// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // TLS low level connection and record layer package tls import ( "bytes" "context" "crypto/cipher" "crypto/subtle" "crypto/x509" "errors" "fmt" "hash" "internal/godebug" "io" "net" "sync" "sync/atomic" "time" ) // A Conn represents a secured connection. // It implements the net.Conn interface. type Conn struct { // constant conn net.Conn isClient bool handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake quic *quicState // nil for non-QUIC connections // isHandshakeComplete is true if the connection is currently transferring // application data (i.e. is not currently processing a handshake). // isHandshakeComplete is true implies handshakeErr == nil. isHandshakeComplete atomic.Bool // constant after handshake; protected by handshakeMutex handshakeMutex sync.Mutex handshakeErr error // error resulting from handshake vers uint16 // TLS version haveVers bool // version has been negotiated config *Config // configuration passed to constructor // handshakes counts the number of handshakes performed on the // connection so far. If renegotiation is disabled then this is either // zero or one. handshakes int extMasterSecret bool didResume bool // whether this connection was a session resumption didHRR bool // whether a HelloRetryRequest was sent/received cipherSuite uint16 curveID CurveID ocspResponse []byte // stapled OCSP response scts [][]byte // signed certificate timestamps from server peerCertificates []*x509.Certificate // activeCertHandles contains the cache handles to certificates in // peerCertificates that are used to track active references. activeCertHandles []*activeCert // verifiedChains contains the certificate chains that we built, as // opposed to the ones presented by the server. verifiedChains [][]*x509.Certificate // serverName contains the server name indicated by the client, if any. serverName string // secureRenegotiation is true if the server echoed the secure // renegotiation extension. (This is meaningless as a server because // renegotiation is not supported in that case.) secureRenegotiation bool // ekm is a closure for exporting keying material. ekm func(label string, context []byte, length int) ([]byte, error) // resumptionSecret is the resumption_master_secret for handling // or sending NewSessionTicket messages. resumptionSecret []byte echAccepted bool // ticketKeys is the set of active session ticket keys for this // connection. The first one is used to encrypt new tickets and // all are tried to decrypt tickets. ticketKeys []ticketKey // clientFinishedIsFirst is true if the client sent the first Finished // message during the most recent handshake. This is recorded because // the first transmitted Finished message is the tls-unique // channel-binding value. clientFinishedIsFirst bool // closeNotifyErr is any error from sending the alertCloseNotify record. closeNotifyErr error // closeNotifySent is true if the Conn attempted to send an // alertCloseNotify record. closeNotifySent bool // clientFinished and serverFinished contain the Finished message sent // by the client or server in the most recent handshake. This is // retained to support the renegotiation extension and tls-unique // channel-binding. clientFinished [12]byte serverFinished [12]byte // clientProtocol is the negotiated ALPN protocol. clientProtocol string // input/output in, out halfConn rawInput bytes.Buffer // raw input, starting with a record header input bytes.Reader // application data waiting to be read, from rawInput.Next hand bytes.Buffer // handshake data waiting to be read buffering bool // whether records are buffered in sendBuf sendBuf []byte // a buffer of records waiting to be sent // bytesSent counts the bytes of application data sent. // packetsSent counts packets. bytesSent int64 packetsSent int64 // retryCount counts the number of consecutive non-advancing records // received by Conn.readRecord. That is, records that neither advance the // handshake, nor deliver application data. Protected by in.Mutex. retryCount int // activeCall indicates whether Close has been call in the low bit. // the rest of the bits are the number of goroutines in Conn.Write. activeCall atomic.Int32 tmp [16]byte } // Access to net.Conn methods. // Cannot just embed net.Conn because that would // export the struct field too. // LocalAddr returns the local network address. func (c *Conn) LocalAddr() net.Addr { return c.conn.LocalAddr() } // RemoteAddr returns the remote network address. func (c *Conn) RemoteAddr() net.Addr { return c.conn.RemoteAddr() } // SetDeadline sets the read and write deadlines associated with the connection. // A zero value for t means [Conn.Read] and [Conn.Write] will not time out. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetDeadline(t time.Time) error { return c.conn.SetDeadline(t) } // SetReadDeadline sets the read deadline on the underlying connection. // A zero value for t means [Conn.Read] will not time out. func (c *Conn) SetReadDeadline(t time.Time) error { return c.conn.SetReadDeadline(t) } // SetWriteDeadline sets the write deadline on the underlying connection. // A zero value for t means [Conn.Write] will not time out. // After a [Conn.Write] has timed out, the TLS state is corrupt and all future writes will return the same error. func (c *Conn) SetWriteDeadline(t time.Time) error { return c.conn.SetWriteDeadline(t) } // NetConn returns the underlying connection that is wrapped by c. // Note that writing to or reading from this connection directly will corrupt the // TLS session. func (c *Conn) NetConn() net.Conn { return c.conn } // A halfConn represents one direction of the record layer // connection, either sending or receiving. type halfConn struct { sync.Mutex err error // first permanent error version uint16 // protocol version cipher any // cipher algorithm mac hash.Hash seq [8]byte // 64-bit sequence number scratchBuf [13]byte // to avoid allocs; interface method args escape nextCipher any // next encryption state nextMac hash.Hash // next MAC algorithm level QUICEncryptionLevel // current QUIC encryption level trafficSecret []byte // current TLS 1.3 traffic secret } type permanentError struct { err net.Error } func (e *permanentError) Error() string { return e.err.Error() } func (e *permanentError) Unwrap() error { return e.err } func (e *permanentError) Timeout() bool { return e.err.Timeout() } func (e *permanentError) Temporary() bool { return false } func (hc *halfConn) setErrorLocked(err error) error { if e, ok := err.(net.Error); ok { hc.err = &permanentError{err: e} } else { hc.err = err } return hc.err } // prepareCipherSpec sets the encryption and MAC states // that a subsequent changeCipherSpec will use. func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) { hc.version = version hc.nextCipher = cipher hc.nextMac = mac } // changeCipherSpec changes the encryption and MAC states // to the ones previously passed to prepareCipherSpec. func (hc *halfConn) changeCipherSpec() error { if hc.nextCipher == nil || hc.version == VersionTLS13 { return alertInternalError } hc.cipher = hc.nextCipher hc.mac = hc.nextMac hc.nextCipher = nil hc.nextMac = nil for i := range hc.seq { hc.seq[i] = 0 } return nil } func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, level QUICEncryptionLevel, secret []byte) { hc.trafficSecret = secret hc.level = level key, iv := suite.trafficKey(secret) hc.cipher = suite.aead(key, iv) for i := range hc.seq { hc.seq[i] = 0 } } // incSeq increments the sequence number. func (hc *halfConn) incSeq() { for i := 7; i >= 0; i-- { hc.seq[i]++ if hc.seq[i] != 0 { return } } // Not allowed to let sequence number wrap. // Instead, must renegotiate before it does. // Not likely enough to bother. panic("TLS: sequence number wraparound") } // explicitNonceLen returns the number of bytes of explicit nonce or IV included // in each record. Explicit nonces are present only in CBC modes after TLS 1.0 // and in certain AEAD modes in TLS 1.2. func (hc *halfConn) explicitNonceLen() int { if hc.cipher == nil { return 0 } switch c := hc.cipher.(type) { case cipher.Stream: return 0 case aead: return c.explicitNonceLen() case cbcMode: // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack. if hc.version >= VersionTLS11 { return c.BlockSize() } return 0 default: panic("unknown cipher type") } } // extractPadding returns, in constant time, the length of the padding to remove // from the end of payload. It also returns a byte which is equal to 255 if the // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2. func extractPadding(payload []byte) (toRemove int, good byte) { if len(payload) < 1 { return 0, 0 } paddingLen := payload[len(payload)-1] t := uint(len(payload)-1) - uint(paddingLen) // if len(payload) >= (paddingLen - 1) then the MSB of t is zero good = byte(int32(^t) >> 31) // The maximum possible padding length plus the actual length field toCheck := 256 // The length of the padded data is public, so we can use an if here if toCheck > len(payload) { toCheck = len(payload) } for i := 0; i < toCheck; i++ { t := uint(paddingLen) - uint(i) // if i <= paddingLen then the MSB of t is zero mask := byte(int32(^t) >> 31) b := payload[len(payload)-1-i] good &^= mask&paddingLen ^ mask&b } // We AND together the bits of good and replicate the result across // all the bits. good &= good << 4 good &= good << 2 good &= good << 1 good = uint8(int8(good) >> 7) // Zero the padding length on error. This ensures any unchecked bytes // are included in the MAC. Otherwise, an attacker that could // distinguish MAC failures from padding failures could mount an attack // similar to POODLE in SSL 3.0: given a good ciphertext that uses a // full block's worth of padding, replace the final block with another // block. If the MAC check passed but the padding check failed, the // last byte of that block decrypted to the block size. // // See also macAndPaddingGood logic below. paddingLen &= good toRemove = int(paddingLen) + 1 return } func roundUp(a, b int) int { return a + (b-a%b)%b } // cbcMode is an interface for block ciphers using cipher block chaining. type cbcMode interface { cipher.BlockMode SetIV([]byte) } // decrypt authenticates and decrypts the record if protection is active at // this stage. The returned plaintext might overlap with the input. func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) { var plaintext []byte typ := recordType(record[0]) payload := record[recordHeaderLen:] // In TLS 1.3, change_cipher_spec messages are to be ignored without being // decrypted. See RFC 8446, Appendix D.4. if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec { return payload, typ, nil } paddingGood := byte(255) paddingLen := 0 explicitNonceLen := hc.explicitNonceLen() if hc.cipher != nil { switch c := hc.cipher.(type) { case cipher.Stream: c.XORKeyStream(payload, payload) case aead: if len(payload) < explicitNonceLen { return nil, 0, alertBadRecordMAC } nonce := payload[:explicitNonceLen] if len(nonce) == 0 { nonce = hc.seq[:] } payload = payload[explicitNonceLen:] var additionalData []byte if hc.version == VersionTLS13 { additionalData = record[:recordHeaderLen] } else { additionalData = append(hc.scratchBuf[:0], hc.seq[:]...) additionalData = append(additionalData, record[:3]...) n := len(payload) - c.Overhead() additionalData = append(additionalData, byte(n>>8), byte(n)) } var err error plaintext, err = c.Open(payload[:0], nonce, payload, additionalData) if err != nil { return nil, 0, alertBadRecordMAC } case cbcMode: blockSize := c.BlockSize() minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) if len(payload)%blockSize != 0 || len(payload) < minPayload { return nil, 0, alertBadRecordMAC } if explicitNonceLen > 0 { c.SetIV(payload[:explicitNonceLen]) payload = payload[explicitNonceLen:] } c.CryptBlocks(payload, payload) // In a limited attempt to protect against CBC padding oracles like // Lucky13, the data past paddingLen (which is secret) is passed to // the MAC function as extra data, to be fed into the HMAC after // computing the digest. This makes the MAC roughly constant time as // long as the digest computation is constant time and does not // affect the subsequent write, modulo cache effects. paddingLen, paddingGood = extractPadding(payload) default: panic("unknown cipher type") } if hc.version == VersionTLS13 { if typ != recordTypeApplicationData { return nil, 0, alertUnexpectedMessage } if len(plaintext) > maxPlaintext+1 { return nil, 0, alertRecordOverflow } // Remove padding and find the ContentType scanning from the end. for i := len(plaintext) - 1; i >= 0; i-- { if plaintext[i] != 0 { typ = recordType(plaintext[i]) plaintext = plaintext[:i] break } if i == 0 { return nil, 0, alertUnexpectedMessage } } } } else { plaintext = payload } if hc.mac != nil { macSize := hc.mac.Size() if len(payload) < macSize { return nil, 0, alertBadRecordMAC } n := len(payload) - macSize - paddingLen n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } record[3] = byte(n >> 8) record[4] = byte(n) remoteMAC := payload[n : n+macSize] localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:]) // This is equivalent to checking the MACs and paddingGood // separately, but in constant-time to prevent distinguishing // padding failures from MAC failures. Depending on what value // of paddingLen was returned on bad padding, distinguishing // bad MAC from bad padding can lead to an attack. // // See also the logic at the end of extractPadding. macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood) if macAndPaddingGood != 1 { return nil, 0, alertBadRecordMAC } plaintext = payload[:n] } hc.incSeq() return plaintext, typ, nil } // sliceForAppend extends the input slice by n bytes. head is the full extended // slice, while tail is the appended part. If the original slice has sufficient // capacity no allocation is performed. func sliceForAppend(in []byte, n int) (head, tail []byte) { if total := len(in) + n; cap(in) >= total { head = in[:total] } else { head = make([]byte, total) copy(head, in) } tail = head[len(in):] return } // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and // appends it to record, which must already contain the record header. func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) { if hc.cipher == nil { return append(record, payload...), nil } var explicitNonce []byte if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 { record, explicitNonce = sliceForAppend(record, explicitNonceLen) if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 { // The AES-GCM construction in TLS has an explicit nonce so that the // nonce can be random. However, the nonce is only 8 bytes which is // too small for a secure, random nonce. Therefore we use the // sequence number as the nonce. The 3DES-CBC construction also has // an 8 bytes nonce but its nonces must be unpredictable (see RFC // 5246, Appendix F.3), forcing us to use randomness. That's not // 3DES' biggest problem anyway because the birthday bound on block // collision is reached first due to its similarly small block size // (see the Sweet32 attack). copy(explicitNonce, hc.seq[:]) } else { if _, err := io.ReadFull(rand, explicitNonce); err != nil { return nil, err } } } var dst []byte switch c := hc.cipher.(type) { case cipher.Stream: mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) record, dst = sliceForAppend(record, len(payload)+len(mac)) c.XORKeyStream(dst[:len(payload)], payload) c.XORKeyStream(dst[len(payload):], mac) case aead: nonce := explicitNonce if len(nonce) == 0 { nonce = hc.seq[:] } if hc.version == VersionTLS13 { record = append(record, payload...) // Encrypt the actual ContentType and replace the plaintext one. record = append(record, record[0]) record[0] = byte(recordTypeApplicationData) n := len(payload) + 1 + c.Overhead() record[3] = byte(n >> 8) record[4] = byte(n) record = c.Seal(record[:recordHeaderLen], nonce, record[recordHeaderLen:], record[:recordHeaderLen]) } else { additionalData := append(hc.scratchBuf[:0], hc.seq[:]...) additionalData = append(additionalData, record[:recordHeaderLen]...) record = c.Seal(record, nonce, payload, additionalData) } case cbcMode: mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) blockSize := c.BlockSize() plaintextLen := len(payload) + len(mac) paddingLen := blockSize - plaintextLen%blockSize record, dst = sliceForAppend(record, plaintextLen+paddingLen) copy(dst, payload) copy(dst[len(payload):], mac) for i := plaintextLen; i < len(dst); i++ { dst[i] = byte(paddingLen - 1) } if len(explicitNonce) > 0 { c.SetIV(explicitNonce) } c.CryptBlocks(dst, dst) default: panic("unknown cipher type") } // Update length to include nonce, MAC and any block padding needed. n := len(record) - recordHeaderLen record[3] = byte(n >> 8) record[4] = byte(n) hc.incSeq() return record, nil } // RecordHeaderError is returned when a TLS record header is invalid. type RecordHeaderError struct { // Msg contains a human readable string that describes the error. Msg string // RecordHeader contains the five bytes of TLS record header that // triggered the error. RecordHeader [5]byte // Conn provides the underlying net.Conn in the case that a client // sent an initial handshake that didn't look like TLS. // It is nil if there's already been a handshake or a TLS alert has // been written to the connection. Conn net.Conn } func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) { err.Msg = msg err.Conn = conn copy(err.RecordHeader[:], c.rawInput.Bytes()) return err } func (c *Conn) readRecord() error { return c.readRecordOrCCS(false) } func (c *Conn) readChangeCipherSpec() error { return c.readRecordOrCCS(true) } // readRecordOrCCS reads one or more TLS records from the connection and // updates the record layer state. Some invariants: // - c.in must be locked // - c.input must be empty // // During the handshake one and only one of the following will happen: // - c.hand grows // - c.in.changeCipherSpec is called // - an error is returned // // After the handshake one and only one of the following will happen: // - c.hand grows // - c.input is set // - an error is returned func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error { if c.in.err != nil { return c.in.err } handshakeComplete := c.isHandshakeComplete.Load() // This function modifies c.rawInput, which owns the c.input memory. if c.input.Len() != 0 { return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data")) } c.input.Reset(nil) if c.quic != nil { return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with QUIC transport")) } // Read header, payload. if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil { // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify // is an error, but popular web sites seem to do this, so we accept it // if and only if at the record boundary. if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 { err = io.EOF } if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } hdr := c.rawInput.Bytes()[:recordHeaderLen] typ := recordType(hdr[0]) // No valid TLS record has a type of 0x80, however SSLv2 handshakes // start with a uint16 length where the MSB is set and the first record // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests // an SSLv2 client. if !handshakeComplete && typ == 0x80 { c.sendAlert(alertProtocolVersion) return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received")) } vers := uint16(hdr[1])<<8 | uint16(hdr[2]) expectedVers := c.vers if expectedVers == VersionTLS13 { // All TLS 1.3 records are expected to have 0x0303 (1.2) after // the initial hello (RFC 8446 Section 5.1). expectedVers = VersionTLS12 } n := int(hdr[3])<<8 | int(hdr[4]) if c.haveVers && vers != expectedVers { c.sendAlert(alertProtocolVersion) msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, expectedVers) return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) } if !c.haveVers { // First message, be extra suspicious: this might not be a TLS // client. Bail out before reading a full 'body', if possible. // The current max version is 3.3 so if the version is >= 16.0, // it's probably not real. if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 { return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake")) } } if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext { c.sendAlert(alertRecordOverflow) msg := fmt.Sprintf("oversized record received with length %d", n) return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) } if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil { if e, ok := err.(net.Error); !ok || !e.Temporary() { c.in.setErrorLocked(err) } return err } // Process message. record := c.rawInput.Next(recordHeaderLen + n) data, typ, err := c.in.decrypt(record) if err != nil { return c.in.setErrorLocked(c.sendAlert(err.(alert))) } if len(data) > maxPlaintext { return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) } // Application Data messages are always protected. if c.in.cipher == nil && typ == recordTypeApplicationData { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 { // This is a state-advancing message: reset the retry count. c.retryCount = 0 } // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3. if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } switch typ { default: return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) case recordTypeAlert: if c.quic != nil { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } if len(data) != 2 { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } if alert(data[1]) == alertCloseNotify { return c.in.setErrorLocked(io.EOF) } if c.vers == VersionTLS13 { return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) } switch data[0] { case alertLevelWarning: // Drop the record on the floor and retry. return c.retryReadRecord(expectChangeCipherSpec) case alertLevelError: return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) default: return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } case recordTypeChangeCipherSpec: if len(data) != 1 || data[0] != 1 { return c.in.setErrorLocked(c.sendAlert(alertDecodeError)) } // Handshake messages are not allowed to fragment across the CCS. if c.hand.Len() > 0 { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } // In TLS 1.3, change_cipher_spec records are ignored until the // Finished. See RFC 8446, Appendix D.4. Note that according to Section // 5, a server can send a ChangeCipherSpec before its ServerHello, when // c.vers is still unset. That's not useful though and suspicious if the // server then selects a lower protocol version, so don't allow that. if c.vers == VersionTLS13 { return c.retryReadRecord(expectChangeCipherSpec) } if !expectChangeCipherSpec { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } if err := c.in.changeCipherSpec(); err != nil { return c.in.setErrorLocked(c.sendAlert(err.(alert))) } case recordTypeApplicationData: if !handshakeComplete || expectChangeCipherSpec { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } // Some OpenSSL servers send empty records in order to randomize the // CBC IV. Ignore a limited number of empty records. if len(data) == 0 { return c.retryReadRecord(expectChangeCipherSpec) } // Note that data is owned by c.rawInput, following the Next call above, // to avoid copying the plaintext. This is safe because c.rawInput is // not read from or written to until c.input is drained. c.input.Reset(data) case recordTypeHandshake: if len(data) == 0 || expectChangeCipherSpec { return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } c.hand.Write(data) } return nil } // retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3. func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error { c.retryCount++ if c.retryCount > maxUselessRecords { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(errors.New("tls: too many ignored records")) } return c.readRecordOrCCS(expectChangeCipherSpec) } // atLeastReader reads from R, stopping with EOF once at least N bytes have been // read. It is different from an io.LimitedReader in that it doesn't cut short // the last Read call, and in that it considers an early EOF an error. type atLeastReader struct { R io.Reader N int64 } func (r *atLeastReader) Read(p []byte) (int, error) { if r.N <= 0 { return 0, io.EOF } n, err := r.R.Read(p) r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809 if r.N > 0 && err == io.EOF { return n, io.ErrUnexpectedEOF } if r.N <= 0 && err == nil { return n, io.EOF } return n, err } // readFromUntil reads from r into c.rawInput until c.rawInput contains // at least n bytes or else returns an error. func (c *Conn) readFromUntil(r io.Reader, n int) error { if c.rawInput.Len() >= n { return nil } needs := n - c.rawInput.Len() // There might be extra input waiting on the wire. Make a best effort // attempt to fetch it so that it can be used in (*Conn).Read to // "predict" closeNotify alerts. c.rawInput.Grow(needs + bytes.MinRead) _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)}) return err } // sendAlertLocked sends a TLS alert message. func (c *Conn) sendAlertLocked(err alert) error { if c.quic != nil { return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) } switch err { case alertNoRenegotiation, alertCloseNotify: c.tmp[0] = alertLevelWarning default: c.tmp[0] = alertLevelError } c.tmp[1] = byte(err) _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) if err == alertCloseNotify { // closeNotify is a special case in that it isn't an error. return writeErr } return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) } // sendAlert sends a TLS alert message. func (c *Conn) sendAlert(err alert) error { c.out.Lock() defer c.out.Unlock() return c.sendAlertLocked(err) } const ( // tcpMSSEstimate is a conservative estimate of the TCP maximum segment // size (MSS). A constant is used, rather than querying the kernel for // the actual MSS, to avoid complexity. The value here is the IPv6 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 // bytes) and a TCP header with timestamps (32 bytes). tcpMSSEstimate = 1208 // recordSizeBoostThreshold is the number of bytes of application data // sent after which the TLS record size will be increased to the // maximum. recordSizeBoostThreshold = 128 * 1024 ) // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the // next application data record. There is the following trade-off: // // - For latency-sensitive applications, such as web browsing, each TLS // record should fit in one TCP segment. // - For throughput-sensitive applications, such as large file transfers, // larger TLS records better amortize framing and encryption overheads. // // A simple heuristic that works well in practice is to use small records for // the first 1MB of data, then use larger records for subsequent data, and // reset back to smaller records after the connection becomes idle. See "High // Performance Web Networking", Chapter 4, or: // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ // // In the interests of simplicity and determinism, this code does not attempt // to reset the record size once the connection is idle, however. func (c *Conn) maxPayloadSizeForWrite(typ recordType) int { if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { return maxPlaintext } if c.bytesSent >= recordSizeBoostThreshold { return maxPlaintext } // Subtract TLS overheads to get the maximum payload size. payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen() if c.out.cipher != nil { switch ciph := c.out.cipher.(type) { case cipher.Stream: payloadBytes -= c.out.mac.Size() case cipher.AEAD: payloadBytes -= ciph.Overhead() case cbcMode: blockSize := ciph.BlockSize() // The payload must fit in a multiple of blockSize, with // room for at least one padding byte. payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 // The MAC is appended before padding so affects the // payload size directly. payloadBytes -= c.out.mac.Size() default: panic("unknown cipher type") } } if c.vers == VersionTLS13 { payloadBytes-- // encrypted ContentType } // Allow packet growth in arithmetic progression up to max. pkt := c.packetsSent c.packetsSent++ if pkt > 1000 { return maxPlaintext // avoid overflow in multiply below } n := payloadBytes * int(pkt+1) if n > maxPlaintext { n = maxPlaintext } return n } func (c *Conn) write(data []byte) (int, error) { if c.buffering { c.sendBuf = append(c.sendBuf, data...) return len(data), nil } n, err := c.conn.Write(data) c.bytesSent += int64(n) return n, err } func (c *Conn) flush() (int, error) { if len(c.sendBuf) == 0 { return 0, nil } n, err := c.conn.Write(c.sendBuf) c.bytesSent += int64(n) c.sendBuf = nil c.buffering = false return n, err } // outBufPool pools the record-sized scratch buffers used by writeRecordLocked. var outBufPool = sync.Pool{ New: func() any { return new([]byte) }, } // writeRecordLocked writes a TLS record with the given type and payload to the // connection and updates the record layer state. func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { if c.quic != nil { if typ != recordTypeHandshake { return 0, errors.New("tls: internal error: sending non-handshake message to QUIC transport") } c.quicWriteCryptoData(c.out.level, data) if !c.buffering { if _, err := c.flush(); err != nil { return 0, err } } return len(data), nil } outBufPtr := outBufPool.Get().(*[]byte) outBuf := *outBufPtr defer func() { // You might be tempted to simplify this by just passing &outBuf to Put, // but that would make the local copy of the outBuf slice header escape // to the heap, causing an allocation. Instead, we keep around the // pointer to the slice header returned by Get, which is already on the // heap, and overwrite and return that. *outBufPtr = outBuf outBufPool.Put(outBufPtr) }() var n int for len(data) > 0 { m := len(data) if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload { m = maxPayload } _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen) outBuf[0] = byte(typ) vers := c.vers if vers == 0 { // Some TLS servers fail if the record version is // greater than TLS 1.0 for the initial ClientHello. vers = VersionTLS10 } else if vers == VersionTLS13 { // TLS 1.3 froze the record layer version to 1.2. // See RFC 8446, Section 5.1. vers = VersionTLS12 } outBuf[1] = byte(vers >> 8) outBuf[2] = byte(vers) outBuf[3] = byte(m >> 8) outBuf[4] = byte(m) var err error outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand()) if err != nil { return n, err } if _, err := c.write(outBuf); err != nil { return n, err } n += m data = data[m:] } if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 { if err := c.out.changeCipherSpec(); err != nil { return n, c.sendAlertLocked(err.(alert)) } } return n, nil } // writeHandshakeRecord writes a handshake message to the connection and updates // the record layer state. If transcript is non-nil the marshaled message is // written to it. func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) { c.out.Lock() defer c.out.Unlock() data, err := msg.marshal() if err != nil { return 0, err } if transcript != nil { transcript.Write(data) } return c.writeRecordLocked(recordTypeHandshake, data) } // writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and // updates the record layer state. func (c *Conn) writeChangeCipherRecord() error { c.out.Lock() defer c.out.Unlock() _, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1}) return err } // readHandshakeBytes reads handshake data until c.hand contains at least n bytes. func (c *Conn) readHandshakeBytes(n int) error { if c.quic != nil { return c.quicReadHandshakeBytes(n) } for c.hand.Len() < n { if err := c.readRecord(); err != nil { return err } } return nil } // readHandshake reads the next handshake message from // the record layer. If transcript is non-nil, the message // is written to the passed transcriptHash. func (c *Conn) readHandshake(transcript transcriptHash) (any, error) { if err := c.readHandshakeBytes(4); err != nil { return nil, err } data := c.hand.Bytes() maxHandshakeSize := maxHandshake // hasVers indicates we're past the first message, forcing someone trying to // make us just allocate a large buffer to at least do the initial part of // the handshake first. if c.haveVers && data[0] == typeCertificate { // Since certificate messages are likely to be the only messages that // can be larger than maxHandshake, we use a special limit for just // those messages. maxHandshakeSize = maxHandshakeCertificateMsg } n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) if n > maxHandshakeSize { c.sendAlertLocked(alertInternalError) return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshakeSize)) } if err := c.readHandshakeBytes(4 + n); err != nil { return nil, err } data = c.hand.Next(4 + n) return c.unmarshalHandshakeMessage(data, transcript) } func (c *Conn) unmarshalHandshakeMessage(data []byte, transcript transcriptHash) (handshakeMessage, error) { var m handshakeMessage switch data[0] { case typeHelloRequest: m = new(helloRequestMsg) case typeClientHello: m = new(clientHelloMsg) case typeServerHello: m = new(serverHelloMsg) case typeNewSessionTicket: if c.vers == VersionTLS13 { m = new(newSessionTicketMsgTLS13) } else { m = new(newSessionTicketMsg) } case typeCertificate: if c.vers == VersionTLS13 { m = new(certificateMsgTLS13) } else { m = new(certificateMsg) } case typeCertificateRequest: if c.vers == VersionTLS13 { m = new(certificateRequestMsgTLS13) } else { m = &certificateRequestMsg{ hasSignatureAlgorithm: c.vers >= VersionTLS12, } } case typeCertificateStatus: m = new(certificateStatusMsg) case typeServerKeyExchange: m = new(serverKeyExchangeMsg) case typeServerHelloDone: m = new(serverHelloDoneMsg) case typeClientKeyExchange: m = new(clientKeyExchangeMsg) case typeCertificateVerify: m = &certificateVerifyMsg{ hasSignatureAlgorithm: c.vers >= VersionTLS12, } case typeFinished: m = new(finishedMsg) case typeEncryptedExtensions: m = new(encryptedExtensionsMsg) case typeEndOfEarlyData: m = new(endOfEarlyDataMsg) case typeKeyUpdate: m = new(keyUpdateMsg) default: return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } // The handshake message unmarshalers // expect to be able to keep references to data, // so pass in a fresh copy that won't be overwritten. data = append([]byte(nil), data...) if !m.unmarshal(data) { return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) } if transcript != nil { transcript.Write(data) } return m, nil } var ( errShutdown = errors.New("tls: protocol is shutdown") ) // Write writes data to the connection. // // As Write calls [Conn.Handshake], in order to prevent indefinite blocking a deadline // must be set for both [Conn.Read] and Write before Write is called when the handshake // has not yet completed. See [Conn.SetDeadline], [Conn.SetReadDeadline], and // [Conn.SetWriteDeadline]. func (c *Conn) Write(b []byte) (int, error) { // interlock with Close below for { x := c.activeCall.Load() if x&1 != 0 { return 0, net.ErrClosed } if c.activeCall.CompareAndSwap(x, x+2) { break } } defer c.activeCall.Add(-2) if err := c.Handshake(); err != nil { return 0, err } c.out.Lock() defer c.out.Unlock() if err := c.out.err; err != nil { return 0, err } if !c.isHandshakeComplete.Load() { return 0, alertInternalError } if c.closeNotifySent { return 0, errShutdown } // TLS 1.0 is susceptible to a chosen-plaintext // attack when using block mode ciphers due to predictable IVs. // This can be prevented by splitting each Application Data // record into two records, effectively randomizing the IV. // // https://www.openssl.org/~bodo/tls-cbc.txt // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 // https://www.imperialviolet.org/2012/01/15/beastfollowup.html var m int if len(b) > 1 && c.vers == VersionTLS10 { if _, ok := c.out.cipher.(cipher.BlockMode); ok { n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) if err != nil { return n, c.out.setErrorLocked(err) } m, b = 1, b[1:] } } n, err := c.writeRecordLocked(recordTypeApplicationData, b) return n + m, c.out.setErrorLocked(err) } // handleRenegotiation processes a HelloRequest handshake message. func (c *Conn) handleRenegotiation() error { if c.vers == VersionTLS13 { return errors.New("tls: internal error: unexpected renegotiation") } msg, err := c.readHandshake(nil) if err != nil { return err } helloReq, ok := msg.(*helloRequestMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(helloReq, msg) } if !c.isClient { return c.sendAlert(alertNoRenegotiation) } switch c.config.Renegotiation { case RenegotiateNever: return c.sendAlert(alertNoRenegotiation) case RenegotiateOnceAsClient: if c.handshakes > 1 { return c.sendAlert(alertNoRenegotiation) } case RenegotiateFreelyAsClient: // Ok. default: c.sendAlert(alertInternalError) return errors.New("tls: unknown Renegotiation value") } c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() c.isHandshakeComplete.Store(false) if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil { c.handshakes++ } return c.handshakeErr } // handlePostHandshakeMessage processes a handshake message arrived after the // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation. func (c *Conn) handlePostHandshakeMessage() error { if c.vers != VersionTLS13 { return c.handleRenegotiation() } msg, err := c.readHandshake(nil) if err != nil { return err } c.retryCount++ if c.retryCount > maxUselessRecords { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(errors.New("tls: too many non-advancing records")) } switch msg := msg.(type) { case *newSessionTicketMsgTLS13: return c.handleNewSessionTicket(msg) case *keyUpdateMsg: return c.handleKeyUpdate(msg) } // The QUIC layer is supposed to treat an unexpected post-handshake CertificateRequest // as a QUIC-level PROTOCOL_VIOLATION error (RFC 9001, Section 4.4). Returning an // unexpected_message alert here doesn't provide it with enough information to distinguish // this condition from other unexpected messages. This is probably fine. c.sendAlert(alertUnexpectedMessage) return fmt.Errorf("tls: received unexpected handshake message of type %T", msg) } func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error { if c.quic != nil { c.sendAlert(alertUnexpectedMessage) return c.in.setErrorLocked(errors.New("tls: received unexpected key update message")) } cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite) if cipherSuite == nil { return c.in.setErrorLocked(c.sendAlert(alertInternalError)) } newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret) c.in.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret) if keyUpdate.updateRequested { c.out.Lock() defer c.out.Unlock() msg := &keyUpdateMsg{} msgBytes, err := msg.marshal() if err != nil { return err } _, err = c.writeRecordLocked(recordTypeHandshake, msgBytes) if err != nil { // Surface the error at the next write. c.out.setErrorLocked(err) return nil } newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret) c.out.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret) } return nil } // Read reads data from the connection. // // As Read calls [Conn.Handshake], in order to prevent indefinite blocking a deadline // must be set for both Read and [Conn.Write] before Read is called when the handshake // has not yet completed. See [Conn.SetDeadline], [Conn.SetReadDeadline], and // [Conn.SetWriteDeadline]. func (c *Conn) Read(b []byte) (int, error) { if err := c.Handshake(); err != nil { return 0, err } if len(b) == 0 { // Put this after Handshake, in case people were calling // Read(nil) for the side effect of the Handshake. return 0, nil } c.in.Lock() defer c.in.Unlock() for c.input.Len() == 0 { if err := c.readRecord(); err != nil { return 0, err } for c.hand.Len() > 0 { if err := c.handlePostHandshakeMessage(); err != nil { return 0, err } } } n, _ := c.input.Read(b) // If a close-notify alert is waiting, read it so that we can return (n, // EOF) instead of (n, nil), to signal to the HTTP response reading // goroutine that the connection is now closed. This eliminates a race // where the HTTP response reading goroutine would otherwise not observe // the EOF until its next read, by which time a client goroutine might // have already tried to reuse the HTTP connection for a new request. // See https://golang.org/cl/76400046 and https://golang.org/issue/3514 if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 && recordType(c.rawInput.Bytes()[0]) == recordTypeAlert { if err := c.readRecord(); err != nil { return n, err // will be io.EOF on closeNotify } } return n, nil } // Close closes the connection. func (c *Conn) Close() error { // Interlock with Conn.Write above. var x int32 for { x = c.activeCall.Load() if x&1 != 0 { return net.ErrClosed } if c.activeCall.CompareAndSwap(x, x|1) { break } } if x != 0 { // io.Writer and io.Closer should not be used concurrently. // If Close is called while a Write is currently in-flight, // interpret that as a sign that this Close is really just // being used to break the Write and/or clean up resources and // avoid sending the alertCloseNotify, which may block // waiting on handshakeMutex or the c.out mutex. return c.conn.Close() } var alertErr error if c.isHandshakeComplete.Load() { if err := c.closeNotify(); err != nil { alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err) } } if err := c.conn.Close(); err != nil { return err } return alertErr } var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") // CloseWrite shuts down the writing side of the connection. It should only be // called once the handshake has completed and does not call CloseWrite on the // underlying connection. Most callers should just use [Conn.Close]. func (c *Conn) CloseWrite() error { if !c.isHandshakeComplete.Load() { return errEarlyCloseWrite } return c.closeNotify() } func (c *Conn) closeNotify() error { c.out.Lock() defer c.out.Unlock() if !c.closeNotifySent { // Set a Write Deadline to prevent possibly blocking forever. c.SetWriteDeadline(time.Now().Add(time.Second * 5)) c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) c.closeNotifySent = true // Any subsequent writes will fail. c.SetWriteDeadline(time.Now()) } return c.closeNotifyErr } // Handshake runs the client or server handshake // protocol if it has not yet been run. // // Most uses of this package need not call Handshake explicitly: the // first [Conn.Read] or [Conn.Write] will call it automatically. // // For control over canceling or setting a timeout on a handshake, use // [Conn.HandshakeContext] or the [Dialer]'s DialContext method instead. // // In order to avoid denial of service attacks, the maximum RSA key size allowed // in certificates sent by either the TLS server or client is limited to 8192 // bits. This limit can be overridden by setting tlsmaxrsasize in the GODEBUG // environment variable (e.g. GODEBUG=tlsmaxrsasize=4096). func (c *Conn) Handshake() error { return c.HandshakeContext(context.Background()) } // HandshakeContext runs the client or server handshake // protocol if it has not yet been run. // // The provided Context must be non-nil. If the context is canceled before // the handshake is complete, the handshake is interrupted and an error is returned. // Once the handshake has completed, cancellation of the context will not affect the // connection. // // Most uses of this package need not call HandshakeContext explicitly: the // first [Conn.Read] or [Conn.Write] will call it automatically. func (c *Conn) HandshakeContext(ctx context.Context) error { // Delegate to unexported method for named return // without confusing documented signature. return c.handshakeContext(ctx) } func (c *Conn) handshakeContext(ctx context.Context) (ret error) { // Fast sync/atomic-based exit if there is no handshake in flight and the // last one succeeded without an error. Avoids the expensive context setup // and mutex for most Read and Write calls. if c.isHandshakeComplete.Load() { return nil } handshakeCtx, cancel := context.WithCancel(ctx) // Note: defer this before starting the "interrupter" goroutine // so that we can tell the difference between the input being canceled and // this cancellation. In the former case, we need to close the connection. defer cancel() if c.quic != nil { c.quic.cancelc = handshakeCtx.Done() c.quic.cancel = cancel } else if ctx.Done() != nil { // Start the "interrupter" goroutine, if this context might be canceled. // (The background context cannot). // // The interrupter goroutine waits for the input context to be done and // closes the connection if this happens before the function returns. done := make(chan struct{}) interruptRes := make(chan error, 1) defer func() { close(done) if ctxErr := <-interruptRes; ctxErr != nil { // Return context error to user. ret = ctxErr } }() go func() { select { case <-handshakeCtx.Done(): // Close the connection, discarding the error _ = c.conn.Close() interruptRes <- handshakeCtx.Err() case <-done: interruptRes <- nil } }() } c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if err := c.handshakeErr; err != nil { return err } if c.isHandshakeComplete.Load() { return nil } c.in.Lock() defer c.in.Unlock() c.handshakeErr = c.handshakeFn(handshakeCtx) if c.handshakeErr == nil { c.handshakes++ } else { // If an error occurred during the handshake try to flush the // alert that might be left in the buffer. c.flush() } if c.handshakeErr == nil && !c.isHandshakeComplete.Load() { c.handshakeErr = errors.New("tls: internal error: handshake should have had a result") } if c.handshakeErr != nil && c.isHandshakeComplete.Load() { panic("tls: internal error: handshake returned an error but is marked successful") } if c.quic != nil { if c.handshakeErr == nil { c.quicHandshakeComplete() // Provide the 1-RTT read secret now that the handshake is complete. // The QUIC layer MUST NOT decrypt 1-RTT packets prior to completing // the handshake (RFC 9001, Section 5.7). c.quicSetReadSecret(QUICEncryptionLevelApplication, c.cipherSuite, c.in.trafficSecret) } else { var a alert c.out.Lock() if !errors.As(c.out.err, &a) { a = alertInternalError } c.out.Unlock() // Return an error which wraps both the handshake error and // any alert error we may have sent, or alertInternalError // if we didn't send an alert. // Truncate the text of the alert to 0 characters. c.handshakeErr = fmt.Errorf("%w%.0w", c.handshakeErr, AlertError(a)) } close(c.quic.blockedc) close(c.quic.signalc) } return c.handshakeErr } // ConnectionState returns basic TLS details about the connection. func (c *Conn) ConnectionState() ConnectionState { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() return c.connectionStateLocked() } var tlsunsafeekm = godebug.New("tlsunsafeekm") func (c *Conn) connectionStateLocked() ConnectionState { var state ConnectionState state.HandshakeComplete = c.isHandshakeComplete.Load() state.Version = c.vers state.NegotiatedProtocol = c.clientProtocol state.DidResume = c.didResume state.testingOnlyDidHRR = c.didHRR // c.curveID is not set on TLS 1.0–1.2 resumptions. Fix that before exposing it. state.testingOnlyCurveID = c.curveID state.NegotiatedProtocolIsMutual = true state.ServerName = c.serverName state.CipherSuite = c.cipherSuite state.PeerCertificates = c.peerCertificates state.VerifiedChains = c.verifiedChains state.SignedCertificateTimestamps = c.scts state.OCSPResponse = c.ocspResponse if (!c.didResume || c.extMasterSecret) && c.vers != VersionTLS13 { if c.clientFinishedIsFirst { state.TLSUnique = c.clientFinished[:] } else { state.TLSUnique = c.serverFinished[:] } } if c.config.Renegotiation != RenegotiateNever { state.ekm = noEKMBecauseRenegotiation } else if c.vers != VersionTLS13 && !c.extMasterSecret { state.ekm = func(label string, context []byte, length int) ([]byte, error) { if tlsunsafeekm.Value() == "1" { tlsunsafeekm.IncNonDefault() return c.ekm(label, context, length) } return noEKMBecauseNoEMS(label, context, length) } } else { state.ekm = c.ekm } state.ECHAccepted = c.echAccepted return state } // OCSPResponse returns the stapled OCSP response from the TLS server, if // any. (Only valid for client connections.) func (c *Conn) OCSPResponse() []byte { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() return c.ocspResponse } // VerifyHostname checks that the peer certificate chain is valid for // connecting to host. If so, it returns nil; if not, it returns an error // describing the problem. func (c *Conn) VerifyHostname(host string) error { c.handshakeMutex.Lock() defer c.handshakeMutex.Unlock() if !c.isClient { return errors.New("tls: VerifyHostname called on TLS server connection") } if !c.isHandshakeComplete.Load() { return errors.New("tls: handshake has not yet been performed") } if len(c.verifiedChains) == 0 { return errors.New("tls: handshake did not verify certificate chain") } return c.peerCertificates[0].VerifyHostname(host) }