// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package tls import ( "bytes" "context" "crypto" "crypto/ecdsa" "crypto/ed25519" "crypto/internal/hpke" "crypto/internal/mlkem768" "crypto/rsa" "crypto/subtle" "crypto/x509" "errors" "fmt" "hash" "internal/byteorder" "internal/godebug" "io" "net" "strconv" "strings" "time" ) type clientHandshakeState struct { c *Conn ctx context.Context serverHello *serverHelloMsg hello *clientHelloMsg suite *cipherSuite finishedHash finishedHash masterSecret []byte session *SessionState // the session being resumed ticket []byte // a fresh ticket received during this handshake } var testingOnlyForceClientHelloSignatureAlgorithms []SignatureScheme func (c *Conn) makeClientHello() (*clientHelloMsg, *keySharePrivateKeys, *echContext, error) { config := c.config if len(config.ServerName) == 0 && !config.InsecureSkipVerify { return nil, nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config") } nextProtosLength := 0 for _, proto := range config.NextProtos { if l := len(proto); l == 0 || l > 255 { return nil, nil, nil, errors.New("tls: invalid NextProtos value") } else { nextProtosLength += 1 + l } } if nextProtosLength > 0xffff { return nil, nil, nil, errors.New("tls: NextProtos values too large") } supportedVersions := config.supportedVersions(roleClient) if len(supportedVersions) == 0 { return nil, nil, nil, errors.New("tls: no supported versions satisfy MinVersion and MaxVersion") } maxVersion := config.maxSupportedVersion(roleClient) hello := &clientHelloMsg{ vers: maxVersion, compressionMethods: []uint8{compressionNone}, random: make([]byte, 32), extendedMasterSecret: true, ocspStapling: true, scts: true, serverName: hostnameInSNI(config.ServerName), supportedCurves: config.curvePreferences(maxVersion), supportedPoints: []uint8{pointFormatUncompressed}, secureRenegotiationSupported: true, alpnProtocols: config.NextProtos, supportedVersions: supportedVersions, } // The version at the beginning of the ClientHello was capped at TLS 1.2 // for compatibility reasons. The supported_versions extension is used // to negotiate versions now. See RFC 8446, Section 4.2.1. if hello.vers > VersionTLS12 { hello.vers = VersionTLS12 } if c.handshakes > 0 { hello.secureRenegotiation = c.clientFinished[:] } preferenceOrder := cipherSuitesPreferenceOrder if !hasAESGCMHardwareSupport { preferenceOrder = cipherSuitesPreferenceOrderNoAES } configCipherSuites := config.cipherSuites() hello.cipherSuites = make([]uint16, 0, len(configCipherSuites)) for _, suiteId := range preferenceOrder { suite := mutualCipherSuite(configCipherSuites, suiteId) if suite == nil { continue } // Don't advertise TLS 1.2-only cipher suites unless // we're attempting TLS 1.2. if maxVersion < VersionTLS12 && suite.flags&suiteTLS12 != 0 { continue } hello.cipherSuites = append(hello.cipherSuites, suiteId) } _, err := io.ReadFull(config.rand(), hello.random) if err != nil { return nil, nil, nil, errors.New("tls: short read from Rand: " + err.Error()) } // A random session ID is used to detect when the server accepted a ticket // and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as // a compatibility measure (see RFC 8446, Section 4.1.2). // // The session ID is not set for QUIC connections (see RFC 9001, Section 8.4). if c.quic == nil { hello.sessionId = make([]byte, 32) if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil { return nil, nil, nil, errors.New("tls: short read from Rand: " + err.Error()) } } if maxVersion >= VersionTLS12 { hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms() } if testingOnlyForceClientHelloSignatureAlgorithms != nil { hello.supportedSignatureAlgorithms = testingOnlyForceClientHelloSignatureAlgorithms } var keyShareKeys *keySharePrivateKeys if hello.supportedVersions[0] == VersionTLS13 { // Reset the list of ciphers when the client only supports TLS 1.3. if len(hello.supportedVersions) == 1 { hello.cipherSuites = nil } if needFIPS() { hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13FIPS...) } else if hasAESGCMHardwareSupport { hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13...) } else { hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13NoAES...) } if len(hello.supportedCurves) == 0 { return nil, nil, nil, errors.New("tls: no supported elliptic curves for ECDHE") } curveID := hello.supportedCurves[0] keyShareKeys = &keySharePrivateKeys{curveID: curveID} if curveID == x25519Kyber768Draft00 { keyShareKeys.ecdhe, err = generateECDHEKey(config.rand(), X25519) if err != nil { return nil, nil, nil, err } seed := make([]byte, mlkem768.SeedSize) if _, err := io.ReadFull(config.rand(), seed); err != nil { return nil, nil, nil, err } keyShareKeys.kyber, err = mlkem768.NewKeyFromSeed(seed) if err != nil { return nil, nil, nil, err } // For draft-tls-westerbaan-xyber768d00-03, we send both a hybrid // and a standard X25519 key share, since most servers will only // support the latter. We reuse the same X25519 ephemeral key for // both, as allowed by draft-ietf-tls-hybrid-design-09, Section 3.2. hello.keyShares = []keyShare{ {group: x25519Kyber768Draft00, data: append(keyShareKeys.ecdhe.PublicKey().Bytes(), keyShareKeys.kyber.EncapsulationKey()...)}, {group: X25519, data: keyShareKeys.ecdhe.PublicKey().Bytes()}, } } else { if _, ok := curveForCurveID(curveID); !ok { return nil, nil, nil, errors.New("tls: CurvePreferences includes unsupported curve") } keyShareKeys.ecdhe, err = generateECDHEKey(config.rand(), curveID) if err != nil { return nil, nil, nil, err } hello.keyShares = []keyShare{{group: curveID, data: keyShareKeys.ecdhe.PublicKey().Bytes()}} } } if c.quic != nil { p, err := c.quicGetTransportParameters() if err != nil { return nil, nil, nil, err } if p == nil { p = []byte{} } hello.quicTransportParameters = p } var ech *echContext if c.config.EncryptedClientHelloConfigList != nil { if c.config.MinVersion != 0 && c.config.MinVersion < VersionTLS13 { return nil, nil, nil, errors.New("tls: MinVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated") } if c.config.MaxVersion != 0 && c.config.MaxVersion <= VersionTLS12 { return nil, nil, nil, errors.New("tls: MaxVersion must be >= VersionTLS13 if EncryptedClientHelloConfigList is populated") } echConfigs, err := parseECHConfigList(c.config.EncryptedClientHelloConfigList) if err != nil { return nil, nil, nil, err } echConfig := pickECHConfig(echConfigs) if echConfig == nil { return nil, nil, nil, errors.New("tls: EncryptedClientHelloConfigList contains no valid configs") } ech = &echContext{config: echConfig} hello.encryptedClientHello = []byte{1} // indicate inner hello // We need to explicitly set these 1.2 fields to nil, as we do not // marshal them when encoding the inner hello, otherwise transcripts // will later mismatch. hello.supportedPoints = nil hello.ticketSupported = false hello.secureRenegotiationSupported = false hello.extendedMasterSecret = false echPK, err := hpke.ParseHPKEPublicKey(ech.config.KemID, ech.config.PublicKey) if err != nil { return nil, nil, nil, err } suite, err := pickECHCipherSuite(ech.config.SymmetricCipherSuite) if err != nil { return nil, nil, nil, err } ech.kdfID, ech.aeadID = suite.KDFID, suite.AEADID info := append([]byte("tls ech\x00"), ech.config.raw...) ech.encapsulatedKey, ech.hpkeContext, err = hpke.SetupSender(ech.config.KemID, suite.KDFID, suite.AEADID, echPK, info) if err != nil { return nil, nil, nil, err } } return hello, keyShareKeys, ech, nil } type echContext struct { config *echConfig hpkeContext *hpke.Sender encapsulatedKey []byte innerHello *clientHelloMsg innerTranscript hash.Hash kdfID uint16 aeadID uint16 echRejected bool } func (c *Conn) clientHandshake(ctx context.Context) (err error) { if c.config == nil { c.config = defaultConfig() } // This may be a renegotiation handshake, in which case some fields // need to be reset. c.didResume = false hello, keyShareKeys, ech, err := c.makeClientHello() if err != nil { return err } session, earlySecret, binderKey, err := c.loadSession(hello) if err != nil { return err } if session != nil { defer func() { // If we got a handshake failure when resuming a session, throw away // the session ticket. See RFC 5077, Section 3.2. // // RFC 8446 makes no mention of dropping tickets on failure, but it // does require servers to abort on invalid binders, so we need to // delete tickets to recover from a corrupted PSK. if err != nil { if cacheKey := c.clientSessionCacheKey(); cacheKey != "" { c.config.ClientSessionCache.Put(cacheKey, nil) } } }() } if ech != nil { // Split hello into inner and outer ech.innerHello = hello.clone() // Overwrite the server name in the outer hello with the public facing // name. hello.serverName = string(ech.config.PublicName) // Generate a new random for the outer hello. hello.random = make([]byte, 32) _, err = io.ReadFull(c.config.rand(), hello.random) if err != nil { return errors.New("tls: short read from Rand: " + err.Error()) } // NOTE: we don't do PSK GREASE, in line with boringssl, it's meant to // work around _possibly_ broken middleboxes, but there is little-to-no // evidence that this is actually a problem. if err := computeAndUpdateOuterECHExtension(hello, ech.innerHello, ech, true); err != nil { return err } } c.serverName = hello.serverName if _, err := c.writeHandshakeRecord(hello, nil); err != nil { return err } if hello.earlyData { suite := cipherSuiteTLS13ByID(session.cipherSuite) transcript := suite.hash.New() if err := transcriptMsg(hello, transcript); err != nil { return err } earlyTrafficSecret := suite.deriveSecret(earlySecret, clientEarlyTrafficLabel, transcript) c.quicSetWriteSecret(QUICEncryptionLevelEarly, suite.id, earlyTrafficSecret) } // serverHelloMsg is not included in the transcript msg, err := c.readHandshake(nil) if err != nil { return err } serverHello, ok := msg.(*serverHelloMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverHello, msg) } if err := c.pickTLSVersion(serverHello); err != nil { return err } // If we are negotiating a protocol version that's lower than what we // support, check for the server downgrade canaries. // See RFC 8446, Section 4.1.3. maxVers := c.config.maxSupportedVersion(roleClient) tls12Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS12 tls11Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS11 if maxVers == VersionTLS13 && c.vers <= VersionTLS12 && (tls12Downgrade || tls11Downgrade) || maxVers == VersionTLS12 && c.vers <= VersionTLS11 && tls11Downgrade { c.sendAlert(alertIllegalParameter) return errors.New("tls: downgrade attempt detected, possibly due to a MitM attack or a broken middlebox") } if c.vers == VersionTLS13 { hs := &clientHandshakeStateTLS13{ c: c, ctx: ctx, serverHello: serverHello, hello: hello, keyShareKeys: keyShareKeys, session: session, earlySecret: earlySecret, binderKey: binderKey, echContext: ech, } return hs.handshake() } hs := &clientHandshakeState{ c: c, ctx: ctx, serverHello: serverHello, hello: hello, session: session, } return hs.handshake() } func (c *Conn) loadSession(hello *clientHelloMsg) ( session *SessionState, earlySecret, binderKey []byte, err error) { if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil { return nil, nil, nil, nil } echInner := bytes.Equal(hello.encryptedClientHello, []byte{1}) // ticketSupported is a TLS 1.2 extension (as TLS 1.3 replaced tickets with PSK // identities) and ECH requires and forces TLS 1.3. hello.ticketSupported = true && !echInner if hello.supportedVersions[0] == VersionTLS13 { // Require DHE on resumption as it guarantees forward secrecy against // compromise of the session ticket key. See RFC 8446, Section 4.2.9. hello.pskModes = []uint8{pskModeDHE} } // Session resumption is not allowed if renegotiating because // renegotiation is primarily used to allow a client to send a client // certificate, which would be skipped if session resumption occurred. if c.handshakes != 0 { return nil, nil, nil, nil } // Try to resume a previously negotiated TLS session, if available. cacheKey := c.clientSessionCacheKey() if cacheKey == "" { return nil, nil, nil, nil } cs, ok := c.config.ClientSessionCache.Get(cacheKey) if !ok || cs == nil { return nil, nil, nil, nil } session = cs.session // Check that version used for the previous session is still valid. versOk := false for _, v := range hello.supportedVersions { if v == session.version { versOk = true break } } if !versOk { return nil, nil, nil, nil } // Check that the cached server certificate is not expired, and that it's // valid for the ServerName. This should be ensured by the cache key, but // protect the application from a faulty ClientSessionCache implementation. if c.config.time().After(session.peerCertificates[0].NotAfter) { // Expired certificate, delete the entry. c.config.ClientSessionCache.Put(cacheKey, nil) return nil, nil, nil, nil } if !c.config.InsecureSkipVerify { if len(session.verifiedChains) == 0 { // The original connection had InsecureSkipVerify, while this doesn't. return nil, nil, nil, nil } if err := session.peerCertificates[0].VerifyHostname(c.config.ServerName); err != nil { return nil, nil, nil, nil } } if session.version != VersionTLS13 { // In TLS 1.2 the cipher suite must match the resumed session. Ensure we // are still offering it. if mutualCipherSuite(hello.cipherSuites, session.cipherSuite) == nil { return nil, nil, nil, nil } hello.sessionTicket = session.ticket return } // Check that the session ticket is not expired. if c.config.time().After(time.Unix(int64(session.useBy), 0)) { c.config.ClientSessionCache.Put(cacheKey, nil) return nil, nil, nil, nil } // In TLS 1.3 the KDF hash must match the resumed session. Ensure we // offer at least one cipher suite with that hash. cipherSuite := cipherSuiteTLS13ByID(session.cipherSuite) if cipherSuite == nil { return nil, nil, nil, nil } cipherSuiteOk := false for _, offeredID := range hello.cipherSuites { offeredSuite := cipherSuiteTLS13ByID(offeredID) if offeredSuite != nil && offeredSuite.hash == cipherSuite.hash { cipherSuiteOk = true break } } if !cipherSuiteOk { return nil, nil, nil, nil } if c.quic != nil { if c.quic.enableSessionEvents { c.quicResumeSession(session) } // For 0-RTT, the cipher suite has to match exactly, and we need to be // offering the same ALPN. if session.EarlyData && mutualCipherSuiteTLS13(hello.cipherSuites, session.cipherSuite) != nil { for _, alpn := range hello.alpnProtocols { if alpn == session.alpnProtocol { hello.earlyData = true break } } } } // Set the pre_shared_key extension. See RFC 8446, Section 4.2.11.1. ticketAge := c.config.time().Sub(time.Unix(int64(session.createdAt), 0)) identity := pskIdentity{ label: session.ticket, obfuscatedTicketAge: uint32(ticketAge/time.Millisecond) + session.ageAdd, } hello.pskIdentities = []pskIdentity{identity} hello.pskBinders = [][]byte{make([]byte, cipherSuite.hash.Size())} // Compute the PSK binders. See RFC 8446, Section 4.2.11.2. earlySecret = cipherSuite.extract(session.secret, nil) binderKey = cipherSuite.deriveSecret(earlySecret, resumptionBinderLabel, nil) transcript := cipherSuite.hash.New() if err := computeAndUpdatePSK(hello, binderKey, transcript, cipherSuite.finishedHash); err != nil { return nil, nil, nil, err } return } func (c *Conn) pickTLSVersion(serverHello *serverHelloMsg) error { peerVersion := serverHello.vers if serverHello.supportedVersion != 0 { peerVersion = serverHello.supportedVersion } vers, ok := c.config.mutualVersion(roleClient, []uint16{peerVersion}) if !ok { c.sendAlert(alertProtocolVersion) return fmt.Errorf("tls: server selected unsupported protocol version %x", peerVersion) } c.vers = vers c.haveVers = true c.in.version = vers c.out.version = vers return nil } // Does the handshake, either a full one or resumes old session. Requires hs.c, // hs.hello, hs.serverHello, and, optionally, hs.session to be set. func (hs *clientHandshakeState) handshake() error { c := hs.c isResume, err := hs.processServerHello() if err != nil { return err } hs.finishedHash = newFinishedHash(c.vers, hs.suite) // No signatures of the handshake are needed in a resumption. // Otherwise, in a full handshake, if we don't have any certificates // configured then we will never send a CertificateVerify message and // thus no signatures are needed in that case either. if isResume || (len(c.config.Certificates) == 0 && c.config.GetClientCertificate == nil) { hs.finishedHash.discardHandshakeBuffer() } if err := transcriptMsg(hs.hello, &hs.finishedHash); err != nil { return err } if err := transcriptMsg(hs.serverHello, &hs.finishedHash); err != nil { return err } c.buffering = true c.didResume = isResume if isResume { if err := hs.establishKeys(); err != nil { return err } if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(c.serverFinished[:]); err != nil { return err } c.clientFinishedIsFirst = false // Make sure the connection is still being verified whether or not this // is a resumption. Resumptions currently don't reverify certificates so // they don't call verifyServerCertificate. See Issue 31641. if c.config.VerifyConnection != nil { if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil { c.sendAlert(alertBadCertificate) return err } } if err := hs.sendFinished(c.clientFinished[:]); err != nil { return err } if _, err := c.flush(); err != nil { return err } } else { if err := hs.doFullHandshake(); err != nil { return err } if err := hs.establishKeys(); err != nil { return err } if err := hs.sendFinished(c.clientFinished[:]); err != nil { return err } if _, err := c.flush(); err != nil { return err } c.clientFinishedIsFirst = true if err := hs.readSessionTicket(); err != nil { return err } if err := hs.readFinished(c.serverFinished[:]); err != nil { return err } } if err := hs.saveSessionTicket(); err != nil { return err } c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random) c.isHandshakeComplete.Store(true) return nil } func (hs *clientHandshakeState) pickCipherSuite() error { if hs.suite = mutualCipherSuite(hs.hello.cipherSuites, hs.serverHello.cipherSuite); hs.suite == nil { hs.c.sendAlert(alertHandshakeFailure) return errors.New("tls: server chose an unconfigured cipher suite") } if hs.c.config.CipherSuites == nil && !needFIPS() && rsaKexCiphers[hs.suite.id] { tlsrsakex.Value() // ensure godebug is initialized tlsrsakex.IncNonDefault() } if hs.c.config.CipherSuites == nil && !needFIPS() && tdesCiphers[hs.suite.id] { tls3des.Value() // ensure godebug is initialized tls3des.IncNonDefault() } hs.c.cipherSuite = hs.suite.id return nil } func (hs *clientHandshakeState) doFullHandshake() error { c := hs.c msg, err := c.readHandshake(&hs.finishedHash) if err != nil { return err } certMsg, ok := msg.(*certificateMsg) if !ok || len(certMsg.certificates) == 0 { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(certMsg, msg) } msg, err = c.readHandshake(&hs.finishedHash) if err != nil { return err } cs, ok := msg.(*certificateStatusMsg) if ok { // RFC4366 on Certificate Status Request: // The server MAY return a "certificate_status" message. if !hs.serverHello.ocspStapling { // If a server returns a "CertificateStatus" message, then the // server MUST have included an extension of type "status_request" // with empty "extension_data" in the extended server hello. c.sendAlert(alertUnexpectedMessage) return errors.New("tls: received unexpected CertificateStatus message") } c.ocspResponse = cs.response msg, err = c.readHandshake(&hs.finishedHash) if err != nil { return err } } if c.handshakes == 0 { // If this is the first handshake on a connection, process and // (optionally) verify the server's certificates. if err := c.verifyServerCertificate(certMsg.certificates); err != nil { return err } } else { // This is a renegotiation handshake. We require that the // server's identity (i.e. leaf certificate) is unchanged and // thus any previous trust decision is still valid. // // See https://mitls.org/pages/attacks/3SHAKE for the // motivation behind this requirement. if !bytes.Equal(c.peerCertificates[0].Raw, certMsg.certificates[0]) { c.sendAlert(alertBadCertificate) return errors.New("tls: server's identity changed during renegotiation") } } keyAgreement := hs.suite.ka(c.vers) skx, ok := msg.(*serverKeyExchangeMsg) if ok { err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, c.peerCertificates[0], skx) if err != nil { c.sendAlert(alertUnexpectedMessage) return err } if len(skx.key) >= 3 && skx.key[0] == 3 /* named curve */ { c.curveID = CurveID(byteorder.BeUint16(skx.key[1:])) } msg, err = c.readHandshake(&hs.finishedHash) if err != nil { return err } } var chainToSend *Certificate var certRequested bool certReq, ok := msg.(*certificateRequestMsg) if ok { certRequested = true cri := certificateRequestInfoFromMsg(hs.ctx, c.vers, certReq) if chainToSend, err = c.getClientCertificate(cri); err != nil { c.sendAlert(alertInternalError) return err } msg, err = c.readHandshake(&hs.finishedHash) if err != nil { return err } } shd, ok := msg.(*serverHelloDoneMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(shd, msg) } // If the server requested a certificate then we have to send a // Certificate message, even if it's empty because we don't have a // certificate to send. if certRequested { certMsg = new(certificateMsg) certMsg.certificates = chainToSend.Certificate if _, err := hs.c.writeHandshakeRecord(certMsg, &hs.finishedHash); err != nil { return err } } preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, c.peerCertificates[0]) if err != nil { c.sendAlert(alertInternalError) return err } if ckx != nil { if _, err := hs.c.writeHandshakeRecord(ckx, &hs.finishedHash); err != nil { return err } } if hs.serverHello.extendedMasterSecret { c.extMasterSecret = true hs.masterSecret = extMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.finishedHash.Sum()) } else { hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret, hs.hello.random, hs.serverHello.random) } if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.hello.random, hs.masterSecret); err != nil { c.sendAlert(alertInternalError) return errors.New("tls: failed to write to key log: " + err.Error()) } if chainToSend != nil && len(chainToSend.Certificate) > 0 { certVerify := &certificateVerifyMsg{} key, ok := chainToSend.PrivateKey.(crypto.Signer) if !ok { c.sendAlert(alertInternalError) return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", chainToSend.PrivateKey) } var sigType uint8 var sigHash crypto.Hash if c.vers >= VersionTLS12 { signatureAlgorithm, err := selectSignatureScheme(c.vers, chainToSend, certReq.supportedSignatureAlgorithms) if err != nil { c.sendAlert(alertIllegalParameter) return err } sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm) if err != nil { return c.sendAlert(alertInternalError) } certVerify.hasSignatureAlgorithm = true certVerify.signatureAlgorithm = signatureAlgorithm } else { sigType, sigHash, err = legacyTypeAndHashFromPublicKey(key.Public()) if err != nil { c.sendAlert(alertIllegalParameter) return err } } signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash) signOpts := crypto.SignerOpts(sigHash) if sigType == signatureRSAPSS { signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash} } certVerify.signature, err = key.Sign(c.config.rand(), signed, signOpts) if err != nil { c.sendAlert(alertInternalError) return err } if _, err := hs.c.writeHandshakeRecord(certVerify, &hs.finishedHash); err != nil { return err } } hs.finishedHash.discardHandshakeBuffer() return nil } func (hs *clientHandshakeState) establishKeys() error { c := hs.c clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV := keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen) var clientCipher, serverCipher any var clientHash, serverHash hash.Hash if hs.suite.cipher != nil { clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */) clientHash = hs.suite.mac(clientMAC) serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */) serverHash = hs.suite.mac(serverMAC) } else { clientCipher = hs.suite.aead(clientKey, clientIV) serverCipher = hs.suite.aead(serverKey, serverIV) } c.in.prepareCipherSpec(c.vers, serverCipher, serverHash) c.out.prepareCipherSpec(c.vers, clientCipher, clientHash) return nil } func (hs *clientHandshakeState) serverResumedSession() bool { // If the server responded with the same sessionId then it means the // sessionTicket is being used to resume a TLS session. return hs.session != nil && hs.hello.sessionId != nil && bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId) } func (hs *clientHandshakeState) processServerHello() (bool, error) { c := hs.c if err := hs.pickCipherSuite(); err != nil { return false, err } if hs.serverHello.compressionMethod != compressionNone { c.sendAlert(alertUnexpectedMessage) return false, errors.New("tls: server selected unsupported compression format") } if c.handshakes == 0 && hs.serverHello.secureRenegotiationSupported { c.secureRenegotiation = true if len(hs.serverHello.secureRenegotiation) != 0 { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: initial handshake had non-empty renegotiation extension") } } if c.handshakes > 0 && c.secureRenegotiation { var expectedSecureRenegotiation [24]byte copy(expectedSecureRenegotiation[:], c.clientFinished[:]) copy(expectedSecureRenegotiation[12:], c.serverFinished[:]) if !bytes.Equal(hs.serverHello.secureRenegotiation, expectedSecureRenegotiation[:]) { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: incorrect renegotiation extension contents") } } if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol, false); err != nil { c.sendAlert(alertUnsupportedExtension) return false, err } c.clientProtocol = hs.serverHello.alpnProtocol c.scts = hs.serverHello.scts if !hs.serverResumedSession() { return false, nil } if hs.session.version != c.vers { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server resumed a session with a different version") } if hs.session.cipherSuite != hs.suite.id { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server resumed a session with a different cipher suite") } // RFC 7627, Section 5.3 if hs.session.extMasterSecret != hs.serverHello.extendedMasterSecret { c.sendAlert(alertHandshakeFailure) return false, errors.New("tls: server resumed a session with a different EMS extension") } // Restore master secret and certificates from previous state hs.masterSecret = hs.session.secret c.extMasterSecret = hs.session.extMasterSecret c.peerCertificates = hs.session.peerCertificates c.activeCertHandles = hs.c.activeCertHandles c.verifiedChains = hs.session.verifiedChains c.ocspResponse = hs.session.ocspResponse // Let the ServerHello SCTs override the session SCTs from the original // connection, if any are provided if len(c.scts) == 0 && len(hs.session.scts) != 0 { c.scts = hs.session.scts } return true, nil } // checkALPN ensure that the server's choice of ALPN protocol is compatible with // the protocols that we advertised in the Client Hello. func checkALPN(clientProtos []string, serverProto string, quic bool) error { if serverProto == "" { if quic && len(clientProtos) > 0 { // RFC 9001, Section 8.1 return errors.New("tls: server did not select an ALPN protocol") } return nil } if len(clientProtos) == 0 { return errors.New("tls: server advertised unrequested ALPN extension") } for _, proto := range clientProtos { if proto == serverProto { return nil } } return errors.New("tls: server selected unadvertised ALPN protocol") } func (hs *clientHandshakeState) readFinished(out []byte) error { c := hs.c if err := c.readChangeCipherSpec(); err != nil { return err } // finishedMsg is included in the transcript, but not until after we // check the client version, since the state before this message was // sent is used during verification. msg, err := c.readHandshake(nil) if err != nil { return err } serverFinished, ok := msg.(*finishedMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(serverFinished, msg) } verify := hs.finishedHash.serverSum(hs.masterSecret) if len(verify) != len(serverFinished.verifyData) || subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 { c.sendAlert(alertHandshakeFailure) return errors.New("tls: server's Finished message was incorrect") } if err := transcriptMsg(serverFinished, &hs.finishedHash); err != nil { return err } copy(out, verify) return nil } func (hs *clientHandshakeState) readSessionTicket() error { if !hs.serverHello.ticketSupported { return nil } c := hs.c if !hs.hello.ticketSupported { c.sendAlert(alertIllegalParameter) return errors.New("tls: server sent unrequested session ticket") } msg, err := c.readHandshake(&hs.finishedHash) if err != nil { return err } sessionTicketMsg, ok := msg.(*newSessionTicketMsg) if !ok { c.sendAlert(alertUnexpectedMessage) return unexpectedMessageError(sessionTicketMsg, msg) } hs.ticket = sessionTicketMsg.ticket return nil } func (hs *clientHandshakeState) saveSessionTicket() error { if hs.ticket == nil { return nil } c := hs.c cacheKey := c.clientSessionCacheKey() if cacheKey == "" { return nil } session := c.sessionState() session.secret = hs.masterSecret session.ticket = hs.ticket cs := &ClientSessionState{session: session} c.config.ClientSessionCache.Put(cacheKey, cs) return nil } func (hs *clientHandshakeState) sendFinished(out []byte) error { c := hs.c if err := c.writeChangeCipherRecord(); err != nil { return err } finished := new(finishedMsg) finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret) if _, err := hs.c.writeHandshakeRecord(finished, &hs.finishedHash); err != nil { return err } copy(out, finished.verifyData) return nil } // defaultMaxRSAKeySize is the maximum RSA key size in bits that we are willing // to verify the signatures of during a TLS handshake. const defaultMaxRSAKeySize = 8192 var tlsmaxrsasize = godebug.New("tlsmaxrsasize") func checkKeySize(n int) (max int, ok bool) { if v := tlsmaxrsasize.Value(); v != "" { if max, err := strconv.Atoi(v); err == nil { if (n <= max) != (n <= defaultMaxRSAKeySize) { tlsmaxrsasize.IncNonDefault() } return max, n <= max } } return defaultMaxRSAKeySize, n <= defaultMaxRSAKeySize } // verifyServerCertificate parses and verifies the provided chain, setting // c.verifiedChains and c.peerCertificates or sending the appropriate alert. func (c *Conn) verifyServerCertificate(certificates [][]byte) error { activeHandles := make([]*activeCert, len(certificates)) certs := make([]*x509.Certificate, len(certificates)) for i, asn1Data := range certificates { cert, err := globalCertCache.newCert(asn1Data) if err != nil { c.sendAlert(alertBadCertificate) return errors.New("tls: failed to parse certificate from server: " + err.Error()) } if cert.cert.PublicKeyAlgorithm == x509.RSA { n := cert.cert.PublicKey.(*rsa.PublicKey).N.BitLen() if max, ok := checkKeySize(n); !ok { c.sendAlert(alertBadCertificate) return fmt.Errorf("tls: server sent certificate containing RSA key larger than %d bits", max) } } activeHandles[i] = cert certs[i] = cert.cert } echRejected := c.config.EncryptedClientHelloConfigList != nil && !c.echAccepted if echRejected { if c.config.EncryptedClientHelloRejectionVerify != nil { if err := c.config.EncryptedClientHelloRejectionVerify(c.connectionStateLocked()); err != nil { c.sendAlert(alertBadCertificate) return err } } else { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.serverName, Intermediates: x509.NewCertPool(), } for _, cert := range certs[1:] { opts.Intermediates.AddCert(cert) } var err error c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err} } } } else if !c.config.InsecureSkipVerify { opts := x509.VerifyOptions{ Roots: c.config.RootCAs, CurrentTime: c.config.time(), DNSName: c.config.ServerName, Intermediates: x509.NewCertPool(), } for _, cert := range certs[1:] { opts.Intermediates.AddCert(cert) } var err error c.verifiedChains, err = certs[0].Verify(opts) if err != nil { c.sendAlert(alertBadCertificate) return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err} } } switch certs[0].PublicKey.(type) { case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey: break default: c.sendAlert(alertUnsupportedCertificate) return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey) } c.activeCertHandles = activeHandles c.peerCertificates = certs if c.config.VerifyPeerCertificate != nil && !echRejected { if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil { c.sendAlert(alertBadCertificate) return err } } if c.config.VerifyConnection != nil && !echRejected { if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil { c.sendAlert(alertBadCertificate) return err } } return nil } // certificateRequestInfoFromMsg generates a CertificateRequestInfo from a TLS // <= 1.2 CertificateRequest, making an effort to fill in missing information. func certificateRequestInfoFromMsg(ctx context.Context, vers uint16, certReq *certificateRequestMsg) *CertificateRequestInfo { cri := &CertificateRequestInfo{ AcceptableCAs: certReq.certificateAuthorities, Version: vers, ctx: ctx, } var rsaAvail, ecAvail bool for _, certType := range certReq.certificateTypes { switch certType { case certTypeRSASign: rsaAvail = true case certTypeECDSASign: ecAvail = true } } if !certReq.hasSignatureAlgorithm { // Prior to TLS 1.2, signature schemes did not exist. In this case we // make up a list based on the acceptable certificate types, to help // GetClientCertificate and SupportsCertificate select the right certificate. // The hash part of the SignatureScheme is a lie here, because // TLS 1.0 and 1.1 always use MD5+SHA1 for RSA and SHA1 for ECDSA. switch { case rsaAvail && ecAvail: cri.SignatureSchemes = []SignatureScheme{ ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1, } case rsaAvail: cri.SignatureSchemes = []SignatureScheme{ PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1, } case ecAvail: cri.SignatureSchemes = []SignatureScheme{ ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512, } } return cri } // Filter the signature schemes based on the certificate types. // See RFC 5246, Section 7.4.4 (where it calls this "somewhat complicated"). cri.SignatureSchemes = make([]SignatureScheme, 0, len(certReq.supportedSignatureAlgorithms)) for _, sigScheme := range certReq.supportedSignatureAlgorithms { sigType, _, err := typeAndHashFromSignatureScheme(sigScheme) if err != nil { continue } switch sigType { case signatureECDSA, signatureEd25519: if ecAvail { cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme) } case signatureRSAPSS, signaturePKCS1v15: if rsaAvail { cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme) } } } return cri } func (c *Conn) getClientCertificate(cri *CertificateRequestInfo) (*Certificate, error) { if c.config.GetClientCertificate != nil { return c.config.GetClientCertificate(cri) } for _, chain := range c.config.Certificates { if err := cri.SupportsCertificate(&chain); err != nil { continue } return &chain, nil } // No acceptable certificate found. Don't send a certificate. return new(Certificate), nil } // clientSessionCacheKey returns a key used to cache sessionTickets that could // be used to resume previously negotiated TLS sessions with a server. func (c *Conn) clientSessionCacheKey() string { if len(c.config.ServerName) > 0 { return c.config.ServerName } if c.conn != nil { return c.conn.RemoteAddr().String() } return "" } // hostnameInSNI converts name into an appropriate hostname for SNI. // Literal IP addresses and absolute FQDNs are not permitted as SNI values. // See RFC 6066, Section 3. func hostnameInSNI(name string) string { host := name if len(host) > 0 && host[0] == '[' && host[len(host)-1] == ']' { host = host[1 : len(host)-1] } if i := strings.LastIndex(host, "%"); i > 0 { host = host[:i] } if net.ParseIP(host) != nil { return "" } for len(name) > 0 && name[len(name)-1] == '.' { name = name[:len(name)-1] } return name } func computeAndUpdatePSK(m *clientHelloMsg, binderKey []byte, transcript hash.Hash, finishedHash func([]byte, hash.Hash) []byte) error { helloBytes, err := m.marshalWithoutBinders() if err != nil { return err } transcript.Write(helloBytes) pskBinders := [][]byte{finishedHash(binderKey, transcript)} return m.updateBinders(pskBinders) }