Source file src/internal/runtime/maps/map.go

     1  // Copyright 2024 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package maps implements Go's builtin map type.
     6  package maps
     7  
     8  import (
     9  	"internal/abi"
    10  	"internal/goarch"
    11  	"internal/runtime/math"
    12  	"internal/runtime/sys"
    13  	"unsafe"
    14  )
    15  
    16  // This package contains the implementation of Go's builtin map type.
    17  //
    18  // The map design is based on Abseil's "Swiss Table" map design
    19  // (https://abseil.io/about/design/swisstables), with additional modifications
    20  // to cover Go's additional requirements, discussed below.
    21  //
    22  // Terminology:
    23  // - Slot: A storage location of a single key/element pair.
    24  // - Group: A group of abi.MapGroupSlots (8) slots, plus a control word.
    25  // - Control word: An 8-byte word which denotes whether each slot is empty,
    26  //   deleted, or used. If a slot is used, its control byte also contains the
    27  //   lower 7 bits of the hash (H2).
    28  // - H1: Upper 57 bits of a hash.
    29  // - H2: Lower 7 bits of a hash.
    30  // - Table: A complete "Swiss Table" hash table. A table consists of one or
    31  //   more groups for storage plus metadata to handle operation and determining
    32  //   when to grow.
    33  // - Map: The top-level Map type consists of zero or more tables for storage.
    34  //   The upper bits of the hash select which table a key belongs to.
    35  // - Directory: Array of the tables used by the map.
    36  //
    37  // At its core, the table design is similar to a traditional open-addressed
    38  // hash table. Storage consists of an array of groups, which effectively means
    39  // an array of key/elem slots with some control words interspersed. Lookup uses
    40  // the hash to determine an initial group to check. If, due to collisions, this
    41  // group contains no match, the probe sequence selects the next group to check
    42  // (see below for more detail about the probe sequence).
    43  //
    44  // The key difference occurs within a group. In a standard open-addressed
    45  // linear probed hash table, we would check each slot one at a time to find a
    46  // match. A swiss table utilizes the extra control word to check all 8 slots in
    47  // parallel.
    48  //
    49  // Each byte in the control word corresponds to one of the slots in the group.
    50  // In each byte, 1 bit is used to indicate whether the slot is in use, or if it
    51  // is empty/deleted. The other 7 bits contain the lower 7 bits of the hash for
    52  // the key in that slot. See [ctrl] for the exact encoding.
    53  //
    54  // During lookup, we can use some clever bitwise manipulation to compare all 8
    55  // 7-bit hashes against the input hash in parallel (see [ctrlGroup.matchH2]).
    56  // That is, we effectively perform 8 steps of probing in a single operation.
    57  // With SIMD instructions, this could be extended to 16 slots with a 16-byte
    58  // control word.
    59  //
    60  // Since we only use 7 bits of the 64 bit hash, there is a 1 in 128 (~0.7%)
    61  // probability of false positive on each slot, but that's fine: we always need
    62  // double check each match with a standard key comparison regardless.
    63  //
    64  // Probing
    65  //
    66  // Probing is done using the upper 57 bits (H1) of the hash as an index into
    67  // the groups array. Probing walks through the groups using quadratic probing
    68  // until it finds a group with a match or a group with an empty slot. See
    69  // [probeSeq] for specifics about the probe sequence. Note the probe
    70  // invariants: the number of groups must be a power of two, and the end of a
    71  // probe sequence must be a group with an empty slot (the table can never be
    72  // 100% full).
    73  //
    74  // Deletion
    75  //
    76  // Probing stops when it finds a group with an empty slot. This affects
    77  // deletion: when deleting from a completely full group, we must not mark the
    78  // slot as empty, as there could be more slots used later in a probe sequence
    79  // and this deletion would cause probing to stop too early. Instead, we mark
    80  // such slots as "deleted" with a tombstone. If the group still has an empty
    81  // slot, we don't need a tombstone and directly mark the slot empty. Insert
    82  // prioritizes reuse of tombstones over filling an empty slots. Otherwise,
    83  // tombstones are only completely cleared during grow, as an in-place cleanup
    84  // complicates iteration.
    85  //
    86  // Growth
    87  //
    88  // The probe sequence depends on the number of groups. Thus, when growing the
    89  // group count all slots must be reordered to match the new probe sequence. In
    90  // other words, an entire table must be grown at once.
    91  //
    92  // In order to support incremental growth, the map splits its contents across
    93  // multiple tables. Each table is still a full hash table, but an individual
    94  // table may only service a subset of the hash space. Growth occurs on
    95  // individual tables, so while an entire table must grow at once, each of these
    96  // grows is only a small portion of a map. The maximum size of a single grow is
    97  // limited by limiting the maximum size of a table before it is split into
    98  // multiple tables.
    99  //
   100  // A map starts with a single table. Up to [maxTableCapacity], growth simply
   101  // replaces this table with a replacement with double capacity. Beyond this
   102  // limit, growth splits the table into two.
   103  //
   104  // The map uses "extendible hashing" to select which table to use. In
   105  // extendible hashing, we use the upper bits of the hash as an index into an
   106  // array of tables (called the "directory"). The number of bits uses increases
   107  // as the number of tables increases. For example, when there is only 1 table,
   108  // we use 0 bits (no selection necessary). When there are 2 tables, we use 1
   109  // bit to select either the 0th or 1st table. [Map.globalDepth] is the number
   110  // of bits currently used for table selection, and by extension (1 <<
   111  // globalDepth), the size of the directory.
   112  //
   113  // Note that each table has its own load factor and grows independently. If the
   114  // 1st bucket grows, it will split. We'll need 2 bits to select tables, though
   115  // we'll have 3 tables total rather than 4. We support this by allowing
   116  // multiple indices to point to the same table. This example:
   117  //
   118  //	directory (globalDepth=2)
   119  //	+----+
   120  //	| 00 | --\
   121  //	+----+    +--> table (localDepth=1)
   122  //	| 01 | --/
   123  //	+----+
   124  //	| 10 | ------> table (localDepth=2)
   125  //	+----+
   126  //	| 11 | ------> table (localDepth=2)
   127  //	+----+
   128  //
   129  // Tables track the depth they were created at (localDepth). It is necessary to
   130  // grow the directory when splitting a table where globalDepth == localDepth.
   131  //
   132  // Iteration
   133  //
   134  // Iteration is the most complex part of the map due to Go's generous iteration
   135  // semantics. A summary of semantics from the spec:
   136  // 1. Adding and/or deleting entries during iteration MUST NOT cause iteration
   137  //    to return the same entry more than once.
   138  // 2. Entries added during iteration MAY be returned by iteration.
   139  // 3. Entries modified during iteration MUST return their latest value.
   140  // 4. Entries deleted during iteration MUST NOT be returned by iteration.
   141  // 5. Iteration order is unspecified. In the implementation, it is explicitly
   142  //    randomized.
   143  //
   144  // If the map never grows, these semantics are straightforward: just iterate
   145  // over every table in the directory and every group and slot in each table.
   146  // These semantics all land as expected.
   147  //
   148  // If the map grows during iteration, things complicate significantly. First
   149  // and foremost, we need to track which entries we already returned to satisfy
   150  // (1). There are three types of grow:
   151  // a. A table replaced by a single larger table.
   152  // b. A table split into two replacement tables.
   153  // c. Growing the directory (occurs as part of (b) if necessary).
   154  //
   155  // For all of these cases, the replacement table(s) will have a different probe
   156  // sequence, so simply tracking the current group and slot indices is not
   157  // sufficient.
   158  //
   159  // For (a) and (b), note that grows of tables other than the one we are
   160  // currently iterating over are irrelevant.
   161  //
   162  // We handle (a) and (b) by having the iterator keep a reference to the table
   163  // it is currently iterating over, even after the table is replaced. We keep
   164  // iterating over the original table to maintain the iteration order and avoid
   165  // violating (1). Any new entries added only to the replacement table(s) will
   166  // be skipped (allowed by (2)). To avoid violating (3) or (4), while we use the
   167  // original table to select the keys, we must look them up again in the new
   168  // table(s) to determine if they have been modified or deleted. There is yet
   169  // another layer of complexity if the key does not compare equal itself. See
   170  // [Iter.Next] for the gory details.
   171  //
   172  // Note that for (b) once we finish iterating over the old table we'll need to
   173  // skip the next entry in the directory, as that contains the second split of
   174  // the old table. We can use the old table's localDepth to determine the next
   175  // logical index to use.
   176  //
   177  // For (b), we must adjust the current directory index when the directory
   178  // grows. This is more straightforward, as the directory orders remains the
   179  // same after grow, so we just double the index if the directory size doubles.
   180  
   181  // Extracts the H1 portion of a hash: the 57 upper bits.
   182  // TODO(prattmic): what about 32-bit systems?
   183  func h1(h uintptr) uintptr {
   184  	return h >> 7
   185  }
   186  
   187  // Extracts the H2 portion of a hash: the 7 bits not used for h1.
   188  //
   189  // These are used as an occupied control byte.
   190  func h2(h uintptr) uintptr {
   191  	return h & 0x7f
   192  }
   193  
   194  // Note: changes here must be reflected in cmd/compile/internal/reflectdata/map.go:MapType.
   195  type Map struct {
   196  	// The number of filled slots (i.e. the number of elements in all
   197  	// tables). Excludes deleted slots.
   198  	// Must be first (known by the compiler, for len() builtin).
   199  	used uint64
   200  
   201  	// seed is the hash seed, computed as a unique random number per map.
   202  	seed uintptr
   203  
   204  	// The directory of tables.
   205  	//
   206  	// Normally dirPtr points to an array of table pointers
   207  	//
   208  	// dirPtr *[dirLen]*table
   209  	//
   210  	// The length (dirLen) of this array is `1 << globalDepth`. Multiple
   211  	// entries may point to the same table. See top-level comment for more
   212  	// details.
   213  	//
   214  	// Small map optimization: if the map always contained
   215  	// abi.MapGroupSlots or fewer entries, it fits entirely in a
   216  	// single group. In that case dirPtr points directly to a single group.
   217  	//
   218  	// dirPtr *group
   219  	//
   220  	// In this case, dirLen is 0. used counts the number of used slots in
   221  	// the group. Note that small maps never have deleted slots (as there
   222  	// is no probe sequence to maintain).
   223  	dirPtr unsafe.Pointer
   224  	dirLen int
   225  
   226  	// The number of bits to use in table directory lookups.
   227  	globalDepth uint8
   228  
   229  	// The number of bits to shift out of the hash for directory lookups.
   230  	// On 64-bit systems, this is 64 - globalDepth.
   231  	globalShift uint8
   232  
   233  	// writing is a flag that is toggled (XOR 1) while the map is being
   234  	// written. Normally it is set to 1 when writing, but if there are
   235  	// multiple concurrent writers, then toggling increases the probability
   236  	// that both sides will detect the race.
   237  	writing uint8
   238  
   239  	// tombstonePossible is false if we know that no table in this map
   240  	// contains a tombstone.
   241  	tombstonePossible bool
   242  
   243  	// clearSeq is a sequence counter of calls to Clear. It is used to
   244  	// detect map clears during iteration.
   245  	clearSeq uint64
   246  }
   247  
   248  // Use 64-bit hash on 64-bit systems, except on Wasm, where we use
   249  // 32-bit hash (see runtime/hash32.go).
   250  const Use64BitHash = goarch.PtrSize == 8 && goarch.IsWasm == 0
   251  
   252  func depthToShift(depth uint8) uint8 {
   253  	if !Use64BitHash {
   254  		return 32 - depth
   255  	}
   256  	return 64 - depth
   257  }
   258  
   259  // If m is non-nil, it should be used rather than allocating.
   260  //
   261  // maxAlloc should be runtime.maxAlloc.
   262  //
   263  // TODO(prattmic): Put maxAlloc somewhere accessible.
   264  func NewMap(mt *abi.MapType, hint uintptr, m *Map, maxAlloc uintptr) *Map {
   265  	if m == nil {
   266  		m = new(Map)
   267  	}
   268  
   269  	m.seed = uintptr(rand())
   270  
   271  	if hint <= abi.MapGroupSlots {
   272  		// A small map can fill all 8 slots, so no need to increase
   273  		// target capacity.
   274  		//
   275  		// In fact, since an 8 slot group is what the first assignment
   276  		// to an empty map would allocate anyway, it doesn't matter if
   277  		// we allocate here or on the first assignment.
   278  		//
   279  		// Thus we just return without allocating. (We'll save the
   280  		// allocation completely if no assignment comes.)
   281  
   282  		// Note that the compiler may have initialized m.dirPtr with a
   283  		// pointer to a stack-allocated group, in which case we already
   284  		// have a group. The control word is already initialized.
   285  
   286  		return m
   287  	}
   288  
   289  	// Full size map.
   290  
   291  	// Set initial capacity to hold hint entries without growing in the
   292  	// average case.
   293  	targetCapacity := (hint * abi.MapGroupSlots) / maxAvgGroupLoad
   294  	if targetCapacity < hint { // overflow
   295  		return m // return an empty map.
   296  	}
   297  
   298  	dirSize := (uint64(targetCapacity) + maxTableCapacity - 1) / maxTableCapacity
   299  	dirSize, overflow := alignUpPow2(dirSize)
   300  	if overflow || dirSize > uint64(math.MaxUintptr) {
   301  		return m // return an empty map.
   302  	}
   303  
   304  	// Reject hints that are obviously too large.
   305  	groups, overflow := math.MulUintptr(uintptr(dirSize), maxTableCapacity)
   306  	if overflow {
   307  		return m // return an empty map.
   308  	} else {
   309  		mem, overflow := math.MulUintptr(groups, mt.GroupSize)
   310  		if overflow || mem > maxAlloc {
   311  			return m // return an empty map.
   312  		}
   313  	}
   314  
   315  	m.globalDepth = uint8(sys.TrailingZeros64(dirSize))
   316  	m.globalShift = depthToShift(m.globalDepth)
   317  
   318  	directory := make([]*table, dirSize)
   319  
   320  	for i := range directory {
   321  		// TODO: Think more about initial table capacity.
   322  		directory[i] = newTable(mt, uint64(targetCapacity)/dirSize, i, m.globalDepth)
   323  	}
   324  
   325  	m.dirPtr = unsafe.Pointer(&directory[0])
   326  	m.dirLen = len(directory)
   327  
   328  	return m
   329  }
   330  
   331  func NewEmptyMap() *Map {
   332  	m := new(Map)
   333  	m.seed = uintptr(rand())
   334  	// See comment in NewMap. No need to eager allocate a group.
   335  	return m
   336  }
   337  
   338  func (m *Map) directoryIndex(hash uintptr) uintptr {
   339  	if m.dirLen == 1 {
   340  		return 0
   341  	}
   342  	return hash >> (m.globalShift & 63)
   343  }
   344  
   345  func (m *Map) directoryAt(i uintptr) *table {
   346  	return *(**table)(unsafe.Pointer(uintptr(m.dirPtr) + goarch.PtrSize*i))
   347  }
   348  
   349  func (m *Map) directorySet(i uintptr, nt *table) {
   350  	*(**table)(unsafe.Pointer(uintptr(m.dirPtr) + goarch.PtrSize*i)) = nt
   351  }
   352  
   353  func (m *Map) replaceTable(nt *table) {
   354  	// The number of entries that reference the same table doubles for each
   355  	// time the globalDepth grows without the table splitting.
   356  	entries := 1 << (m.globalDepth - nt.localDepth)
   357  	for i := 0; i < entries; i++ {
   358  		//m.directory[nt.index+i] = nt
   359  		m.directorySet(uintptr(nt.index+i), nt)
   360  	}
   361  }
   362  
   363  func (m *Map) installTableSplit(old, left, right *table) {
   364  	if old.localDepth == m.globalDepth {
   365  		// No room for another level in the directory. Grow the
   366  		// directory.
   367  		newDir := make([]*table, m.dirLen*2)
   368  		for i := range m.dirLen {
   369  			t := m.directoryAt(uintptr(i))
   370  			newDir[2*i] = t
   371  			newDir[2*i+1] = t
   372  			// t may already exist in multiple indices. We should
   373  			// only update t.index once. Since the index must
   374  			// increase, seeing the original index means this must
   375  			// be the first time we've encountered this table.
   376  			if t.index == i {
   377  				t.index = 2 * i
   378  			}
   379  		}
   380  		m.globalDepth++
   381  		m.globalShift--
   382  		//m.directory = newDir
   383  		m.dirPtr = unsafe.Pointer(&newDir[0])
   384  		m.dirLen = len(newDir)
   385  	}
   386  
   387  	// N.B. left and right may still consume multiple indices if the
   388  	// directory has grown multiple times since old was last split.
   389  	left.index = old.index
   390  	m.replaceTable(left)
   391  
   392  	entries := 1 << (m.globalDepth - left.localDepth)
   393  	right.index = left.index + entries
   394  	m.replaceTable(right)
   395  }
   396  
   397  func (m *Map) Used() uint64 {
   398  	return m.used
   399  }
   400  
   401  // Get performs a lookup of the key that key points to. It returns a pointer to
   402  // the element, or false if the key doesn't exist.
   403  func (m *Map) Get(typ *abi.MapType, key unsafe.Pointer) (unsafe.Pointer, bool) {
   404  	return m.getWithoutKey(typ, key)
   405  }
   406  
   407  func (m *Map) getWithKey(typ *abi.MapType, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
   408  	if m.Used() == 0 {
   409  		return nil, nil, false
   410  	}
   411  
   412  	if m.writing != 0 {
   413  		fatal("concurrent map read and map write")
   414  	}
   415  
   416  	hash := typ.Hasher(key, m.seed)
   417  
   418  	if m.dirLen == 0 {
   419  		return m.getWithKeySmall(typ, hash, key)
   420  	}
   421  
   422  	idx := m.directoryIndex(hash)
   423  	return m.directoryAt(idx).getWithKey(typ, hash, key)
   424  }
   425  
   426  func (m *Map) getWithoutKey(typ *abi.MapType, key unsafe.Pointer) (unsafe.Pointer, bool) {
   427  	if m.Used() == 0 {
   428  		return nil, false
   429  	}
   430  
   431  	if m.writing != 0 {
   432  		fatal("concurrent map read and map write")
   433  	}
   434  
   435  	hash := typ.Hasher(key, m.seed)
   436  
   437  	if m.dirLen == 0 {
   438  		_, elem, ok := m.getWithKeySmall(typ, hash, key)
   439  		return elem, ok
   440  	}
   441  
   442  	idx := m.directoryIndex(hash)
   443  	return m.directoryAt(idx).getWithoutKey(typ, hash, key)
   444  }
   445  
   446  func (m *Map) getWithKeySmall(typ *abi.MapType, hash uintptr, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
   447  	g := groupReference{
   448  		data: m.dirPtr,
   449  	}
   450  
   451  	match := g.ctrls().matchH2(h2(hash))
   452  
   453  	for match != 0 {
   454  		i := match.first()
   455  
   456  		slotKey := g.key(typ, i)
   457  		if typ.IndirectKey() {
   458  			slotKey = *((*unsafe.Pointer)(slotKey))
   459  		}
   460  
   461  		if typ.Key.Equal(key, slotKey) {
   462  			slotElem := g.elem(typ, i)
   463  			if typ.IndirectElem() {
   464  				slotElem = *((*unsafe.Pointer)(slotElem))
   465  			}
   466  			return slotKey, slotElem, true
   467  		}
   468  
   469  		match = match.removeFirst()
   470  	}
   471  
   472  	// No match here means key is not in the map.
   473  	// (A single group means no need to probe or check for empty).
   474  	return nil, nil, false
   475  }
   476  
   477  func (m *Map) Put(typ *abi.MapType, key, elem unsafe.Pointer) {
   478  	slotElem := m.PutSlot(typ, key)
   479  	typedmemmove(typ.Elem, slotElem, elem)
   480  }
   481  
   482  // PutSlot returns a pointer to the element slot where an inserted element
   483  // should be written.
   484  //
   485  // PutSlot never returns nil.
   486  func (m *Map) PutSlot(typ *abi.MapType, key unsafe.Pointer) unsafe.Pointer {
   487  	if m.writing != 0 {
   488  		fatal("concurrent map writes")
   489  	}
   490  
   491  	hash := typ.Hasher(key, m.seed)
   492  
   493  	// Set writing after calling Hasher, since Hasher may panic, in which
   494  	// case we have not actually done a write.
   495  	m.writing ^= 1 // toggle, see comment on writing
   496  
   497  	if m.dirPtr == nil {
   498  		m.growToSmall(typ)
   499  	}
   500  
   501  	if m.dirLen == 0 {
   502  		if m.used < abi.MapGroupSlots {
   503  			elem := m.putSlotSmall(typ, hash, key)
   504  
   505  			if m.writing == 0 {
   506  				fatal("concurrent map writes")
   507  			}
   508  			m.writing ^= 1
   509  
   510  			return elem
   511  		}
   512  
   513  		// Can't fit another entry, grow to full size map.
   514  		//
   515  		// TODO(prattmic): If this is an update to an existing key then
   516  		// we actually don't need to grow.
   517  		m.growToTable(typ)
   518  	}
   519  
   520  	for {
   521  		idx := m.directoryIndex(hash)
   522  		elem, ok := m.directoryAt(idx).PutSlot(typ, m, hash, key)
   523  		if !ok {
   524  			continue
   525  		}
   526  
   527  		if m.writing == 0 {
   528  			fatal("concurrent map writes")
   529  		}
   530  		m.writing ^= 1
   531  
   532  		return elem
   533  	}
   534  }
   535  
   536  func (m *Map) putSlotSmall(typ *abi.MapType, hash uintptr, key unsafe.Pointer) unsafe.Pointer {
   537  	g := groupReference{
   538  		data: m.dirPtr,
   539  	}
   540  
   541  	match := g.ctrls().matchH2(h2(hash))
   542  
   543  	// Look for an existing slot containing this key.
   544  	for match != 0 {
   545  		i := match.first()
   546  
   547  		slotKey := g.key(typ, i)
   548  		if typ.IndirectKey() {
   549  			slotKey = *((*unsafe.Pointer)(slotKey))
   550  		}
   551  		if typ.Key.Equal(key, slotKey) {
   552  			if typ.NeedKeyUpdate() {
   553  				typedmemmove(typ.Key, slotKey, key)
   554  			}
   555  
   556  			slotElem := g.elem(typ, i)
   557  			if typ.IndirectElem() {
   558  				slotElem = *((*unsafe.Pointer)(slotElem))
   559  			}
   560  
   561  			return slotElem
   562  		}
   563  		match = match.removeFirst()
   564  	}
   565  
   566  	// There can't be deleted slots, small maps can't have them
   567  	// (see deleteSmall). Use matchEmptyOrDeleted as it is a bit
   568  	// more efficient than matchEmpty.
   569  	match = g.ctrls().matchEmptyOrDeleted()
   570  	if match == 0 {
   571  		fatal("small map with no empty slot (concurrent map writes?)")
   572  		return nil
   573  	}
   574  
   575  	i := match.first()
   576  
   577  	slotKey := g.key(typ, i)
   578  	if typ.IndirectKey() {
   579  		kmem := newobject(typ.Key)
   580  		*(*unsafe.Pointer)(slotKey) = kmem
   581  		slotKey = kmem
   582  	}
   583  	typedmemmove(typ.Key, slotKey, key)
   584  
   585  	slotElem := g.elem(typ, i)
   586  	if typ.IndirectElem() {
   587  		emem := newobject(typ.Elem)
   588  		*(*unsafe.Pointer)(slotElem) = emem
   589  		slotElem = emem
   590  	}
   591  
   592  	g.ctrls().set(i, ctrl(h2(hash)))
   593  	m.used++
   594  
   595  	return slotElem
   596  }
   597  
   598  func (m *Map) growToSmall(typ *abi.MapType) {
   599  	grp := newGroups(typ, 1)
   600  	m.dirPtr = grp.data
   601  
   602  	g := groupReference{
   603  		data: m.dirPtr,
   604  	}
   605  	g.ctrls().setEmpty()
   606  }
   607  
   608  func (m *Map) growToTable(typ *abi.MapType) {
   609  	tab := newTable(typ, 2*abi.MapGroupSlots, 0, 0)
   610  
   611  	g := groupReference{
   612  		data: m.dirPtr,
   613  	}
   614  
   615  	for i := uintptr(0); i < abi.MapGroupSlots; i++ {
   616  		if (g.ctrls().get(i) & ctrlEmpty) == ctrlEmpty {
   617  			// Empty
   618  			continue
   619  		}
   620  
   621  		key := g.key(typ, i)
   622  		if typ.IndirectKey() {
   623  			key = *((*unsafe.Pointer)(key))
   624  		}
   625  
   626  		elem := g.elem(typ, i)
   627  		if typ.IndirectElem() {
   628  			elem = *((*unsafe.Pointer)(elem))
   629  		}
   630  
   631  		hash := typ.Hasher(key, m.seed)
   632  
   633  		tab.uncheckedPutSlot(typ, hash, key, elem)
   634  	}
   635  
   636  	directory := make([]*table, 1)
   637  
   638  	directory[0] = tab
   639  
   640  	m.dirPtr = unsafe.Pointer(&directory[0])
   641  	m.dirLen = len(directory)
   642  
   643  	m.globalDepth = 0
   644  	m.globalShift = depthToShift(m.globalDepth)
   645  }
   646  
   647  func (m *Map) Delete(typ *abi.MapType, key unsafe.Pointer) {
   648  	if m == nil || m.Used() == 0 {
   649  		if err := mapKeyError(typ, key); err != nil {
   650  			panic(err) // see issue 23734
   651  		}
   652  		return
   653  	}
   654  
   655  	if m.writing != 0 {
   656  		fatal("concurrent map writes")
   657  	}
   658  
   659  	hash := typ.Hasher(key, m.seed)
   660  
   661  	// Set writing after calling Hasher, since Hasher may panic, in which
   662  	// case we have not actually done a write.
   663  	m.writing ^= 1 // toggle, see comment on writing
   664  
   665  	if m.dirLen == 0 {
   666  		m.deleteSmall(typ, hash, key)
   667  	} else {
   668  		idx := m.directoryIndex(hash)
   669  		if m.directoryAt(idx).Delete(typ, m, hash, key) {
   670  			m.tombstonePossible = true
   671  		}
   672  	}
   673  
   674  	if m.used == 0 {
   675  		// Reset the hash seed to make it more difficult for attackers
   676  		// to repeatedly trigger hash collisions. See
   677  		// https://go.dev/issue/25237.
   678  		m.seed = uintptr(rand())
   679  	}
   680  
   681  	if m.writing == 0 {
   682  		fatal("concurrent map writes")
   683  	}
   684  	m.writing ^= 1
   685  }
   686  
   687  func (m *Map) deleteSmall(typ *abi.MapType, hash uintptr, key unsafe.Pointer) {
   688  	g := groupReference{
   689  		data: m.dirPtr,
   690  	}
   691  
   692  	match := g.ctrls().matchH2(h2(hash))
   693  
   694  	for match != 0 {
   695  		i := match.first()
   696  		slotKey := g.key(typ, i)
   697  		origSlotKey := slotKey
   698  		if typ.IndirectKey() {
   699  			slotKey = *((*unsafe.Pointer)(slotKey))
   700  		}
   701  		if typ.Key.Equal(key, slotKey) {
   702  			m.used--
   703  
   704  			if typ.IndirectKey() {
   705  				// Clearing the pointer is sufficient.
   706  				*(*unsafe.Pointer)(origSlotKey) = nil
   707  			} else if typ.Key.Pointers() {
   708  				// Only bother clearing if there are pointers.
   709  				typedmemclr(typ.Key, slotKey)
   710  			}
   711  
   712  			slotElem := g.elem(typ, i)
   713  			if typ.IndirectElem() {
   714  				// Clearing the pointer is sufficient.
   715  				*(*unsafe.Pointer)(slotElem) = nil
   716  			} else {
   717  				// Unlike keys, always clear the elem (even if
   718  				// it contains no pointers), as compound
   719  				// assignment operations depend on cleared
   720  				// deleted values. See
   721  				// https://go.dev/issue/25936.
   722  				typedmemclr(typ.Elem, slotElem)
   723  			}
   724  
   725  			// We only have 1 group, so it is OK to immediately
   726  			// reuse deleted slots.
   727  			g.ctrls().set(i, ctrlEmpty)
   728  			return
   729  		}
   730  		match = match.removeFirst()
   731  	}
   732  }
   733  
   734  // Clear deletes all entries from the map resulting in an empty map.
   735  func (m *Map) Clear(typ *abi.MapType) {
   736  	if m == nil || m.Used() == 0 && !m.tombstonePossible {
   737  		return
   738  	}
   739  
   740  	if m.writing != 0 {
   741  		fatal("concurrent map writes")
   742  	}
   743  	m.writing ^= 1 // toggle, see comment on writing
   744  
   745  	if m.dirLen == 0 {
   746  		m.clearSmall(typ)
   747  	} else {
   748  		var lastTab *table
   749  		for i := range m.dirLen {
   750  			t := m.directoryAt(uintptr(i))
   751  			if t == lastTab {
   752  				continue
   753  			}
   754  			t.Clear(typ)
   755  			lastTab = t
   756  		}
   757  		m.used = 0
   758  		m.tombstonePossible = false
   759  		// TODO: shrink directory?
   760  	}
   761  	m.clearSeq++
   762  
   763  	// Reset the hash seed to make it more difficult for attackers to
   764  	// repeatedly trigger hash collisions. See https://go.dev/issue/25237.
   765  	m.seed = uintptr(rand())
   766  
   767  	if m.writing == 0 {
   768  		fatal("concurrent map writes")
   769  	}
   770  	m.writing ^= 1
   771  }
   772  
   773  func (m *Map) clearSmall(typ *abi.MapType) {
   774  	g := groupReference{
   775  		data: m.dirPtr,
   776  	}
   777  
   778  	typedmemclr(typ.Group, g.data)
   779  	g.ctrls().setEmpty()
   780  
   781  	m.used = 0
   782  }
   783  
   784  func (m *Map) Clone(typ *abi.MapType) *Map {
   785  	// Note: this should never be called with a nil map.
   786  	if m.writing != 0 {
   787  		fatal("concurrent map clone and map write")
   788  	}
   789  
   790  	// Shallow copy the Map structure.
   791  	m2 := new(Map)
   792  	*m2 = *m
   793  	m = m2
   794  
   795  	// We need to just deep copy the dirPtr field.
   796  	if m.dirPtr == nil {
   797  		// delayed group allocation, nothing to do.
   798  	} else if m.dirLen == 0 {
   799  		// Clone one group.
   800  		oldGroup := groupReference{data: m.dirPtr}
   801  		newGroup := groupReference{data: newGroups(typ, 1).data}
   802  		cloneGroup(typ, newGroup, oldGroup)
   803  		m.dirPtr = newGroup.data
   804  	} else {
   805  		// Clone each (different) table.
   806  		oldDir := unsafe.Slice((**table)(m.dirPtr), m.dirLen)
   807  		newDir := make([]*table, m.dirLen)
   808  		for i, t := range oldDir {
   809  			if i > 0 && t == oldDir[i-1] {
   810  				newDir[i] = newDir[i-1]
   811  				continue
   812  			}
   813  			newDir[i] = t.clone(typ)
   814  		}
   815  		m.dirPtr = unsafe.Pointer(&newDir[0])
   816  	}
   817  
   818  	return m
   819  }
   820  
   821  func mapKeyError(t *abi.MapType, p unsafe.Pointer) error {
   822  	if !t.HashMightPanic() {
   823  		return nil
   824  	}
   825  	return mapKeyError2(t.Key, p)
   826  }
   827  
   828  func mapKeyError2(t *abi.Type, p unsafe.Pointer) error {
   829  	if t.TFlag&abi.TFlagRegularMemory != 0 {
   830  		return nil
   831  	}
   832  	switch t.Kind() {
   833  	case abi.Float32, abi.Float64, abi.Complex64, abi.Complex128, abi.String:
   834  		return nil
   835  	case abi.Interface:
   836  		i := (*abi.InterfaceType)(unsafe.Pointer(t))
   837  		var t *abi.Type
   838  		var pdata *unsafe.Pointer
   839  		if len(i.Methods) == 0 {
   840  			a := (*abi.EmptyInterface)(p)
   841  			t = a.Type
   842  			if t == nil {
   843  				return nil
   844  			}
   845  			pdata = &a.Data
   846  		} else {
   847  			a := (*abi.NonEmptyInterface)(p)
   848  			if a.ITab == nil {
   849  				return nil
   850  			}
   851  			t = a.ITab.Type
   852  			pdata = &a.Data
   853  		}
   854  
   855  		if t.Equal == nil {
   856  			return unhashableTypeError{t}
   857  		}
   858  
   859  		if t.IsDirectIface() {
   860  			return mapKeyError2(t, unsafe.Pointer(pdata))
   861  		} else {
   862  			return mapKeyError2(t, *pdata)
   863  		}
   864  	case abi.Array:
   865  		a := (*abi.ArrayType)(unsafe.Pointer(t))
   866  		for i := uintptr(0); i < a.Len; i++ {
   867  			if err := mapKeyError2(a.Elem, unsafe.Pointer(uintptr(p)+i*a.Elem.Size_)); err != nil {
   868  				return err
   869  			}
   870  		}
   871  		return nil
   872  	case abi.Struct:
   873  		s := (*abi.StructType)(unsafe.Pointer(t))
   874  		for _, f := range s.Fields {
   875  			if f.Name.IsBlank() {
   876  				continue
   877  			}
   878  			if err := mapKeyError2(f.Typ, unsafe.Pointer(uintptr(p)+f.Offset)); err != nil {
   879  				return err
   880  			}
   881  		}
   882  		return nil
   883  	default:
   884  		// Should never happen, keep this case for robustness.
   885  		return unhashableTypeError{t}
   886  	}
   887  }
   888  
   889  type unhashableTypeError struct{ typ *abi.Type }
   890  
   891  func (unhashableTypeError) RuntimeError() {}
   892  
   893  func (e unhashableTypeError) Error() string { return "hash of unhashable type: " + typeString(e.typ) }
   894  
   895  // Pushed from runtime
   896  //
   897  //go:linkname typeString
   898  func typeString(typ *abi.Type) string
   899  

View as plain text