Source file src/go/types/unify.go

     1  // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.
     2  // Source: ../../cmd/compile/internal/types2/unify.go
     3  
     4  // Copyright 2020 The Go Authors. All rights reserved.
     5  // Use of this source code is governed by a BSD-style
     6  // license that can be found in the LICENSE file.
     7  
     8  // This file implements type unification.
     9  //
    10  // Type unification attempts to make two types x and y structurally
    11  // equivalent by determining the types for a given list of (bound)
    12  // type parameters which may occur within x and y. If x and y are
    13  // structurally different (say []T vs chan T), or conflicting
    14  // types are determined for type parameters, unification fails.
    15  // If unification succeeds, as a side-effect, the types of the
    16  // bound type parameters may be determined.
    17  //
    18  // Unification typically requires multiple calls u.unify(x, y) to
    19  // a given unifier u, with various combinations of types x and y.
    20  // In each call, additional type parameter types may be determined
    21  // as a side effect and recorded in u.
    22  // If a call fails (returns false), unification fails.
    23  //
    24  // In the unification context, structural equivalence of two types
    25  // ignores the difference between a defined type and its underlying
    26  // type if one type is a defined type and the other one is not.
    27  // It also ignores the difference between an (external, unbound)
    28  // type parameter and its core type.
    29  // If two types are not structurally equivalent, they cannot be Go
    30  // identical types. On the other hand, if they are structurally
    31  // equivalent, they may be Go identical or at least assignable, or
    32  // they may be in the type set of a constraint.
    33  // Whether they indeed are identical or assignable is determined
    34  // upon instantiation and function argument passing.
    35  
    36  package types
    37  
    38  import (
    39  	"bytes"
    40  	"fmt"
    41  	"sort"
    42  	"strings"
    43  )
    44  
    45  const (
    46  	// Upper limit for recursion depth. Used to catch infinite recursions
    47  	// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
    48  	unificationDepthLimit = 50
    49  
    50  	// Whether to panic when unificationDepthLimit is reached.
    51  	// If disabled, a recursion depth overflow results in a (quiet)
    52  	// unification failure.
    53  	panicAtUnificationDepthLimit = true
    54  
    55  	// If enableCoreTypeUnification is set, unification will consider
    56  	// the core types, if any, of non-local (unbound) type parameters.
    57  	enableCoreTypeUnification = true
    58  
    59  	// If traceInference is set, unification will print a trace of its operation.
    60  	// Interpretation of trace:
    61  	//   x ≡ y    attempt to unify types x and y
    62  	//   p ➞ y    type parameter p is set to type y (p is inferred to be y)
    63  	//   p ⇄ q    type parameters p and q match (p is inferred to be q and vice versa)
    64  	//   x ≢ y    types x and y cannot be unified
    65  	//   [p, q, ...] ➞ [x, y, ...]    mapping from type parameters to types
    66  	traceInference = false
    67  )
    68  
    69  // A unifier maintains a list of type parameters and
    70  // corresponding types inferred for each type parameter.
    71  // A unifier is created by calling newUnifier.
    72  type unifier struct {
    73  	// handles maps each type parameter to its inferred type through
    74  	// an indirection *Type called (inferred type) "handle".
    75  	// Initially, each type parameter has its own, separate handle,
    76  	// with a nil (i.e., not yet inferred) type.
    77  	// After a type parameter P is unified with a type parameter Q,
    78  	// P and Q share the same handle (and thus type). This ensures
    79  	// that inferring the type for a given type parameter P will
    80  	// automatically infer the same type for all other parameters
    81  	// unified (joined) with P.
    82  	handles                  map[*TypeParam]*Type
    83  	depth                    int  // recursion depth during unification
    84  	enableInterfaceInference bool // use shared methods for better inference
    85  }
    86  
    87  // newUnifier returns a new unifier initialized with the given type parameter
    88  // and corresponding type argument lists. The type argument list may be shorter
    89  // than the type parameter list, and it may contain nil types. Matching type
    90  // parameters and arguments must have the same index.
    91  func newUnifier(tparams []*TypeParam, targs []Type, enableInterfaceInference bool) *unifier {
    92  	assert(len(tparams) >= len(targs))
    93  	handles := make(map[*TypeParam]*Type, len(tparams))
    94  	// Allocate all handles up-front: in a correct program, all type parameters
    95  	// must be resolved and thus eventually will get a handle.
    96  	// Also, sharing of handles caused by unified type parameters is rare and
    97  	// so it's ok to not optimize for that case (and delay handle allocation).
    98  	for i, x := range tparams {
    99  		var t Type
   100  		if i < len(targs) {
   101  			t = targs[i]
   102  		}
   103  		handles[x] = &t
   104  	}
   105  	return &unifier{handles, 0, enableInterfaceInference}
   106  }
   107  
   108  // unifyMode controls the behavior of the unifier.
   109  type unifyMode uint
   110  
   111  const (
   112  	// If assign is set, we are unifying types involved in an assignment:
   113  	// they may match inexactly at the top, but element types must match
   114  	// exactly.
   115  	assign unifyMode = 1 << iota
   116  
   117  	// If exact is set, types unify if they are identical (or can be
   118  	// made identical with suitable arguments for type parameters).
   119  	// Otherwise, a named type and a type literal unify if their
   120  	// underlying types unify, channel directions are ignored, and
   121  	// if there is an interface, the other type must implement the
   122  	// interface.
   123  	exact
   124  )
   125  
   126  func (m unifyMode) String() string {
   127  	switch m {
   128  	case 0:
   129  		return "inexact"
   130  	case assign:
   131  		return "assign"
   132  	case exact:
   133  		return "exact"
   134  	case assign | exact:
   135  		return "assign, exact"
   136  	}
   137  	return fmt.Sprintf("mode %d", m)
   138  }
   139  
   140  // unify attempts to unify x and y and reports whether it succeeded.
   141  // As a side-effect, types may be inferred for type parameters.
   142  // The mode parameter controls how types are compared.
   143  func (u *unifier) unify(x, y Type, mode unifyMode) bool {
   144  	return u.nify(x, y, mode, nil)
   145  }
   146  
   147  func (u *unifier) tracef(format string, args ...interface{}) {
   148  	fmt.Println(strings.Repeat(".  ", u.depth) + sprintf(nil, nil, true, format, args...))
   149  }
   150  
   151  // String returns a string representation of the current mapping
   152  // from type parameters to types.
   153  func (u *unifier) String() string {
   154  	// sort type parameters for reproducible strings
   155  	tparams := make(typeParamsById, len(u.handles))
   156  	i := 0
   157  	for tpar := range u.handles {
   158  		tparams[i] = tpar
   159  		i++
   160  	}
   161  	sort.Sort(tparams)
   162  
   163  	var buf bytes.Buffer
   164  	w := newTypeWriter(&buf, nil)
   165  	w.byte('[')
   166  	for i, x := range tparams {
   167  		if i > 0 {
   168  			w.string(", ")
   169  		}
   170  		w.typ(x)
   171  		w.string(": ")
   172  		w.typ(u.at(x))
   173  	}
   174  	w.byte(']')
   175  	return buf.String()
   176  }
   177  
   178  type typeParamsById []*TypeParam
   179  
   180  func (s typeParamsById) Len() int           { return len(s) }
   181  func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
   182  func (s typeParamsById) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   183  
   184  // join unifies the given type parameters x and y.
   185  // If both type parameters already have a type associated with them
   186  // and they are not joined, join fails and returns false.
   187  func (u *unifier) join(x, y *TypeParam) bool {
   188  	if traceInference {
   189  		u.tracef("%s ⇄ %s", x, y)
   190  	}
   191  	switch hx, hy := u.handles[x], u.handles[y]; {
   192  	case hx == hy:
   193  		// Both type parameters already share the same handle. Nothing to do.
   194  	case *hx != nil && *hy != nil:
   195  		// Both type parameters have (possibly different) inferred types. Cannot join.
   196  		return false
   197  	case *hx != nil:
   198  		// Only type parameter x has an inferred type. Use handle of x.
   199  		u.setHandle(y, hx)
   200  	// This case is treated like the default case.
   201  	// case *hy != nil:
   202  	// 	// Only type parameter y has an inferred type. Use handle of y.
   203  	//	u.setHandle(x, hy)
   204  	default:
   205  		// Neither type parameter has an inferred type. Use handle of y.
   206  		u.setHandle(x, hy)
   207  	}
   208  	return true
   209  }
   210  
   211  // asBoundTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
   212  // Otherwise, the result is nil.
   213  func (u *unifier) asBoundTypeParam(x Type) *TypeParam {
   214  	if x, _ := Unalias(x).(*TypeParam); x != nil {
   215  		if _, found := u.handles[x]; found {
   216  			return x
   217  		}
   218  	}
   219  	return nil
   220  }
   221  
   222  // setHandle sets the handle for type parameter x
   223  // (and all its joined type parameters) to h.
   224  func (u *unifier) setHandle(x *TypeParam, h *Type) {
   225  	hx := u.handles[x]
   226  	assert(hx != nil)
   227  	for y, hy := range u.handles {
   228  		if hy == hx {
   229  			u.handles[y] = h
   230  		}
   231  	}
   232  }
   233  
   234  // at returns the (possibly nil) type for type parameter x.
   235  func (u *unifier) at(x *TypeParam) Type {
   236  	return *u.handles[x]
   237  }
   238  
   239  // set sets the type t for type parameter x;
   240  // t must not be nil.
   241  func (u *unifier) set(x *TypeParam, t Type) {
   242  	assert(t != nil)
   243  	if traceInference {
   244  		u.tracef("%s ➞ %s", x, t)
   245  	}
   246  	*u.handles[x] = t
   247  }
   248  
   249  // unknowns returns the number of type parameters for which no type has been set yet.
   250  func (u *unifier) unknowns() int {
   251  	n := 0
   252  	for _, h := range u.handles {
   253  		if *h == nil {
   254  			n++
   255  		}
   256  	}
   257  	return n
   258  }
   259  
   260  // inferred returns the list of inferred types for the given type parameter list.
   261  // The result is never nil and has the same length as tparams; result types that
   262  // could not be inferred are nil. Corresponding type parameters and result types
   263  // have identical indices.
   264  func (u *unifier) inferred(tparams []*TypeParam) []Type {
   265  	list := make([]Type, len(tparams))
   266  	for i, x := range tparams {
   267  		list[i] = u.at(x)
   268  	}
   269  	return list
   270  }
   271  
   272  // asInterface returns the underlying type of x as an interface if
   273  // it is a non-type parameter interface. Otherwise it returns nil.
   274  func asInterface(x Type) (i *Interface) {
   275  	if _, ok := Unalias(x).(*TypeParam); !ok {
   276  		i, _ = under(x).(*Interface)
   277  	}
   278  	return i
   279  }
   280  
   281  // nify implements the core unification algorithm which is an
   282  // adapted version of Checker.identical. For changes to that
   283  // code the corresponding changes should be made here.
   284  // Must not be called directly from outside the unifier.
   285  func (u *unifier) nify(x, y Type, mode unifyMode, p *ifacePair) (result bool) {
   286  	u.depth++
   287  	if traceInference {
   288  		u.tracef("%s ≡ %s\t// %s", x, y, mode)
   289  	}
   290  	defer func() {
   291  		if traceInference && !result {
   292  			u.tracef("%s ≢ %s", x, y)
   293  		}
   294  		u.depth--
   295  	}()
   296  
   297  	// nothing to do if x == y
   298  	if x == y || Unalias(x) == Unalias(y) {
   299  		return true
   300  	}
   301  
   302  	// Stop gap for cases where unification fails.
   303  	if u.depth > unificationDepthLimit {
   304  		if traceInference {
   305  			u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
   306  		}
   307  		if panicAtUnificationDepthLimit {
   308  			panic("unification reached recursion depth limit")
   309  		}
   310  		return false
   311  	}
   312  
   313  	// Unification is symmetric, so we can swap the operands.
   314  	// Ensure that if we have at least one
   315  	// - defined type, make sure one is in y
   316  	// - type parameter recorded with u, make sure one is in x
   317  	if asNamed(x) != nil || u.asBoundTypeParam(y) != nil {
   318  		if traceInference {
   319  			u.tracef("%s ≡ %s\t// swap", y, x)
   320  		}
   321  		x, y = y, x
   322  	}
   323  
   324  	// Unification will fail if we match a defined type against a type literal.
   325  	// If we are matching types in an assignment, at the top-level, types with
   326  	// the same type structure are permitted as long as at least one of them
   327  	// is not a defined type. To accommodate for that possibility, we continue
   328  	// unification with the underlying type of a defined type if the other type
   329  	// is a type literal. This is controlled by the exact unification mode.
   330  	// We also continue if the other type is a basic type because basic types
   331  	// are valid underlying types and may appear as core types of type constraints.
   332  	// If we exclude them, inferred defined types for type parameters may not
   333  	// match against the core types of their constraints (even though they might
   334  	// correctly match against some of the types in the constraint's type set).
   335  	// Finally, if unification (incorrectly) succeeds by matching the underlying
   336  	// type of a defined type against a basic type (because we include basic types
   337  	// as type literals here), and if that leads to an incorrectly inferred type,
   338  	// we will fail at function instantiation or argument assignment time.
   339  	//
   340  	// If we have at least one defined type, there is one in y.
   341  	if ny := asNamed(y); mode&exact == 0 && ny != nil && isTypeLit(x) && !(u.enableInterfaceInference && IsInterface(x)) {
   342  		if traceInference {
   343  			u.tracef("%s ≡ under %s", x, ny)
   344  		}
   345  		y = ny.under()
   346  		// Per the spec, a defined type cannot have an underlying type
   347  		// that is a type parameter.
   348  		assert(!isTypeParam(y))
   349  		// x and y may be identical now
   350  		if x == y || Unalias(x) == Unalias(y) {
   351  			return true
   352  		}
   353  	}
   354  
   355  	// Cases where at least one of x or y is a type parameter recorded with u.
   356  	// If we have at least one type parameter, there is one in x.
   357  	// If we have exactly one type parameter, because it is in x,
   358  	// isTypeLit(x) is false and y was not changed above. In other
   359  	// words, if y was a defined type, it is still a defined type
   360  	// (relevant for the logic below).
   361  	switch px, py := u.asBoundTypeParam(x), u.asBoundTypeParam(y); {
   362  	case px != nil && py != nil:
   363  		// both x and y are type parameters
   364  		if u.join(px, py) {
   365  			return true
   366  		}
   367  		// both x and y have an inferred type - they must match
   368  		return u.nify(u.at(px), u.at(py), mode, p)
   369  
   370  	case px != nil:
   371  		// x is a type parameter, y is not
   372  		if x := u.at(px); x != nil {
   373  			// x has an inferred type which must match y
   374  			if u.nify(x, y, mode, p) {
   375  				// We have a match, possibly through underlying types.
   376  				xi := asInterface(x)
   377  				yi := asInterface(y)
   378  				xn := asNamed(x) != nil
   379  				yn := asNamed(y) != nil
   380  				// If we have two interfaces, what to do depends on
   381  				// whether they are named and their method sets.
   382  				if xi != nil && yi != nil {
   383  					// Both types are interfaces.
   384  					// If both types are defined types, they must be identical
   385  					// because unification doesn't know which type has the "right" name.
   386  					if xn && yn {
   387  						return Identical(x, y)
   388  					}
   389  					// In all other cases, the method sets must match.
   390  					// The types unified so we know that corresponding methods
   391  					// match and we can simply compare the number of methods.
   392  					// TODO(gri) We may be able to relax this rule and select
   393  					// the more general interface. But if one of them is a defined
   394  					// type, it's not clear how to choose and whether we introduce
   395  					// an order dependency or not. Requiring the same method set
   396  					// is conservative.
   397  					if len(xi.typeSet().methods) != len(yi.typeSet().methods) {
   398  						return false
   399  					}
   400  				} else if xi != nil || yi != nil {
   401  					// One but not both of them are interfaces.
   402  					// In this case, either x or y could be viable matches for the corresponding
   403  					// type parameter, which means choosing either introduces an order dependence.
   404  					// Therefore, we must fail unification (go.dev/issue/60933).
   405  					return false
   406  				}
   407  				// If we have inexact unification and one of x or y is a defined type, select the
   408  				// defined type. This ensures that in a series of types, all matching against the
   409  				// same type parameter, we infer a defined type if there is one, independent of
   410  				// order. Type inference or assignment may fail, which is ok.
   411  				// Selecting a defined type, if any, ensures that we don't lose the type name;
   412  				// and since we have inexact unification, a value of equally named or matching
   413  				// undefined type remains assignable (go.dev/issue/43056).
   414  				//
   415  				// Similarly, if we have inexact unification and there are no defined types but
   416  				// channel types, select a directed channel, if any. This ensures that in a series
   417  				// of unnamed types, all matching against the same type parameter, we infer the
   418  				// directed channel if there is one, independent of order.
   419  				// Selecting a directional channel, if any, ensures that a value of another
   420  				// inexactly unifying channel type remains assignable (go.dev/issue/62157).
   421  				//
   422  				// If we have multiple defined channel types, they are either identical or we
   423  				// have assignment conflicts, so we can ignore directionality in this case.
   424  				//
   425  				// If we have defined and literal channel types, a defined type wins to avoid
   426  				// order dependencies.
   427  				if mode&exact == 0 {
   428  					switch {
   429  					case xn:
   430  						// x is a defined type: nothing to do.
   431  					case yn:
   432  						// x is not a defined type and y is a defined type: select y.
   433  						u.set(px, y)
   434  					default:
   435  						// Neither x nor y are defined types.
   436  						if yc, _ := under(y).(*Chan); yc != nil && yc.dir != SendRecv {
   437  							// y is a directed channel type: select y.
   438  							u.set(px, y)
   439  						}
   440  					}
   441  				}
   442  				return true
   443  			}
   444  			return false
   445  		}
   446  		// otherwise, infer type from y
   447  		u.set(px, y)
   448  		return true
   449  	}
   450  
   451  	// x != y if we get here
   452  	assert(x != y && Unalias(x) != Unalias(y))
   453  
   454  	// If u.EnableInterfaceInference is set and we don't require exact unification,
   455  	// if both types are interfaces, one interface must have a subset of the
   456  	// methods of the other and corresponding method signatures must unify.
   457  	// If only one type is an interface, all its methods must be present in the
   458  	// other type and corresponding method signatures must unify.
   459  	if u.enableInterfaceInference && mode&exact == 0 {
   460  		// One or both interfaces may be defined types.
   461  		// Look under the name, but not under type parameters (go.dev/issue/60564).
   462  		xi := asInterface(x)
   463  		yi := asInterface(y)
   464  		// If we have two interfaces, check the type terms for equivalence,
   465  		// and unify common methods if possible.
   466  		if xi != nil && yi != nil {
   467  			xset := xi.typeSet()
   468  			yset := yi.typeSet()
   469  			if xset.comparable != yset.comparable {
   470  				return false
   471  			}
   472  			// For now we require terms to be equal.
   473  			// We should be able to relax this as well, eventually.
   474  			if !xset.terms.equal(yset.terms) {
   475  				return false
   476  			}
   477  			// Interface types are the only types where cycles can occur
   478  			// that are not "terminated" via named types; and such cycles
   479  			// can only be created via method parameter types that are
   480  			// anonymous interfaces (directly or indirectly) embedding
   481  			// the current interface. Example:
   482  			//
   483  			//    type T interface {
   484  			//        m() interface{T}
   485  			//    }
   486  			//
   487  			// If two such (differently named) interfaces are compared,
   488  			// endless recursion occurs if the cycle is not detected.
   489  			//
   490  			// If x and y were compared before, they must be equal
   491  			// (if they were not, the recursion would have stopped);
   492  			// search the ifacePair stack for the same pair.
   493  			//
   494  			// This is a quadratic algorithm, but in practice these stacks
   495  			// are extremely short (bounded by the nesting depth of interface
   496  			// type declarations that recur via parameter types, an extremely
   497  			// rare occurrence). An alternative implementation might use a
   498  			// "visited" map, but that is probably less efficient overall.
   499  			q := &ifacePair{xi, yi, p}
   500  			for p != nil {
   501  				if p.identical(q) {
   502  					return true // same pair was compared before
   503  				}
   504  				p = p.prev
   505  			}
   506  			// The method set of x must be a subset of the method set
   507  			// of y or vice versa, and the common methods must unify.
   508  			xmethods := xset.methods
   509  			ymethods := yset.methods
   510  			// The smaller method set must be the subset, if it exists.
   511  			if len(xmethods) > len(ymethods) {
   512  				xmethods, ymethods = ymethods, xmethods
   513  			}
   514  			// len(xmethods) <= len(ymethods)
   515  			// Collect the ymethods in a map for quick lookup.
   516  			ymap := make(map[string]*Func, len(ymethods))
   517  			for _, ym := range ymethods {
   518  				ymap[ym.Id()] = ym
   519  			}
   520  			// All xmethods must exist in ymethods and corresponding signatures must unify.
   521  			for _, xm := range xmethods {
   522  				if ym := ymap[xm.Id()]; ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   523  					return false
   524  				}
   525  			}
   526  			return true
   527  		}
   528  
   529  		// We don't have two interfaces. If we have one, make sure it's in xi.
   530  		if yi != nil {
   531  			xi = yi
   532  			y = x
   533  		}
   534  
   535  		// If we have one interface, at a minimum each of the interface methods
   536  		// must be implemented and thus unify with a corresponding method from
   537  		// the non-interface type, otherwise unification fails.
   538  		if xi != nil {
   539  			// All xi methods must exist in y and corresponding signatures must unify.
   540  			xmethods := xi.typeSet().methods
   541  			for _, xm := range xmethods {
   542  				obj, _, _ := LookupFieldOrMethod(y, false, xm.pkg, xm.name)
   543  				if ym, _ := obj.(*Func); ym == nil || !u.nify(xm.typ, ym.typ, exact, p) {
   544  					return false
   545  				}
   546  			}
   547  			return true
   548  		}
   549  	}
   550  
   551  	// Unless we have exact unification, neither x nor y are interfaces now.
   552  	// Except for unbound type parameters (see below), x and y must be structurally
   553  	// equivalent to unify.
   554  
   555  	// If we get here and x or y is a type parameter, they are unbound
   556  	// (not recorded with the unifier).
   557  	// Ensure that if we have at least one type parameter, it is in x
   558  	// (the earlier swap checks for _recorded_ type parameters only).
   559  	// This ensures that the switch switches on the type parameter.
   560  	//
   561  	// TODO(gri) Factor out type parameter handling from the switch.
   562  	if isTypeParam(y) {
   563  		if traceInference {
   564  			u.tracef("%s ≡ %s\t// swap", y, x)
   565  		}
   566  		x, y = y, x
   567  	}
   568  
   569  	// Type elements (array, slice, etc. elements) use emode for unification.
   570  	// Element types must match exactly if the types are used in an assignment.
   571  	emode := mode
   572  	if mode&assign != 0 {
   573  		emode |= exact
   574  	}
   575  
   576  	// Continue with unaliased types but don't lose original alias names, if any (go.dev/issue/67628).
   577  	xorig, x := x, Unalias(x)
   578  	yorig, y := y, Unalias(y)
   579  
   580  	switch x := x.(type) {
   581  	case *Basic:
   582  		// Basic types are singletons except for the rune and byte
   583  		// aliases, thus we cannot solely rely on the x == y check
   584  		// above. See also comment in TypeName.IsAlias.
   585  		if y, ok := y.(*Basic); ok {
   586  			return x.kind == y.kind
   587  		}
   588  
   589  	case *Array:
   590  		// Two array types unify if they have the same array length
   591  		// and their element types unify.
   592  		if y, ok := y.(*Array); ok {
   593  			// If one or both array lengths are unknown (< 0) due to some error,
   594  			// assume they are the same to avoid spurious follow-on errors.
   595  			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, emode, p)
   596  		}
   597  
   598  	case *Slice:
   599  		// Two slice types unify if their element types unify.
   600  		if y, ok := y.(*Slice); ok {
   601  			return u.nify(x.elem, y.elem, emode, p)
   602  		}
   603  
   604  	case *Struct:
   605  		// Two struct types unify if they have the same sequence of fields,
   606  		// and if corresponding fields have the same names, their (field) types unify,
   607  		// and they have identical tags. Two embedded fields are considered to have the same
   608  		// name. Lower-case field names from different packages are always different.
   609  		if y, ok := y.(*Struct); ok {
   610  			if x.NumFields() == y.NumFields() {
   611  				for i, f := range x.fields {
   612  					g := y.fields[i]
   613  					if f.embedded != g.embedded ||
   614  						x.Tag(i) != y.Tag(i) ||
   615  						!f.sameId(g.pkg, g.name, false) ||
   616  						!u.nify(f.typ, g.typ, emode, p) {
   617  						return false
   618  					}
   619  				}
   620  				return true
   621  			}
   622  		}
   623  
   624  	case *Pointer:
   625  		// Two pointer types unify if their base types unify.
   626  		if y, ok := y.(*Pointer); ok {
   627  			return u.nify(x.base, y.base, emode, p)
   628  		}
   629  
   630  	case *Tuple:
   631  		// Two tuples types unify if they have the same number of elements
   632  		// and the types of corresponding elements unify.
   633  		if y, ok := y.(*Tuple); ok {
   634  			if x.Len() == y.Len() {
   635  				if x != nil {
   636  					for i, v := range x.vars {
   637  						w := y.vars[i]
   638  						if !u.nify(v.typ, w.typ, mode, p) {
   639  							return false
   640  						}
   641  					}
   642  				}
   643  				return true
   644  			}
   645  		}
   646  
   647  	case *Signature:
   648  		// Two function types unify if they have the same number of parameters
   649  		// and result values, corresponding parameter and result types unify,
   650  		// and either both functions are variadic or neither is.
   651  		// Parameter and result names are not required to match.
   652  		// TODO(gri) handle type parameters or document why we can ignore them.
   653  		if y, ok := y.(*Signature); ok {
   654  			return x.variadic == y.variadic &&
   655  				u.nify(x.params, y.params, emode, p) &&
   656  				u.nify(x.results, y.results, emode, p)
   657  		}
   658  
   659  	case *Interface:
   660  		assert(!u.enableInterfaceInference || mode&exact != 0) // handled before this switch
   661  
   662  		// Two interface types unify if they have the same set of methods with
   663  		// the same names, and corresponding function types unify.
   664  		// Lower-case method names from different packages are always different.
   665  		// The order of the methods is irrelevant.
   666  		if y, ok := y.(*Interface); ok {
   667  			xset := x.typeSet()
   668  			yset := y.typeSet()
   669  			if xset.comparable != yset.comparable {
   670  				return false
   671  			}
   672  			if !xset.terms.equal(yset.terms) {
   673  				return false
   674  			}
   675  			a := xset.methods
   676  			b := yset.methods
   677  			if len(a) == len(b) {
   678  				// Interface types are the only types where cycles can occur
   679  				// that are not "terminated" via named types; and such cycles
   680  				// can only be created via method parameter types that are
   681  				// anonymous interfaces (directly or indirectly) embedding
   682  				// the current interface. Example:
   683  				//
   684  				//    type T interface {
   685  				//        m() interface{T}
   686  				//    }
   687  				//
   688  				// If two such (differently named) interfaces are compared,
   689  				// endless recursion occurs if the cycle is not detected.
   690  				//
   691  				// If x and y were compared before, they must be equal
   692  				// (if they were not, the recursion would have stopped);
   693  				// search the ifacePair stack for the same pair.
   694  				//
   695  				// This is a quadratic algorithm, but in practice these stacks
   696  				// are extremely short (bounded by the nesting depth of interface
   697  				// type declarations that recur via parameter types, an extremely
   698  				// rare occurrence). An alternative implementation might use a
   699  				// "visited" map, but that is probably less efficient overall.
   700  				q := &ifacePair{x, y, p}
   701  				for p != nil {
   702  					if p.identical(q) {
   703  						return true // same pair was compared before
   704  					}
   705  					p = p.prev
   706  				}
   707  				if debug {
   708  					assertSortedMethods(a)
   709  					assertSortedMethods(b)
   710  				}
   711  				for i, f := range a {
   712  					g := b[i]
   713  					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, exact, q) {
   714  						return false
   715  					}
   716  				}
   717  				return true
   718  			}
   719  		}
   720  
   721  	case *Map:
   722  		// Two map types unify if their key and value types unify.
   723  		if y, ok := y.(*Map); ok {
   724  			return u.nify(x.key, y.key, emode, p) && u.nify(x.elem, y.elem, emode, p)
   725  		}
   726  
   727  	case *Chan:
   728  		// Two channel types unify if their value types unify
   729  		// and if they have the same direction.
   730  		// The channel direction is ignored for inexact unification.
   731  		if y, ok := y.(*Chan); ok {
   732  			return (mode&exact == 0 || x.dir == y.dir) && u.nify(x.elem, y.elem, emode, p)
   733  		}
   734  
   735  	case *Named:
   736  		// Two named types unify if their type names originate in the same type declaration.
   737  		// If they are instantiated, their type argument lists must unify.
   738  		if y := asNamed(y); y != nil {
   739  			// Check type arguments before origins so they unify
   740  			// even if the origins don't match; for better error
   741  			// messages (see go.dev/issue/53692).
   742  			xargs := x.TypeArgs().list()
   743  			yargs := y.TypeArgs().list()
   744  			if len(xargs) != len(yargs) {
   745  				return false
   746  			}
   747  			for i, xarg := range xargs {
   748  				if !u.nify(xarg, yargs[i], mode, p) {
   749  					return false
   750  				}
   751  			}
   752  			return identicalOrigin(x, y)
   753  		}
   754  
   755  	case *TypeParam:
   756  		// x must be an unbound type parameter (see comment above).
   757  		if debug {
   758  			assert(u.asBoundTypeParam(x) == nil)
   759  		}
   760  		// By definition, a valid type argument must be in the type set of
   761  		// the respective type constraint. Therefore, the type argument's
   762  		// underlying type must be in the set of underlying types of that
   763  		// constraint. If there is a single such underlying type, it's the
   764  		// constraint's core type. It must match the type argument's under-
   765  		// lying type, irrespective of whether the actual type argument,
   766  		// which may be a defined type, is actually in the type set (that
   767  		// will be determined at instantiation time).
   768  		// Thus, if we have the core type of an unbound type parameter,
   769  		// we know the structure of the possible types satisfying such
   770  		// parameters. Use that core type for further unification
   771  		// (see go.dev/issue/50755 for a test case).
   772  		if enableCoreTypeUnification {
   773  			// Because the core type is always an underlying type,
   774  			// unification will take care of matching against a
   775  			// defined or literal type automatically.
   776  			// If y is also an unbound type parameter, we will end
   777  			// up here again with x and y swapped, so we don't
   778  			// need to take care of that case separately.
   779  			if cx := coreType(x); cx != nil {
   780  				if traceInference {
   781  					u.tracef("core %s ≡ %s", xorig, yorig)
   782  				}
   783  				// If y is a defined type, it may not match against cx which
   784  				// is an underlying type (incl. int, string, etc.). Use assign
   785  				// mode here so that the unifier automatically takes under(y)
   786  				// if necessary.
   787  				return u.nify(cx, yorig, assign, p)
   788  			}
   789  		}
   790  		// x != y and there's nothing to do
   791  
   792  	case nil:
   793  		// avoid a crash in case of nil type
   794  
   795  	default:
   796  		panic(sprintf(nil, nil, true, "u.nify(%s, %s, %d)", xorig, yorig, mode))
   797  	}
   798  
   799  	return false
   800  }
   801  

View as plain text