // // Vector multiply add word // // VMALF x0, x1, y, out_low // VMALHF x0, x1, y, out_hi #define VMULT_ADD(x1, x2, y, one, out_low, out_hi) \ VMULEUW y, one, TMP2; \ VMULOUW y, one, TMP1; \ VMULEUW x1, x2, out_low; \ VMULOUW x1, x2, out_hi; \ VADDUDM TMP2, out_low, TMP2; \ VADDUDM TMP1, out_hi, TMP1; \ VMRGOW TMP2, TMP1, out_low; \ VMRGEW TMP2, TMP1, out_hi #define res_ptr R3 #define a_ptr R4 #undef res_ptr #undef a_ptr #define P1ptr R3 #define CPOOL R7 #define Y1L V0 #define Y1H V1 #define T1L V2 #define T1H V3 #define PL V30 #define PH V31 #define CAR1 V6 // func p256NegCond(val *p256Point, cond int) TEXT ·p256NegCond(SB), NOSPLIT, $0-16 MOVD val+0(FP), P1ptr MOVD $16, R16 MOVD cond+8(FP), R6 CMP $0, R6 BC 12, 2, LR // just return if cond == 0 MOVD $p256mul<>+0x00(SB), CPOOL LXVD2X (P1ptr)(R0), Y1L LXVD2X (P1ptr)(R16), Y1H XXPERMDI Y1H, Y1H, $2, Y1H XXPERMDI Y1L, Y1L, $2, Y1L LXVD2X (CPOOL)(R0), PL LXVD2X (CPOOL)(R16), PH VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry VSUBUQM PL, Y1L, T1L // subtract part2 giving result VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2 XXPERMDI T1H, T1H, $2, T1H XXPERMDI T1L, T1L, $2, T1L STXVD2X T1L, (R0+P1ptr) STXVD2X T1H, (R16+P1ptr) RET #undef P1ptr #undef CPOOL #undef Y1L #undef Y1H #undef T1L #undef T1H #undef PL #undef PH #undef CAR1 #define P3ptr R3 #define P1ptr R4 #define P2ptr R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define SEL V12 #define ZER V13 // This function uses LXVD2X and STXVD2X to avoid the // data alignment requirement for LVX, STVX. Since // this code is just moving bytes and not doing arithmetic, // order of the bytes doesn't matter. // // func p256MovCond(res, a, b *p256Point, cond int) TEXT ·p256MovCond(SB), NOSPLIT, $0-32 MOVD res+0(FP), P3ptr MOVD a+8(FP), P1ptr MOVD b+16(FP), P2ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $56, R21 MOVD $64, R19 MOVD $80, R20 // cond is R1 + 24 (cond offset) + 32 LXVDSX (R1)(R21), SEL VSPLTISB $0, ZER // SEL controls whether to store a or b VCMPEQUD SEL, ZER, SEL LXVD2X (P1ptr+R0), X1H LXVD2X (P1ptr+R16), X1L LXVD2X (P1ptr+R17), Y1H LXVD2X (P1ptr+R18), Y1L LXVD2X (P1ptr+R19), Z1H LXVD2X (P1ptr+R20), Z1L LXVD2X (P2ptr+R0), X2H LXVD2X (P2ptr+R16), X2L LXVD2X (P2ptr+R17), Y2H LXVD2X (P2ptr+R18), Y2L LXVD2X (P2ptr+R19), Z2H LXVD2X (P2ptr+R20), Z2L VSEL X1H, X2H, SEL, X1H VSEL X1L, X2L, SEL, X1L VSEL Y1H, Y2H, SEL, Y1H VSEL Y1L, Y2L, SEL, Y1L VSEL Z1H, Z2H, SEL, Z1H VSEL Z1L, Z2L, SEL, Z1L STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) STXVD2X Z1H, (P3ptr+R19) STXVD2X Z1L, (P3ptr+R20) RET #undef P3ptr #undef P1ptr #undef P2ptr #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef SEL #undef ZER #define P3ptr R3 #define P1ptr R4 #define COUNT R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 // func p256Select(point *p256Point, table *p256Table, idx int) TEXT ·p256Select(SB), NOSPLIT, $0-24 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 LXVDSX (R1)(R18), SEL1 // VLREPG idx+32(FP), SEL1 VSPLTB $7, SEL1, IDX // splat byte VSPLTISB $1, ONE // VREPIB $1, ONE VSPLTISB $1, SEL2 // VREPIB $1, SEL2 MOVD $16, COUNT // len(p256Table) MOVD COUNT, CTR // set up ctr VSPLTISB $0, X1H // VZERO X1H VSPLTISB $0, X1L // VZERO X1L VSPLTISB $0, Y1H // VZERO Y1H VSPLTISB $0, Y1L // VZERO Y1L VSPLTISB $0, Z1H // VZERO Z1H VSPLTISB $0, Z1L // VZERO Z1L loop_select: // LVXD2X is used here since data alignment doesn't // matter. LXVD2X (P1ptr+R0), X2H LXVD2X (P1ptr+R16), X2L LXVD2X (P1ptr+R17), Y2H LXVD2X (P1ptr+R18), Y2L LXVD2X (P1ptr+R19), Z2H LXVD2X (P1ptr+R20), Z2L VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK // This will result in SEL1 being all 0s or 1s, meaning // the result is either X1L or X2L, no individual byte // selection. VSEL X1L, X2L, SEL1, X1L VSEL X1H, X2H, SEL1, X1H VSEL Y1L, Y2L, SEL1, Y1L VSEL Y1H, Y2H, SEL1, Y1H VSEL Z1L, Z2L, SEL1, Z1L VSEL Z1H, Z2H, SEL1, Z1H // Add 1 to all bytes in SEL2 VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK ADD $96, P1ptr BDNZ loop_select // STXVD2X is used here so that alignment doesn't // need to be verified. Since values were loaded // using LXVD2X this is OK. STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) STXVD2X Z1H, (P3ptr+R19) STXVD2X Z1L, (P3ptr+R20) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 // The following functions all reverse the byte order. //func p256BigToLittle(res *p256Element, in *[32]byte) TEXT ·p256BigToLittle(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256LittleToBig(res *[32]byte, in *p256Element) TEXT ·p256LittleToBig(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte) TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) //func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement) TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0-16 MOVD res+0(FP), R3 MOVD in+8(FP), R4 BR p256InternalEndianSwap<>(SB) TEXT p256InternalEndianSwap<>(SB), NOSPLIT, $0-0 // Index registers needed for BR movs MOVD $8, R9 MOVD $16, R10 MOVD $24, R14 MOVDBR (R0)(R4), R5 MOVDBR (R9)(R4), R6 MOVDBR (R10)(R4), R7 MOVDBR (R14)(R4), R8 MOVD R8, 0(R3) MOVD R7, 8(R3) MOVD R6, 16(R3) MOVD R5, 24(R3) RET #define P3ptr R3 #define P1ptr R4 #define COUNT R5 #define X1L V0 #define X1H V1 #define Y1L V2 #define Y1H V3 #define Z1L V4 #define Z1H V5 #define X2L V6 #define X2H V7 #define Y2L V8 #define Y2H V9 #define Z2L V10 #define Z2H V11 #define ONE V18 #define IDX V19 #define SEL1 V20 #define SEL2 V21 // func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int) TEXT ·p256SelectAffine(SB), NOSPLIT, $0-24 MOVD res+0(FP), P3ptr MOVD table+8(FP), P1ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 LXVDSX (R1)(R18), SEL1 VSPLTB $7, SEL1, IDX // splat byte VSPLTISB $1, ONE // Vector with byte 1s VSPLTISB $1, SEL2 // Vector with byte 1s MOVD $32, COUNT // len(p256AffineTable) MOVD COUNT, CTR // loop count VSPLTISB $0, X1H // VZERO X1H VSPLTISB $0, X1L // VZERO X1L VSPLTISB $0, Y1H // VZERO Y1H VSPLTISB $0, Y1L // VZERO Y1L loop_select: LXVD2X (P1ptr+R0), X2H LXVD2X (P1ptr+R16), X2L LXVD2X (P1ptr+R17), Y2H LXVD2X (P1ptr+R18), Y2L VCMPEQUD SEL2, IDX, SEL1 // Compare against idx VSEL X1L, X2L, SEL1, X1L // Select if idx matched VSEL X1H, X2H, SEL1, X1H VSEL Y1L, Y2L, SEL1, Y1L VSEL Y1H, Y2H, SEL1, Y1H VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1 ADD $64, P1ptr // Next chunk BDNZ loop_select STXVD2X X1H, (P3ptr+R0) STXVD2X X1L, (P3ptr+R16) STXVD2X Y1H, (P3ptr+R17) STXVD2X Y1L, (P3ptr+R18) RET #undef P3ptr #undef P1ptr #undef COUNT #undef X1L #undef X1H #undef Y1L #undef Y1H #undef Z1L #undef Z1H #undef X2L #undef X2H #undef Y2L #undef Y2H #undef Z2L #undef Z2H #undef ONE #undef IDX #undef SEL1 #undef SEL2 #define res_ptr R3 #define x_ptr R4 #define CPOOL R7 #define T0 V0 #define T1 V1 #define T2 V2 #define TT0 V3 #define TT1 V4 #define ZER V6 #define SEL1 V7 #define SEL2 V8 #define CAR1 V9 #define CAR2 V10 #define RED1 V11 #define RED2 V12 #define PL V13 #define PH V14 // func p256FromMont(res, in *p256Element) TEXT ·p256FromMont(SB), NOSPLIT, $0-16 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $p256<>+0x00(SB), CPOOL VSPLTISB $0, T2 // VZERO T2 VSPLTISB $0, ZER // VZERO ZER // Constants are defined so that the LXVD2X is correct LXVD2X (CPOOL+R0), PH LXVD2X (CPOOL+R16), PL // VPERM byte selections LXVD2X (CPOOL+R18), SEL2 LXVD2X (CPOOL+R19), SEL1 LXVD2X (R16)(x_ptr), T1 LXVD2X (R0)(x_ptr), T0 // Put in true little endian order XXPERMDI T0, T0, $2, T0 XXPERMDI T1, T1, $2, T1 // First round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Second round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Third round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // Last round VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0 VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0 VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0 VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1 VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1 VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0 VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2 VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1 VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2 // --------------------------------------------------- VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1 VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0 VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2 VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1 VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2 VSEL TT0, T0, T2, T0 VSEL TT1, T1, T2, T1 // Reorder the bytes so STXVD2X can be used. // TT0, TT1 used for VPERM result in case // the caller expects T0, T1 to be good. XXPERMDI T0, T0, $2, TT0 XXPERMDI T1, T1, $2, TT1 STXVD2X TT0, (R0)(res_ptr) STXVD2X TT1, (R16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef CPOOL #undef T0 #undef T1 #undef T2 #undef TT0 #undef TT1 #undef ZER #undef SEL1 #undef SEL2 #undef CAR1 #undef CAR2 #undef RED1 #undef RED2 #undef PL #undef PH // --------------------------------------- // p256MulInternal // V0-V3 V30,V31 - Not Modified // V4-V15 V27-V29 - Volatile #define CPOOL R7 // Parameters #define X0 V0 // Not modified #define X1 V1 // Not modified #define Y0 V2 // Not modified #define Y1 V3 // Not modified #define T0 V4 // Result #define T1 V5 // Result #define P0 V30 // Not modified #define P1 V31 // Not modified // Temporaries: lots of reused vector regs #define YDIG V6 // Overloaded with CAR2 #define ADD1H V7 // Overloaded with ADD3H #define ADD2H V8 // Overloaded with ADD4H #define ADD3 V9 // Overloaded with SEL2,SEL5 #define ADD4 V10 // Overloaded with SEL3,SEL6 #define RED1 V11 // Overloaded with CAR2 #define RED2 V12 #define RED3 V13 // Overloaded with SEL1 #define T2 V14 // Overloaded temporaries #define ADD1 V4 // Overloaded with T0 #define ADD2 V5 // Overloaded with T1 #define ADD3H V7 // Overloaded with ADD1H #define ADD4H V8 // Overloaded with ADD2H #define ZER V28 // Overloaded with TMP1 #define CAR1 V6 // Overloaded with YDIG #define CAR2 V11 // Overloaded with RED1 // Constant Selects #define SEL1 V13 // Overloaded with RED3 #define SEL2 V9 // Overloaded with ADD3,SEL5 #define SEL3 V10 // Overloaded with ADD4,SEL6 #define SEL4 V6 // Overloaded with YDIG,CAR1 #define SEL5 V9 // Overloaded with ADD3,SEL2 #define SEL6 V10 // Overloaded with ADD4,SEL3 // TMP1, TMP2 used in // VMULT macros #define TMP1 V13 // Overloaded with RED3 #define TMP2 V27 #define ONE V29 // 1s splatted by word /* * * To follow the flow of bits, for your own sanity a stiff drink, need you shall. * Of a single round, a 'helpful' picture, here is. Meaning, column position has. * With you, SIMD be... * * +--------+--------+ * +--------| RED2 | RED1 | * | +--------+--------+ * | ---+--------+--------+ * | +---- T2| T1 | T0 |--+ * | | ---+--------+--------+ | * | | | * | | ======================= | * | | | * | | +--------+--------+<-+ * | +-------| ADD2 | ADD1 |--|-----+ * | | +--------+--------+ | | * | | +--------+--------+<---+ | * | | | ADD2H | ADD1H |--+ | * | | +--------+--------+ | | * | | +--------+--------+<-+ | * | | | ADD4 | ADD3 |--|-+ | * | | +--------+--------+ | | | * | | +--------+--------+<---+ | | * | | | ADD4H | ADD3H |------|-+ |(+vzero) * | | +--------+--------+ | | V * | | ------------------------ | | +--------+ * | | | | | RED3 | [d0 0 0 d0] * | | | | +--------+ * | +---->+--------+--------+ | | | * (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | | * | +--------+--------+ | | | * +---->---+--------+--------+ | | | * T2| T1 | T0 |----+ | | * ---+--------+--------+ | | | * ---+--------+--------+<---+ | | * +--- T2| T1 | T0 |----------+ * | ---+--------+--------+ | | * | +--------+--------+<-------------+ * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] * | +--------+--------+ | | | * | +--------+<----------------------+ * | | RED3 |--------------+ | [0 0 d1 d0] * | +--------+ | | * +--->+--------+--------+ | | * | T1 | T0 |--------+ * +--------+--------+ | | * --------------------------- | | * | | * +--------+--------+<----+ | * | RED2 | RED1 | | * +--------+--------+ | * ---+--------+--------+<-------+ * T2| T1 | T0 | (H1P-H1P-H00RRAY!) * ---+--------+--------+ * * *Mi obra de arte de siglo XXI @vpaprots * * * First group is special, doesn't get the two inputs: * +--------+--------+<-+ * +-------| ADD2 | ADD1 |--|-----+ * | +--------+--------+ | | * | +--------+--------+<---+ | * | | ADD2H | ADD1H |--+ | * | +--------+--------+ | | * | +--------+--------+<-+ | * | | ADD4 | ADD3 |--|-+ | * | +--------+--------+ | | | * | +--------+--------+<---+ | | * | | ADD4H | ADD3H |------|-+ |(+vzero) * | +--------+--------+ | | V * | ------------------------ | | +--------+ * | | | | RED3 | [d0 0 0 d0] * | | | +--------+ * +---->+--------+--------+ | | | * (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | | * +--------+--------+ | | | * ---+--------+--------+<---+ | | * +--- T2| T1 | T0 |----------+ * | ---+--------+--------+ | | * | +--------+--------+<-------------+ * | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0] * | +--------+--------+ | | | * | +--------+<----------------------+ * | | RED3 |--------------+ | [0 0 d1 d0] * | +--------+ | | * +--->+--------+--------+ | | * | T1 | T0 |--------+ * +--------+--------+ | | * --------------------------- | | * | | * +--------+--------+<----+ | * | RED2 | RED1 | | * +--------+--------+ | * ---+--------+--------+<-------+ * T2| T1 | T0 | (H1P-H1P-H00RRAY!) * ---+--------+--------+ * * Last 'group' needs to RED2||RED1 shifted less */ TEXT p256MulInternal<>(SB), NOSPLIT, $0-16 // CPOOL loaded from caller MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 MOVD $96, R21 MOVD $112, R22 // --------------------------------------------------- VSPLTW $3, Y0, YDIG // VREPF Y0 is input // VMLHF X0, YDIG, ADD1H // VMLHF X1, YDIG, ADD2H // VMLF X0, YDIG, ADD1 // VMLF X1, YDIG, ADD2 // VMULT(X0, YDIG, ADD1, ADD1H) VMULT(X1, YDIG, ADD2, ADD2H) VSPLTISW $1, ONE VSPLTW $2, Y0, YDIG // VREPF // VMALF X0, YDIG, ADD1H, ADD3 // VMALF X1, YDIG, ADD2H, ADD4 // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H) VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H) LXVD2X (R17)(CPOOL), SEL1 VSPLTISB $0, ZER // VZERO ZER VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB VSLDOI $12, ZER, ADD2, T1 // ADD2 Free // VSLDB VADDCUQ T0, ADD3, CAR1 // VACCQ VADDUQM T0, ADD3, T0 // ADD3 Free // VAQ VADDECUQ T1, ADD4, CAR1, T2 // VACCCQ VADDEUQM T1, ADD4, CAR1, T1 // ADD4 Free // VACQ LXVD2X (R18)(CPOOL), SEL2 LXVD2X (R19)(CPOOL), SEL3 LXVD2X (R20)(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow -->? // VSQ VSLDOI $12, T1, T0, T0 // VSLDB VSLDOI $12, T2, T1, T1 // VSLDB VADDCUQ T0, ADD3H, CAR1 // VACCQ VADDUQM T0, ADD3H, T0 // VAQ VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ VADDEUQM T1, ADD4H, CAR1, T1 // VACQ // --------------------------------------------------- VSPLTW $1, Y0, YDIG // VREPF // VMALHF X0, YDIG, T0, ADD1H // VMALHF X1, YDIG, T1, ADD2H // VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1 // VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2 VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H) VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H) VSPLTW $0, Y0, YDIG // VREPF // VMALF X0, YDIG, ADD1H, ADD3 // VMALF X1, YDIG, ADD2H, ADD4 // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H) VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H) VSPLTISB $0, ZER // VZERO ZER LXVD2X (R17)(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free->T0 // VSLDB VSLDOI $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free // VSLDB VADDCUQ T0, RED1, CAR1 // VACCQ VADDUQM T0, RED1, T0 // VAQ VADDECUQ T1, RED2, CAR1, T2 // VACCCQ VADDEUQM T1, RED2, CAR1, T1 // VACQ VADDCUQ T0, ADD3, CAR1 // VACCQ VADDUQM T0, ADD3, T0 // VAQ VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ VADDEUQM T1, ADD4, CAR1, T1 // VACQ VADDUQM T2, CAR2, T2 // VAQ LXVD2X (R18)(CPOOL), SEL2 LXVD2X (R19)(CPOOL), SEL3 LXVD2X (R20)(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ VSLDOI $12, T1, T0, T0 // VSLDB VSLDOI $12, T2, T1, T1 // VSLDB VADDCUQ T0, ADD3H, CAR1 // VACCQ VADDUQM T0, ADD3H, T0 // VAQ VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ VADDEUQM T1, ADD4H, CAR1, T1 // VACQ // --------------------------------------------------- VSPLTW $3, Y1, YDIG // VREPF // VMALHF X0, YDIG, T0, ADD1H // VMALHF X1, YDIG, T1, ADD2H // VMALF X0, YDIG, T0, ADD1 // VMALF X1, YDIG, T1, ADD2 VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H) VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H) VSPLTW $2, Y1, YDIG // VREPF // VMALF X0, YDIG, ADD1H, ADD3 // VMALF X1, YDIG, ADD2H, ADD4 // VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free // VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H) VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H) LXVD2X (R17)(CPOOL), SEL1 VSPLTISB $0, ZER // VZERO ZER LXVD2X (R17)(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB VSLDOI $12, T2, ADD2, T1 // ADD2 Free // VSLDB VADDCUQ T0, RED1, CAR1 // VACCQ VADDUQM T0, RED1, T0 // VAQ VADDECUQ T1, RED2, CAR1, T2 // VACCCQ VADDEUQM T1, RED2, CAR1, T1 // VACQ VADDCUQ T0, ADD3, CAR1 // VACCQ VADDUQM T0, ADD3, T0 // VAQ VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ VADDEUQM T1, ADD4, CAR1, T1 // VACQ VADDUQM T2, CAR2, T2 // VAQ LXVD2X (R18)(CPOOL), SEL2 LXVD2X (R19)(CPOOL), SEL3 LXVD2X (R20)(CPOOL), SEL4 VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0] VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1] VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0] VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ VSLDOI $12, T1, T0, T0 // VSLDB VSLDOI $12, T2, T1, T1 // VSLDB VADDCUQ T0, ADD3H, CAR1 // VACCQ VADDUQM T0, ADD3H, T0 // VAQ VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ VADDEUQM T1, ADD4H, CAR1, T1 // VACQ // --------------------------------------------------- VSPLTW $1, Y1, YDIG // VREPF // VMALHF X0, YDIG, T0, ADD1H // VMALHF X1, YDIG, T1, ADD2H // VMALF X0, YDIG, T0, ADD1 // VMALF X1, YDIG, T1, ADD2 VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H) VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H) VSPLTW $0, Y1, YDIG // VREPF // VMALF X0, YDIG, ADD1H, ADD3 // VMALF X1, YDIG, ADD2H, ADD4 // VMALHF X0, YDIG, ADD1H, ADD3H // VMALHF X1, YDIG, ADD2H, ADD4H VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H) VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H) VSPLTISB $0, ZER // VZERO ZER LXVD2X (R17)(CPOOL), SEL1 VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0] VSLDOI $12, ADD2, ADD1, T0 // VSLDB VSLDOI $12, T2, ADD2, T1 // VSLDB VADDCUQ T0, RED1, CAR1 // VACCQ VADDUQM T0, RED1, T0 // VAQ VADDECUQ T1, RED2, CAR1, T2 // VACCCQ VADDEUQM T1, RED2, CAR1, T1 // VACQ VADDCUQ T0, ADD3, CAR1 // VACCQ VADDUQM T0, ADD3, T0 // VAQ VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ VADDEUQM T1, ADD4, CAR1, T1 // VACQ VADDUQM T2, CAR2, T2 // VAQ LXVD2X (R21)(CPOOL), SEL5 LXVD2X (R22)(CPOOL), SEL6 VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0] VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0] VSUBUQM RED2, RED1, RED2 // Guaranteed not to underflow // VSQ VSLDOI $12, T1, T0, T0 // VSLDB VSLDOI $12, T2, T1, T1 // VSLDB VADDCUQ T0, ADD3H, CAR1 // VACCQ VADDUQM T0, ADD3H, T0 // VAQ VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ VADDEUQM T1, ADD4H, CAR1, T1 // VACQ VADDCUQ T0, RED1, CAR1 // VACCQ VADDUQM T0, RED1, T0 // VAQ VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ VADDEUQM T1, RED2, CAR1, T1 // VACQ VADDUQM T2, CAR2, T2 // VAQ // --------------------------------------------------- VSPLTISB $0, RED3 // VZERO RED3 VSUBCUQ T0, P0, CAR1 // VSCBIQ VSUBUQM T0, P0, ADD1H // VSQ VSUBECUQ T1, P1, CAR1, CAR2 // VSBCBIQ VSUBEUQM T1, P1, CAR1, ADD2H // VSBIQ VSUBEUQM T2, RED3, CAR2, T2 // VSBIQ // what output to use, ADD2H||ADD1H or T1||T0? VSEL ADD1H, T0, T2, T0 VSEL ADD2H, T1, T2, T1 RET #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 #undef SEL1 #undef SEL2 #undef SEL3 #undef SEL4 #undef SEL5 #undef SEL6 #undef YDIG #undef ADD1H #undef ADD2H #undef ADD3 #undef ADD4 #undef RED1 #undef RED2 #undef RED3 #undef T2 #undef ADD1 #undef ADD2 #undef ADD3H #undef ADD4H #undef ZER #undef CAR1 #undef CAR2 #undef TMP1 #undef TMP2 #define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \ VSPLTISB $0, ZER \ // VZERO VSUBCUQ X0, Y0, CAR1 \ VSUBUQM X0, Y0, T0 \ VSUBECUQ X1, Y1, CAR1, SEL1 \ VSUBEUQM X1, Y1, CAR1, T1 \ VSUBUQM ZER, SEL1, SEL1 \ // VSQ \ VADDCUQ T0, PL, CAR1 \ // VACCQ VADDUQM T0, PL, TT0 \ // VAQ VADDEUQM T1, PH, CAR1, TT1 \ // VACQ \ VSEL TT0, T0, SEL1, T0 \ VSEL TT1, T1, SEL1, T1 \ #define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \ VADDCUQ X0, Y0, CAR1 \ VADDUQM X0, Y0, T0 \ VADDECUQ X1, Y1, CAR1, T2 \ // VACCCQ VADDEUQM X1, Y1, CAR1, T1 \ \ VSPLTISB $0, ZER \ VSUBCUQ T0, PL, CAR1 \ // VSCBIQ VSUBUQM T0, PL, TT0 \ VSUBECUQ T1, PH, CAR1, CAR2 \ // VSBCBIQ VSUBEUQM T1, PH, CAR1, TT1 \ // VSBIQ VSUBEUQM T2, ZER, CAR2, SEL1 \ \ VSEL TT0, T0, SEL1, T0 \ VSEL TT1, T1, SEL1, T1 #define p256HalfInternal(T1, T0, X1, X0) \ VSPLTISB $0, ZER \ VSUBEUQM ZER, ZER, X0, SEL1 \ \ VADDCUQ X0, PL, CAR1 \ VADDUQM X0, PL, T0 \ VADDECUQ X1, PH, CAR1, T2 \ VADDEUQM X1, PH, CAR1, T1 \ \ VSEL T0, X0, SEL1, T0 \ VSEL T1, X1, SEL1, T1 \ VSEL T2, ZER, SEL1, T2 \ \ VSLDOI $15, T2, ZER, TT1 \ VSLDOI $15, T1, ZER, TT0 \ VSPLTISB $1, SEL1 \ VSR T0, SEL1, T0 \ // VSRL VSR T1, SEL1, T1 \ VSPLTISB $7, SEL1 \ // VREPIB VSL TT0, SEL1, TT0 \ VSL TT1, SEL1, TT1 \ VOR T0, TT0, T0 \ VOR T1, TT1, T1 #define res_ptr R3 #define x_ptr R4 #define y_ptr R5 #define CPOOL R7 #define TEMP R8 #define N R9 // Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 // Constants #define P0 V30 #define P1 V31 // func p256MulAsm(res, in1, in2 *p256Element) TEXT ·p256Mul(SB), NOSPLIT, $0-24 MOVD res+0(FP), res_ptr MOVD in1+8(FP), x_ptr MOVD in2+16(FP), y_ptr MOVD $16, R16 MOVD $32, R17 MOVD $p256mul<>+0x00(SB), CPOOL LXVD2X (R0)(x_ptr), X0 LXVD2X (R16)(x_ptr), X1 XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 LXVD2X (R0)(y_ptr), Y0 LXVD2X (R16)(y_ptr), Y1 XXPERMDI Y0, Y0, $2, Y0 XXPERMDI Y1, Y1, $2, Y1 LXVD2X (R16)(CPOOL), P1 LXVD2X (R0)(CPOOL), P0 CALL p256MulInternal<>(SB) MOVD $p256mul<>+0x00(SB), CPOOL XXPERMDI T0, T0, $2, T0 XXPERMDI T1, T1, $2, T1 STXVD2X T0, (R0)(res_ptr) STXVD2X T1, (R16)(res_ptr) RET // func p256Sqr(res, in *p256Element, n int) TEXT ·p256Sqr(SB), NOSPLIT, $0-24 MOVD res+0(FP), res_ptr MOVD in+8(FP), x_ptr MOVD $16, R16 MOVD $32, R17 MOVD $p256mul<>+0x00(SB), CPOOL LXVD2X (R0)(x_ptr), X0 LXVD2X (R16)(x_ptr), X1 XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 sqrLoop: // Sqr uses same value for both VOR X0, X0, Y0 VOR X1, X1, Y1 LXVD2X (R16)(CPOOL), P1 LXVD2X (R0)(CPOOL), P0 CALL p256MulInternal<>(SB) MOVD n+16(FP), N ADD $-1, N CMP $0, N BEQ done MOVD N, n+16(FP) // Save counter to avoid clobber VOR T0, T0, X0 VOR T1, T1, X1 BR sqrLoop done: MOVD $p256mul<>+0x00(SB), CPOOL XXPERMDI T0, T0, $2, T0 XXPERMDI T1, T1, $2, T1 STXVD2X T0, (R0)(res_ptr) STXVD2X T1, (R16)(res_ptr) RET #undef res_ptr #undef x_ptr #undef y_ptr #undef CPOOL #undef X0 #undef X1 #undef Y0 #undef Y1 #undef T0 #undef T1 #undef P0 #undef P1 #define P3ptr R3 #define P1ptr R4 #define P2ptr R5 #define CPOOL R7 // Temporaries in REGs #define Y2L V15 #define Y2H V16 #define T1L V17 #define T1H V18 #define T2L V19 #define T2H V20 #define T3L V21 #define T3H V22 #define T4L V23 #define T4H V24 // Temps for Sub and Add #define TT0 V11 #define TT1 V12 #define T2 V13 // p256MulAsm Parameters #define X0 V0 #define X1 V1 #define Y0 V2 #define Y1 V3 #define T0 V4 #define T1 V5 #define PL V30 #define PH V31 // Names for zero/sel selects #define X1L V0 #define X1H V1 #define Y1L V2 // p256MulAsmParmY #define Y1H V3 // p256MulAsmParmY #define Z1L V4 #define Z1H V5 #define X2L V0 #define X2H V1 #define Z2L V4 #define Z2H V5 #define X3L V17 // T1L #define X3H V18 // T1H #define Y3L V21 // T3L #define Y3H V22 // T3H #define Z3L V25 #define Z3H V26 #define ZER V6 #define SEL1 V7 #define CAR1 V8 #define CAR2 V9 /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. * T1 = Z1² * T2 = T1*Z1 * T1 = T1*X2 * T2 = T2*Y2 * T1 = T1-X1 * T2 = T2-Y1 * Z3 = Z1*T1 * T3 = T1² * T4 = T3*T1 * T3 = T3*X1 * T1 = 2*T3 * X3 = T2² * X3 = X3-T1 * X3 = X3-T4 * T3 = T3-X3 * T3 = T3*T2 * T4 = T4*Y1 * Y3 = T3-T4 * Three operand formulas, but with MulInternal X,Y used to store temps X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1 X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2 X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2 X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2 SUB(T2+0x00(SB), CPOOL MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 MOVD $96, R21 MOVD $112, R22 MOVD $128, R23 MOVD $144, R24 MOVD $160, R25 MOVD $104, R26 // offset of sign+24(FP) LXVD2X (R16)(CPOOL), PH LXVD2X (R0)(CPOOL), PL LXVD2X (R17)(P2ptr), Y2L LXVD2X (R18)(P2ptr), Y2H XXPERMDI Y2H, Y2H, $2, Y2H XXPERMDI Y2L, Y2L, $2, Y2L // Equivalent of VLREPG sign+24(FP), SEL1 LXVDSX (R1)(R26), SEL1 VSPLTISB $0, ZER VCMPEQUD SEL1, ZER, SEL1 VSUBCUQ PL, Y2L, CAR1 VSUBUQM PL, Y2L, T1L VSUBEUQM PH, Y2H, CAR1, T1H VSEL T1L, Y2L, SEL1, Y2L VSEL T1H, Y2H, SEL1, Y2H /* * * Three operand formula: * Source: 2004 Hankerson–Menezes–Vanstone, page 91. */ // X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1 LXVD2X (R19)(P1ptr), X0 // Z1H LXVD2X (R20)(P1ptr), X1 // Z1L XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2 VOR T0, T0, X0 VOR T1, T1, X1 CALL p256MulInternal<>(SB) VOR T0, T0, T2L VOR T1, T1, T2H // X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2 MOVD in2+16(FP), P2ptr LXVD2X (R0)(P2ptr), Y0 // X2H LXVD2X (R16)(P2ptr), Y1 // X2L XXPERMDI Y0, Y0, $2, Y0 XXPERMDI Y1, Y1, $2, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, T1L VOR T1, T1, T1H // X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2 VOR T2L, T2L, X0 VOR T2H, T2H, X1 VOR Y2L, Y2L, Y0 VOR Y2H, Y2H, Y1 CALL p256MulInternal<>(SB) // SUB(T2(SB) VOR T0, T0, Z3L VOR T1, T1, Z3H // X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2 VOR Y0, Y0, X0 VOR Y1, Y1, X1 CALL p256MulInternal<>(SB) VOR T0, T0, X0 VOR T1, T1, X1 // X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4 CALL p256MulInternal<>(SB) VOR T0, T0, T4L VOR T1, T1, T4H // X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4 MOVD in1+8(FP), P1ptr LXVD2X (R0)(P1ptr), Y0 // X1H LXVD2X (R16)(P1ptr), Y1 // X1L XXPERMDI Y1, Y1, $2, Y1 XXPERMDI Y0, Y0, $2, Y0 CALL p256MulInternal<>(SB) VOR T0, T0, T3L VOR T1, T1, T3H // ADD(T1(SB) // SUB(T(SB) VOR T0, T0, T3L VOR T1, T1, T3H // X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4 VOR T4L, T4L, X0 VOR T4H, T4H, X1 MOVD in1+8(FP), P1ptr LXVD2X (R17)(P1ptr), Y0 // Y1H LXVD2X (R18)(P1ptr), Y1 // Y1L XXPERMDI Y0, Y0, $2, Y0 XXPERMDI Y1, Y1, $2, Y1 CALL p256MulInternal<>(SB) // SUB(T+0x00(SB), CPOOL MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 LXVD2X (R16)(CPOOL), PH LXVD2X (R0)(CPOOL), PL // X=Z1; Y=Z1; MUL; T- // T1 = Z1² LXVD2X (R19)(P1ptr), X0 // Z1H LXVD2X (R20)(P1ptr), X1 // Z1L XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // SUB(X(SB) // ADD(T2(SB) // Leave T0, T1 as is. XXPERMDI T0, T0, $2, TT0 XXPERMDI T1, T1, $2, TT1 STXVD2X TT0, (R19)(P3ptr) STXVD2X TT1, (R20)(P3ptr) // X- ; Y=X ; MUL; T- // Y3 = Y3² VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1 VOR T0, T0, X0 VOR T1, T1, X1 LXVD2X (R0)(P1ptr), Y0 LXVD2X (R16)(P1ptr), Y1 XXPERMDI Y0, Y0, $2, Y0 XXPERMDI Y1, Y1, $2, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, T3L VOR T1, T1, T3H // X- ; Y=X ; MUL; T- // Y3 = Y3² VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // HAL(Y3(SB) // ADD(T1(SB) // SUB(Y3+0x00(SB), CPOOL MOVD $16, R16 MOVD $32, R17 MOVD $48, R18 MOVD $64, R19 MOVD $80, R20 LXVD2X (R16)(CPOOL), PH LXVD2X (R0)(CPOOL), PL // X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1 LXVD2X (R19)(P1ptr), X0 // Z1L LXVD2X (R20)(P1ptr), X1 // Z1H XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // X- ; Y=T ; MUL; R=T // R = Z1*T1 VOR T0, T0, Y0 VOR T1, T1, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, RL // SAVE: RL VOR T1, T1, RH // SAVE: RH STXVD2X RH, (R1)(R17) // V27 has to be saved // X=X2; Y- ; MUL; H=T // H = X2*T1 MOVD in2+16(FP), P2ptr LXVD2X (R0)(P2ptr), X0 // X2L LXVD2X (R16)(P2ptr), X1 // X2H XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 CALL p256MulInternal<>(SB) VOR T0, T0, HL // SAVE: HL VOR T1, T1, HH // SAVE: HH // X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2 MOVD in2+16(FP), P2ptr LXVD2X (R19)(P2ptr), X0 // Z2L LXVD2X (R20)(P2ptr), X1 // Z2H XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR X0, X0, Y0 VOR X1, X1, Y1 CALL p256MulInternal<>(SB) // X- ; Y=T ; MUL; S1=T // S1 = Z2*T2 VOR T0, T0, Y0 VOR T1, T1, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, S1L // SAVE: S1L VOR T1, T1, S1H // SAVE: S1H // X=X1; Y- ; MUL; U1=T // U1 = X1*T2 MOVD in1+8(FP), P1ptr LXVD2X (R0)(P1ptr), X0 // X1L LXVD2X (R16)(P1ptr), X1 // X1H XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 CALL p256MulInternal<>(SB) VOR T0, T0, U1L // SAVE: U1L VOR T1, T1, U1H // SAVE: U1H // SUB(H(SB) // X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H VOR T0, T0, X0 VOR T1, T1, X1 VOR HL, HL, Y0 VOR HH, HH, Y1 CALL p256MulInternal<>(SB) MOVD res+0(FP), P3ptr XXPERMDI T1, T1, $2, TT1 XXPERMDI T0, T0, $2, TT0 STXVD2X TT0, (R19)(P3ptr) STXVD2X TT1, (R20)(P3ptr) // X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1 MOVD in1+8(FP), P1ptr LXVD2X (R17)(P1ptr), X0 LXVD2X (R18)(P1ptr), X1 XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR S1L, S1L, Y0 VOR S1H, S1H, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, S1L VOR T1, T1, S1H // X=Y2; Y=R ; MUL; T- // R = Y2*R MOVD in2+16(FP), P2ptr LXVD2X (R17)(P2ptr), X0 LXVD2X (R18)(P2ptr), X1 XXPERMDI X0, X0, $2, X0 XXPERMDI X1, X1, $2, X1 VOR RL, RL, Y0 // VOR RH, RH, Y1 RH was saved above in D2X format LXVD2X (R1)(R17), Y1 CALL p256MulInternal<>(SB) // SUB(R(SB) // X- ; Y=T ; MUL; T2=T // T2 = H*T1 VOR T0, T0, Y0 VOR T1, T1, Y1 CALL p256MulInternal<>(SB) VOR T0, T0, T2L VOR T1, T1, T2H // X=U1; Y- ; MUL; U1=T // U1 = U1*T1 VOR U1L, U1L, X0 VOR U1H, U1H, X1 CALL p256MulInternal<>(SB) VOR T0, T0, U1L VOR T1, T1, U1H // X=R ; Y=R ; MUL; T- // X3 = R*R VOR RL, RL, X0 // VOR RH, RH, X1 VOR RL, RL, Y0 // RH was saved above using STXVD2X LXVD2X (R1)(R17), X1 VOR X1, X1, Y1 // VOR RH, RH, Y1 CALL p256MulInternal<>(SB) // SUB(T(SB) VOR T0, T0, U1L VOR T1, T1, U1H // X=S1; Y=T2; MUL; T- // T2 = S1*T2 VOR S1L, S1L, X0 VOR S1H, S1H, X1 VOR T2L, T2L, Y0 VOR T2H, T2H, Y1 CALL p256MulInternal<>(SB) // SUB(T