// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "fmt" "go/ast" "go/token" . "internal/types/errors" ) // ---------------------------------------------------------------------------- // API // A Signature represents a (non-builtin) function or method type. // The receiver is ignored when comparing signatures for identity. type Signature struct { // We need to keep the scope in Signature (rather than passing it around // and store it in the Func Object) because when type-checking a function // literal we call the general type checker which returns a general Type. // We then unpack the *Signature and use the scope for the literal body. rparams *TypeParamList // receiver type parameters from left to right, or nil tparams *TypeParamList // type parameters from left to right, or nil scope *Scope // function scope for package-local and non-instantiated signatures; nil otherwise recv *Var // nil if not a method params *Tuple // (incoming) parameters from left to right; or nil results *Tuple // (outgoing) results from left to right; or nil variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only) } // NewSignature returns a new function type for the given receiver, parameters, // and results, either of which may be nil. If variadic is set, the function // is variadic, it must have at least one parameter, and the last parameter // must be of unnamed slice type. // // Deprecated: Use [NewSignatureType] instead which allows for type parameters. func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature { return NewSignatureType(recv, nil, nil, params, results, variadic) } // NewSignatureType creates a new function type for the given receiver, // receiver type parameters, type parameters, parameters, and results. If // variadic is set, params must hold at least one parameter and the last // parameter's core type must be of unnamed slice or bytestring type. // If recv is non-nil, typeParams must be empty. If recvTypeParams is // non-empty, recv must be non-nil. func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature { if variadic { n := params.Len() if n == 0 { panic("variadic function must have at least one parameter") } core := coreString(params.At(n - 1).typ) if _, ok := core.(*Slice); !ok && !isString(core) { panic(fmt.Sprintf("got %s, want variadic parameter with unnamed slice type or string as core type", core.String())) } } sig := &Signature{recv: recv, params: params, results: results, variadic: variadic} if len(recvTypeParams) != 0 { if recv == nil { panic("function with receiver type parameters must have a receiver") } sig.rparams = bindTParams(recvTypeParams) } if len(typeParams) != 0 { if recv != nil { panic("function with type parameters cannot have a receiver") } sig.tparams = bindTParams(typeParams) } return sig } // Recv returns the receiver of signature s (if a method), or nil if a // function. It is ignored when comparing signatures for identity. // // For an abstract method, Recv returns the enclosing interface either // as a *[Named] or an *[Interface]. Due to embedding, an interface may // contain methods whose receiver type is a different interface. func (s *Signature) Recv() *Var { return s.recv } // TypeParams returns the type parameters of signature s, or nil. func (s *Signature) TypeParams() *TypeParamList { return s.tparams } // RecvTypeParams returns the receiver type parameters of signature s, or nil. func (s *Signature) RecvTypeParams() *TypeParamList { return s.rparams } // Params returns the parameters of signature s, or nil. func (s *Signature) Params() *Tuple { return s.params } // Results returns the results of signature s, or nil. func (s *Signature) Results() *Tuple { return s.results } // Variadic reports whether the signature s is variadic. func (s *Signature) Variadic() bool { return s.variadic } func (s *Signature) Underlying() Type { return s } func (s *Signature) String() string { return TypeString(s, nil) } // ---------------------------------------------------------------------------- // Implementation // funcType type-checks a function or method type. func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) { check.openScope(ftyp, "function") check.scope.isFunc = true check.recordScope(ftyp, check.scope) sig.scope = check.scope defer check.closeScope() // collect method receiver, if any var recv *Var var rparams *TypeParamList if recvPar != nil && recvPar.NumFields() > 0 { // We have at least one receiver; make sure we don't have more than one. if n := len(recvPar.List); n > 1 { check.error(recvPar.List[n-1], InvalidRecv, "method has multiple receivers") // continue with first one } // all type parameters' scopes start after the method name scopePos := ftyp.Pos() recv, rparams = check.collectRecv(recvPar.List[0], scopePos) } // collect and declare function type parameters if ftyp.TypeParams != nil { // Always type-check method type parameters but complain that they are not allowed. // (A separate check is needed when type-checking interface method signatures because // they don't have a receiver specification.) if recvPar != nil { check.error(ftyp.TypeParams, InvalidMethodTypeParams, "methods cannot have type parameters") } check.collectTypeParams(&sig.tparams, ftyp.TypeParams) } // collect ordinary and result parameters pnames, params, variadic := check.collectParams(ftyp.Params, true) rnames, results, _ := check.collectParams(ftyp.Results, false) // declare named receiver, ordinary, and result parameters scopePos := ftyp.End() // all parameter's scopes start after the signature if recv != nil && recv.name != "" { check.declare(check.scope, recvPar.List[0].Names[0], recv, scopePos) } check.declareParams(pnames, params, scopePos) check.declareParams(rnames, results, scopePos) sig.recv = recv sig.rparams = rparams sig.params = NewTuple(params...) sig.results = NewTuple(results...) sig.variadic = variadic } // collectRecv extracts the method receiver and its type parameters (if any) from rparam. // It declares the type parameters (but not the receiver) in the current scope, and // returns the receiver variable and its type parameter list (if any). func (check *Checker) collectRecv(rparam *ast.Field, scopePos token.Pos) (recv *Var, recvTParamsList *TypeParamList) { // Unpack the receiver parameter which is of the form // // "(" [rfield] ["*"] rbase ["[" rtparams "]"] ")" // // The receiver name rname, the pointer indirection, and the // receiver type parameters rtparams may not be present. rptr, rbase, rtparams := check.unpackRecv(rparam.Type, true) // Determine the receiver base type. var recvType Type = Typ[Invalid] if rtparams == nil { // If there are no type parameters, we can simply typecheck rparam.Type. // If that is a generic type, varType will complain. // Further receiver constraints will be checked later, with validRecv. // We use rparam.Type (rather than base) to correctly record pointer // and parentheses in types.Info (was bug, see go.dev/issue/68639). recvType = check.varType(rparam.Type) } else { // If there are type parameters, rbase must denote a generic base type. var baseType *Named var cause string if t := check.genericType(rbase, &cause); cause == "" { baseType = asNamed(t) } else { check.errorf(rbase, InvalidRecv, "%s", cause) // ok to continue } // Collect the type parameters declared by the receiver (see also // Checker.collectTypeParams). The scope of the type parameter T in // "func (r T[T]) f() {}" starts after f, not at r, so we declare it // after typechecking rbase (see go.dev/issue/52038). recvTParams := make([]*TypeParam, len(rtparams)) for i, rparam := range rtparams { tpar := check.declareTypeParam(rparam, scopePos) recvTParams[i] = tpar // For historic reasons, type parameters in receiver type expressions // are considered both definitions and uses and thus must be recorded // in the Info.Uses and Info.Types maps (see go.dev/issue/68670). check.recordUse(rparam, tpar.obj) check.recordTypeAndValue(rparam, typexpr, tpar, nil) } recvTParamsList = bindTParams(recvTParams) // Get the type parameter bounds from the receiver base type // and set them for the respective (local) receiver type parameters. if baseType != nil { baseTParams := baseType.TypeParams().list() if len(recvTParams) == len(baseTParams) { smap := makeRenameMap(baseTParams, recvTParams) for i, recvTPar := range recvTParams { baseTPar := baseTParams[i] check.mono.recordCanon(recvTPar, baseTPar) // baseTPar.bound is possibly parameterized by other type parameters // defined by the generic base type. Substitute those parameters with // the receiver type parameters declared by the current method. recvTPar.bound = check.subst(recvTPar.obj.pos, baseTPar.bound, smap, nil, check.context()) } } else { got := measure(len(recvTParams), "type parameter") check.errorf(rbase, BadRecv, "receiver declares %s, but receiver base type declares %d", got, len(baseTParams)) } // The type parameters declared by the receiver also serve as // type arguments for the receiver type. Instantiate the receiver. check.verifyVersionf(rbase, go1_18, "type instantiation") targs := make([]Type, len(recvTParams)) for i, targ := range recvTParams { targs[i] = targ } recvType = check.instance(rparam.Type.Pos(), baseType, targs, nil, check.context()) check.recordInstance(rbase, targs, recvType) // Reestablish pointerness if needed (but avoid a pointer to an invalid type). if rptr && isValid(recvType) { recvType = NewPointer(recvType) } check.recordParenthesizedRecvTypes(rparam.Type, recvType) } } // Make sure we have no more than one receiver name. var rname *ast.Ident if n := len(rparam.Names); n >= 1 { if n > 1 { check.error(rparam.Names[n-1], InvalidRecv, "method has multiple receivers") } rname = rparam.Names[0] } // Create the receiver parameter. if rname != nil && rname.Name != "" { // named receiver recv = NewParam(rname.Pos(), check.pkg, rname.Name, recvType) // In this case, the receiver is declared by the caller // because it must be declared after any type parameters // (otherwise it might shadow one of them). } else { // anonymous receiver recv = NewParam(rparam.Pos(), check.pkg, "", recvType) check.recordImplicit(rparam, recv) } // Delay validation of receiver type as it may cause premature expansion of types // the receiver type is dependent on (see go.dev/issue/51232, go.dev/issue/51233). check.later(func() { check.validRecv(recv, len(rtparams) != 0) }).describef(recv, "validRecv(%s)", recv) return } // recordParenthesizedRecvTypes records parenthesized intermediate receiver type // expressions that all map to the same type, by recursively unpacking expr and // recording the corresponding type for it. Example: // // expression --> type // ---------------------- // (*(T[P])) *T[P] // *(T[P]) *T[P] // (T[P]) T[P] // T[P] T[P] func (check *Checker) recordParenthesizedRecvTypes(expr ast.Expr, typ Type) { for { check.recordTypeAndValue(expr, typexpr, typ, nil) switch e := expr.(type) { case *ast.ParenExpr: expr = e.X case *ast.StarExpr: expr = e.X // In a correct program, typ must be an unnamed // pointer type. But be careful and don't panic. ptr, _ := typ.(*Pointer) if ptr == nil { return // something is wrong } typ = ptr.base default: return // cannot unpack any further } } } // collectParams collects (but does not declare) all parameters of list and returns // the list of parameter names, corresponding parameter variables, and whether the // parameter list is variadic. Anonymous parameters are recorded with nil names. func (check *Checker) collectParams(list *ast.FieldList, variadicOk bool) (names []*ast.Ident, params []*Var, variadic bool) { if list == nil { return } var named, anonymous bool for i, field := range list.List { ftype := field.Type if t, _ := ftype.(*ast.Ellipsis); t != nil { ftype = t.Elt if variadicOk && i == len(list.List)-1 && len(field.Names) <= 1 { variadic = true } else { check.softErrorf(t, MisplacedDotDotDot, "can only use ... with final parameter in list") // ignore ... and continue } } typ := check.varType(ftype) // The parser ensures that f.Tag is nil and we don't // care if a constructed AST contains a non-nil tag. if len(field.Names) > 0 { // named parameter for _, name := range field.Names { if name.Name == "" { check.error(name, InvalidSyntaxTree, "anonymous parameter") // ok to continue } par := NewParam(name.Pos(), check.pkg, name.Name, typ) // named parameter is declared by caller names = append(names, name) params = append(params, par) } named = true } else { // anonymous parameter par := NewParam(ftype.Pos(), check.pkg, "", typ) check.recordImplicit(field, par) names = append(names, nil) params = append(params, par) anonymous = true } } if named && anonymous { check.error(list, InvalidSyntaxTree, "list contains both named and anonymous parameters") // ok to continue } // For a variadic function, change the last parameter's type from T to []T. // Since we type-checked T rather than ...T, we also need to retro-actively // record the type for ...T. if variadic { last := params[len(params)-1] last.typ = &Slice{elem: last.typ} check.recordTypeAndValue(list.List[len(list.List)-1].Type, typexpr, last.typ, nil) } return } // declareParams declares each named parameter in the current scope. func (check *Checker) declareParams(names []*ast.Ident, params []*Var, scopePos token.Pos) { for i, name := range names { if name != nil && name.Name != "" { check.declare(check.scope, name, params[i], scopePos) } } } // validRecv verifies that the receiver satisfies its respective spec requirements // and reports an error otherwise. If hasTypeParams is set, the receiver declares // type parameters. func (check *Checker) validRecv(recv *Var, hasTypeParams bool) { // spec: "The receiver type must be of the form T or *T where T is a type name." rtyp, _ := deref(recv.typ) atyp := Unalias(rtyp) if !isValid(atyp) { return // error was reported before } // spec: "The type denoted by T is called the receiver base type; it must not // be a pointer or interface type and it must be declared in the same package // as the method." switch T := atyp.(type) { case *Named: // The receiver type may be an instantiated type referred to // by an alias (which cannot have receiver parameters for now). // TODO(gri) revisit this logic since alias types can have // type parameters in 1.24 if T.TypeArgs() != nil && !hasTypeParams { check.errorf(recv, InvalidRecv, "cannot define new methods on instantiated type %s", rtyp) break } if T.obj.pkg != check.pkg { check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp) break } var cause string switch u := T.under().(type) { case *Basic: // unsafe.Pointer is treated like a regular pointer if u.kind == UnsafePointer { cause = "unsafe.Pointer" } case *Pointer, *Interface: cause = "pointer or interface type" case *TypeParam: // The underlying type of a receiver base type cannot be a // type parameter: "type T[P any] P" is not a valid declaration. panic("unreachable") } if cause != "" { check.errorf(recv, InvalidRecv, "invalid receiver type %s (%s)", rtyp, cause) } case *Basic: check.errorf(recv, InvalidRecv, "cannot define new methods on non-local type %s", rtyp) default: check.errorf(recv, InvalidRecv, "invalid receiver type %s", recv.typ) } }