Source file src/internal/runtime/maps/map.go

     1  // Copyright 2024 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package maps implements Go's builtin map type.
     6  package maps
     7  
     8  import (
     9  	"internal/abi"
    10  	"internal/goarch"
    11  	"internal/runtime/math"
    12  	"internal/runtime/sys"
    13  	"unsafe"
    14  )
    15  
    16  // This package contains the implementation of Go's builtin map type.
    17  //
    18  // The map design is based on Abseil's "Swiss Table" map design
    19  // (https://abseil.io/about/design/swisstables), with additional modifications
    20  // to cover Go's additional requirements, discussed below.
    21  //
    22  // Terminology:
    23  // - Slot: A storage location of a single key/element pair.
    24  // - Group: A group of abi.SwissMapGroupSlots (8) slots, plus a control word.
    25  // - Control word: An 8-byte word which denotes whether each slot is empty,
    26  //   deleted, or used. If a slot is used, its control byte also contains the
    27  //   lower 7 bits of the hash (H2).
    28  // - H1: Upper 57 bits of a hash.
    29  // - H2: Lower 7 bits of a hash.
    30  // - Table: A complete "Swiss Table" hash table. A table consists of one or
    31  //   more groups for storage plus metadata to handle operation and determining
    32  //   when to grow.
    33  // - Map: The top-level Map type consists of zero or more tables for storage.
    34  //   The upper bits of the hash select which table a key belongs to.
    35  // - Directory: Array of the tables used by the map.
    36  //
    37  // At its core, the table design is similar to a traditional open-addressed
    38  // hash table. Storage consists of an array of groups, which effectively means
    39  // an array of key/elem slots with some control words interspersed. Lookup uses
    40  // the hash to determine an initial group to check. If, due to collisions, this
    41  // group contains no match, the probe sequence selects the next group to check
    42  // (see below for more detail about the probe sequence).
    43  //
    44  // The key difference occurs within a group. In a standard open-addressed
    45  // linear probed hash table, we would check each slot one at a time to find a
    46  // match. A swiss table utilizes the extra control word to check all 8 slots in
    47  // parallel.
    48  //
    49  // Each byte in the control word corresponds to one of the slots in the group.
    50  // In each byte, 1 bit is used to indicate whether the slot is in use, or if it
    51  // is empty/deleted. The other 7 bits contain the lower 7 bits of the hash for
    52  // the key in that slot. See [ctrl] for the exact encoding.
    53  //
    54  // During lookup, we can use some clever bitwise manipulation to compare all 8
    55  // 7-bit hashes against the input hash in parallel (see [ctrlGroup.matchH2]).
    56  // That is, we effectively perform 8 steps of probing in a single operation.
    57  // With SIMD instructions, this could be extended to 16 slots with a 16-byte
    58  // control word.
    59  //
    60  // Since we only use 7 bits of the 64 bit hash, there is a 1 in 128 (~0.7%)
    61  // probability of false positive on each slot, but that's fine: we always need
    62  // double check each match with a standard key comparison regardless.
    63  //
    64  // Probing
    65  //
    66  // Probing is done using the upper 57 bits (H1) of the hash as an index into
    67  // the groups array. Probing walks through the groups using quadratic probing
    68  // until it finds a group with a match or a group with an empty slot. See
    69  // [probeSeq] for specifics about the probe sequence. Note the probe
    70  // invariants: the number of groups must be a power of two, and the end of a
    71  // probe sequence must be a group with an empty slot (the table can never be
    72  // 100% full).
    73  //
    74  // Deletion
    75  //
    76  // Probing stops when it finds a group with an empty slot. This affects
    77  // deletion: when deleting from a completely full group, we must not mark the
    78  // slot as empty, as there could be more slots used later in a probe sequence
    79  // and this deletion would cause probing to stop too early. Instead, we mark
    80  // such slots as "deleted" with a tombstone. If the group still has an empty
    81  // slot, we don't need a tombstone and directly mark the slot empty. Insert
    82  // prioritizes reuse of tombstones over filling an empty slots. Otherwise,
    83  // tombstones are only completely cleared during grow, as an in-place cleanup
    84  // complicates iteration.
    85  //
    86  // Growth
    87  //
    88  // The probe sequence depends on the number of groups. Thus, when growing the
    89  // group count all slots must be reordered to match the new probe sequence. In
    90  // other words, an entire table must be grown at once.
    91  //
    92  // In order to support incremental growth, the map splits its contents across
    93  // multiple tables. Each table is still a full hash table, but an individual
    94  // table may only service a subset of the hash space. Growth occurs on
    95  // individual tables, so while an entire table must grow at once, each of these
    96  // grows is only a small portion of a map. The maximum size of a single grow is
    97  // limited by limiting the maximum size of a table before it is split into
    98  // multiple tables.
    99  //
   100  // A map starts with a single table. Up to [maxTableCapacity], growth simply
   101  // replaces this table with a replacement with double capacity. Beyond this
   102  // limit, growth splits the table into two.
   103  //
   104  // The map uses "extendible hashing" to select which table to use. In
   105  // extendible hashing, we use the upper bits of the hash as an index into an
   106  // array of tables (called the "directory"). The number of bits uses increases
   107  // as the number of tables increases. For example, when there is only 1 table,
   108  // we use 0 bits (no selection necessary). When there are 2 tables, we use 1
   109  // bit to select either the 0th or 1st table. [Map.globalDepth] is the number
   110  // of bits currently used for table selection, and by extension (1 <<
   111  // globalDepth), the size of the directory.
   112  //
   113  // Note that each table has its own load factor and grows independently. If the
   114  // 1st bucket grows, it will split. We'll need 2 bits to select tables, though
   115  // we'll have 3 tables total rather than 4. We support this by allowing
   116  // multiple indicies to point to the same table. This example:
   117  //
   118  //	directory (globalDepth=2)
   119  //	+----+
   120  //	| 00 | --\
   121  //	+----+    +--> table (localDepth=1)
   122  //	| 01 | --/
   123  //	+----+
   124  //	| 10 | ------> table (localDepth=2)
   125  //	+----+
   126  //	| 11 | ------> table (localDepth=2)
   127  //	+----+
   128  //
   129  // Tables track the depth they were created at (localDepth). It is necessary to
   130  // grow the directory when splitting a table where globalDepth == localDepth.
   131  //
   132  // Iteration
   133  //
   134  // Iteration is the most complex part of the map due to Go's generous iteration
   135  // semantics. A summary of semantics from the spec:
   136  // 1. Adding and/or deleting entries during iteration MUST NOT cause iteration
   137  //    to return the same entry more than once.
   138  // 2. Entries added during iteration MAY be returned by iteration.
   139  // 3. Entries modified during iteration MUST return their latest value.
   140  // 4. Entries deleted during iteration MUST NOT be returned by iteration.
   141  // 5. Iteration order is unspecified. In the implementation, it is explicitly
   142  //    randomized.
   143  //
   144  // If the map never grows, these semantics are straightforward: just iterate
   145  // over every table in the directory and every group and slot in each table.
   146  // These semantics all land as expected.
   147  //
   148  // If the map grows during iteration, things complicate significantly. First
   149  // and foremost, we need to track which entries we already returned to satisfy
   150  // (1). There are three types of grow:
   151  // a. A table replaced by a single larger table.
   152  // b. A table split into two replacement tables.
   153  // c. Growing the directory (occurs as part of (b) if necessary).
   154  //
   155  // For all of these cases, the replacement table(s) will have a different probe
   156  // sequence, so simply tracking the current group and slot indices is not
   157  // sufficient.
   158  //
   159  // For (a) and (b), note that grows of tables other than the one we are
   160  // currently iterating over are irrelevant.
   161  //
   162  // We handle (a) and (b) by having the iterator keep a reference to the table
   163  // it is currently iterating over, even after the table is replaced. We keep
   164  // iterating over the original table to maintain the iteration order and avoid
   165  // violating (1). Any new entries added only to the replacement table(s) will
   166  // be skipped (allowed by (2)). To avoid violating (3) or (4), while we use the
   167  // original table to select the keys, we must look them up again in the new
   168  // table(s) to determine if they have been modified or deleted. There is yet
   169  // another layer of complexity if the key does not compare equal itself. See
   170  // [Iter.Next] for the gory details.
   171  //
   172  // Note that for (b) once we finish iterating over the old table we'll need to
   173  // skip the next entry in the directory, as that contains the second split of
   174  // the old table. We can use the old table's localDepth to determine the next
   175  // logical index to use.
   176  //
   177  // For (b), we must adjust the current directory index when the directory
   178  // grows. This is more straightforward, as the directory orders remains the
   179  // same after grow, so we just double the index if the directory size doubles.
   180  
   181  // Extracts the H1 portion of a hash: the 57 upper bits.
   182  // TODO(prattmic): what about 32-bit systems?
   183  func h1(h uintptr) uintptr {
   184  	return h >> 7
   185  }
   186  
   187  // Extracts the H2 portion of a hash: the 7 bits not used for h1.
   188  //
   189  // These are used as an occupied control byte.
   190  func h2(h uintptr) uintptr {
   191  	return h & 0x7f
   192  }
   193  
   194  type Map struct {
   195  	// The number of filled slots (i.e. the number of elements in all
   196  	// tables). Excludes deleted slots.
   197  	used uint64
   198  
   199  	// seed is the hash seed, computed as a unique random number per map.
   200  	seed uintptr
   201  
   202  	// The directory of tables.
   203  	//
   204  	// Normally dirPtr points to an array of table pointers
   205  	//
   206  	// dirPtr *[dirLen]*table
   207  	//
   208  	// The length (dirLen) of this array is `1 << globalDepth`. Multiple
   209  	// entries may point to the same table. See top-level comment for more
   210  	// details.
   211  	//
   212  	// Small map optimization: if the map always contained
   213  	// abi.SwissMapGroupSlots or fewer entries, it fits entirely in a
   214  	// single group. In that case dirPtr points directly to a single group.
   215  	//
   216  	// dirPtr *group
   217  	//
   218  	// In this case, dirLen is 0. used counts the number of used slots in
   219  	// the group. Note that small maps never have deleted slots (as there
   220  	// is no probe sequence to maintain).
   221  	dirPtr unsafe.Pointer
   222  	dirLen int
   223  
   224  	// The number of bits to use in table directory lookups.
   225  	globalDepth uint8
   226  
   227  	// The number of bits to shift out of the hash for directory lookups.
   228  	// On 64-bit systems, this is 64 - globalDepth.
   229  	globalShift uint8
   230  
   231  	// writing is a flag that is toggled (XOR 1) while the map is being
   232  	// written. Normally it is set to 1 when writing, but if there are
   233  	// multiple concurrent writers, then toggling increases the probability
   234  	// that both sides will detect the race.
   235  	writing uint8
   236  
   237  	// clearSeq is a sequence counter of calls to Clear. It is used to
   238  	// detect map clears during iteration.
   239  	clearSeq uint64
   240  }
   241  
   242  func depthToShift(depth uint8) uint8 {
   243  	if goarch.PtrSize == 4 {
   244  		return 32 - depth
   245  	}
   246  	return 64 - depth
   247  }
   248  
   249  // If m is non-nil, it should be used rather than allocating.
   250  //
   251  // maxAlloc should be runtime.maxAlloc.
   252  //
   253  // TODO(prattmic): Put maxAlloc somewhere accessible.
   254  func NewMap(mt *abi.SwissMapType, hint uintptr, m *Map, maxAlloc uintptr) *Map {
   255  	if m == nil {
   256  		m = new(Map)
   257  	}
   258  
   259  	m.seed = uintptr(rand())
   260  
   261  	if hint <= abi.SwissMapGroupSlots {
   262  		// A small map can fill all 8 slots, so no need to increase
   263  		// target capacity.
   264  		//
   265  		// In fact, since an 8 slot group is what the first assignment
   266  		// to an empty map would allocate anyway, it doesn't matter if
   267  		// we allocate here or on the first assignment.
   268  		//
   269  		// Thus we just return without allocating. (We'll save the
   270  		// allocation completely if no assignment comes.)
   271  
   272  		// Note that the compiler may have initialized m.dirPtr with a
   273  		// pointer to a stack-allocated group, in which case we already
   274  		// have a group. The control word is already initialized.
   275  
   276  		return m
   277  	}
   278  
   279  	// Full size map.
   280  
   281  	// Set initial capacity to hold hint entries without growing in the
   282  	// average case.
   283  	targetCapacity := (hint * abi.SwissMapGroupSlots) / maxAvgGroupLoad
   284  	if targetCapacity < hint { // overflow
   285  		return m // return an empty map.
   286  	}
   287  
   288  	dirSize := (uint64(targetCapacity) + maxTableCapacity - 1) / maxTableCapacity
   289  	dirSize, overflow := alignUpPow2(dirSize)
   290  	if overflow || dirSize > uint64(math.MaxUintptr) {
   291  		return m // return an empty map.
   292  	}
   293  
   294  	// Reject hints that are obviously too large.
   295  	groups, overflow := math.MulUintptr(uintptr(dirSize), maxTableCapacity)
   296  	if overflow {
   297  		return m // return an empty map.
   298  	} else {
   299  		mem, overflow := math.MulUintptr(groups, mt.Group.Size_)
   300  		if overflow || mem > maxAlloc {
   301  			return m // return an empty map.
   302  		}
   303  	}
   304  
   305  	m.globalDepth = uint8(sys.TrailingZeros64(dirSize))
   306  	m.globalShift = depthToShift(m.globalDepth)
   307  
   308  	directory := make([]*table, dirSize)
   309  
   310  	for i := range directory {
   311  		// TODO: Think more about initial table capacity.
   312  		directory[i] = newTable(mt, uint64(targetCapacity)/dirSize, i, m.globalDepth)
   313  	}
   314  
   315  	m.dirPtr = unsafe.Pointer(&directory[0])
   316  	m.dirLen = len(directory)
   317  
   318  	return m
   319  }
   320  
   321  func NewEmptyMap() *Map {
   322  	m := new(Map)
   323  	m.seed = uintptr(rand())
   324  	// See comment in NewMap. No need to eager allocate a group.
   325  	return m
   326  }
   327  
   328  func (m *Map) directoryIndex(hash uintptr) uintptr {
   329  	if m.dirLen == 1 {
   330  		return 0
   331  	}
   332  	return hash >> (m.globalShift & 63)
   333  }
   334  
   335  func (m *Map) directoryAt(i uintptr) *table {
   336  	return *(**table)(unsafe.Pointer(uintptr(m.dirPtr) + goarch.PtrSize*i))
   337  }
   338  
   339  func (m *Map) directorySet(i uintptr, nt *table) {
   340  	*(**table)(unsafe.Pointer(uintptr(m.dirPtr) + goarch.PtrSize*i)) = nt
   341  }
   342  
   343  func (m *Map) replaceTable(nt *table) {
   344  	// The number of entries that reference the same table doubles for each
   345  	// time the globalDepth grows without the table splitting.
   346  	entries := 1 << (m.globalDepth - nt.localDepth)
   347  	for i := 0; i < entries; i++ {
   348  		//m.directory[nt.index+i] = nt
   349  		m.directorySet(uintptr(nt.index+i), nt)
   350  	}
   351  }
   352  
   353  func (m *Map) installTableSplit(old, left, right *table) {
   354  	if old.localDepth == m.globalDepth {
   355  		// No room for another level in the directory. Grow the
   356  		// directory.
   357  		newDir := make([]*table, m.dirLen*2)
   358  		for i := range m.dirLen {
   359  			t := m.directoryAt(uintptr(i))
   360  			newDir[2*i] = t
   361  			newDir[2*i+1] = t
   362  			// t may already exist in multiple indicies. We should
   363  			// only update t.index once. Since the index must
   364  			// increase, seeing the original index means this must
   365  			// be the first time we've encountered this table.
   366  			if t.index == i {
   367  				t.index = 2 * i
   368  			}
   369  		}
   370  		m.globalDepth++
   371  		m.globalShift--
   372  		//m.directory = newDir
   373  		m.dirPtr = unsafe.Pointer(&newDir[0])
   374  		m.dirLen = len(newDir)
   375  	}
   376  
   377  	// N.B. left and right may still consume multiple indicies if the
   378  	// directory has grown multiple times since old was last split.
   379  	left.index = old.index
   380  	m.replaceTable(left)
   381  
   382  	entries := 1 << (m.globalDepth - left.localDepth)
   383  	right.index = left.index + entries
   384  	m.replaceTable(right)
   385  }
   386  
   387  func (m *Map) Used() uint64 {
   388  	return m.used
   389  }
   390  
   391  // Get performs a lookup of the key that key points to. It returns a pointer to
   392  // the element, or false if the key doesn't exist.
   393  func (m *Map) Get(typ *abi.SwissMapType, key unsafe.Pointer) (unsafe.Pointer, bool) {
   394  	return m.getWithoutKey(typ, key)
   395  }
   396  
   397  func (m *Map) getWithKey(typ *abi.SwissMapType, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
   398  	if m.Used() == 0 {
   399  		return nil, nil, false
   400  	}
   401  
   402  	if m.writing != 0 {
   403  		fatal("concurrent map read and map write")
   404  	}
   405  
   406  	hash := typ.Hasher(key, m.seed)
   407  
   408  	if m.dirLen == 0 {
   409  		return m.getWithKeySmall(typ, hash, key)
   410  	}
   411  
   412  	idx := m.directoryIndex(hash)
   413  	return m.directoryAt(idx).getWithKey(typ, hash, key)
   414  }
   415  
   416  func (m *Map) getWithoutKey(typ *abi.SwissMapType, key unsafe.Pointer) (unsafe.Pointer, bool) {
   417  	if m.Used() == 0 {
   418  		return nil, false
   419  	}
   420  
   421  	if m.writing != 0 {
   422  		fatal("concurrent map read and map write")
   423  	}
   424  
   425  	hash := typ.Hasher(key, m.seed)
   426  
   427  	if m.dirLen == 0 {
   428  		_, elem, ok := m.getWithKeySmall(typ, hash, key)
   429  		return elem, ok
   430  	}
   431  
   432  	idx := m.directoryIndex(hash)
   433  	return m.directoryAt(idx).getWithoutKey(typ, hash, key)
   434  }
   435  
   436  func (m *Map) getWithKeySmall(typ *abi.SwissMapType, hash uintptr, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer, bool) {
   437  	g := groupReference{
   438  		data: m.dirPtr,
   439  	}
   440  
   441  	h2 := uint8(h2(hash))
   442  	ctrls := *g.ctrls()
   443  
   444  	for i := uintptr(0); i < abi.SwissMapGroupSlots; i++ {
   445  		c := uint8(ctrls)
   446  		ctrls >>= 8
   447  		if c != h2 {
   448  			continue
   449  		}
   450  
   451  		slotKey := g.key(typ, i)
   452  		if typ.IndirectKey() {
   453  			slotKey = *((*unsafe.Pointer)(slotKey))
   454  		}
   455  
   456  		if typ.Key.Equal(key, slotKey) {
   457  			slotElem := g.elem(typ, i)
   458  			if typ.IndirectElem() {
   459  				slotElem = *((*unsafe.Pointer)(slotElem))
   460  			}
   461  			return slotKey, slotElem, true
   462  		}
   463  	}
   464  
   465  	return nil, nil, false
   466  }
   467  
   468  func (m *Map) Put(typ *abi.SwissMapType, key, elem unsafe.Pointer) {
   469  	slotElem := m.PutSlot(typ, key)
   470  	typedmemmove(typ.Elem, slotElem, elem)
   471  }
   472  
   473  // PutSlot returns a pointer to the element slot where an inserted element
   474  // should be written.
   475  //
   476  // PutSlot never returns nil.
   477  func (m *Map) PutSlot(typ *abi.SwissMapType, key unsafe.Pointer) unsafe.Pointer {
   478  	if m.writing != 0 {
   479  		fatal("concurrent map writes")
   480  	}
   481  
   482  	hash := typ.Hasher(key, m.seed)
   483  
   484  	// Set writing after calling Hasher, since Hasher may panic, in which
   485  	// case we have not actually done a write.
   486  	m.writing ^= 1 // toggle, see comment on writing
   487  
   488  	if m.dirPtr == nil {
   489  		m.growToSmall(typ)
   490  	}
   491  
   492  	if m.dirLen == 0 {
   493  		if m.used < abi.SwissMapGroupSlots {
   494  			elem := m.putSlotSmall(typ, hash, key)
   495  
   496  			if m.writing == 0 {
   497  				fatal("concurrent map writes")
   498  			}
   499  			m.writing ^= 1
   500  
   501  			return elem
   502  		}
   503  
   504  		// Can't fit another entry, grow to full size map.
   505  		//
   506  		// TODO(prattmic): If this is an update to an existing key then
   507  		// we actually don't need to grow.
   508  		m.growToTable(typ)
   509  	}
   510  
   511  	for {
   512  		idx := m.directoryIndex(hash)
   513  		elem, ok := m.directoryAt(idx).PutSlot(typ, m, hash, key)
   514  		if !ok {
   515  			continue
   516  		}
   517  
   518  		if m.writing == 0 {
   519  			fatal("concurrent map writes")
   520  		}
   521  		m.writing ^= 1
   522  
   523  		return elem
   524  	}
   525  }
   526  
   527  func (m *Map) putSlotSmall(typ *abi.SwissMapType, hash uintptr, key unsafe.Pointer) unsafe.Pointer {
   528  	g := groupReference{
   529  		data: m.dirPtr,
   530  	}
   531  
   532  	match := g.ctrls().matchH2(h2(hash))
   533  
   534  	// Look for an existing slot containing this key.
   535  	for match != 0 {
   536  		i := match.first()
   537  
   538  		slotKey := g.key(typ, i)
   539  		if typ.IndirectKey() {
   540  			slotKey = *((*unsafe.Pointer)(slotKey))
   541  		}
   542  		if typ.Key.Equal(key, slotKey) {
   543  			if typ.NeedKeyUpdate() {
   544  				typedmemmove(typ.Key, slotKey, key)
   545  			}
   546  
   547  			slotElem := g.elem(typ, i)
   548  			if typ.IndirectElem() {
   549  				slotElem = *((*unsafe.Pointer)(slotElem))
   550  			}
   551  
   552  			return slotElem
   553  		}
   554  		match = match.removeFirst()
   555  	}
   556  
   557  	// There can't be deleted slots, small maps can't have them
   558  	// (see deleteSmall). Use matchEmptyOrDeleted as it is a bit
   559  	// more efficient than matchEmpty.
   560  	match = g.ctrls().matchEmptyOrDeleted()
   561  	if match == 0 {
   562  		fatal("small map with no empty slot (concurrent map writes?)")
   563  		return nil
   564  	}
   565  
   566  	i := match.first()
   567  
   568  	slotKey := g.key(typ, i)
   569  	if typ.IndirectKey() {
   570  		kmem := newobject(typ.Key)
   571  		*(*unsafe.Pointer)(slotKey) = kmem
   572  		slotKey = kmem
   573  	}
   574  	typedmemmove(typ.Key, slotKey, key)
   575  
   576  	slotElem := g.elem(typ, i)
   577  	if typ.IndirectElem() {
   578  		emem := newobject(typ.Elem)
   579  		*(*unsafe.Pointer)(slotElem) = emem
   580  		slotElem = emem
   581  	}
   582  
   583  	g.ctrls().set(i, ctrl(h2(hash)))
   584  	m.used++
   585  
   586  	return slotElem
   587  }
   588  
   589  func (m *Map) growToSmall(typ *abi.SwissMapType) {
   590  	grp := newGroups(typ, 1)
   591  	m.dirPtr = grp.data
   592  
   593  	g := groupReference{
   594  		data: m.dirPtr,
   595  	}
   596  	g.ctrls().setEmpty()
   597  }
   598  
   599  func (m *Map) growToTable(typ *abi.SwissMapType) {
   600  	tab := newTable(typ, 2*abi.SwissMapGroupSlots, 0, 0)
   601  
   602  	g := groupReference{
   603  		data: m.dirPtr,
   604  	}
   605  
   606  	for i := uintptr(0); i < abi.SwissMapGroupSlots; i++ {
   607  		if (g.ctrls().get(i) & ctrlEmpty) == ctrlEmpty {
   608  			// Empty
   609  			continue
   610  		}
   611  
   612  		key := g.key(typ, i)
   613  		if typ.IndirectKey() {
   614  			key = *((*unsafe.Pointer)(key))
   615  		}
   616  
   617  		elem := g.elem(typ, i)
   618  		if typ.IndirectElem() {
   619  			elem = *((*unsafe.Pointer)(elem))
   620  		}
   621  
   622  		hash := typ.Hasher(key, m.seed)
   623  
   624  		// TODO(prattmic): For indirect key/elem, this is
   625  		// allocating new objects for key/elem. That is
   626  		// unnecessary; the new table could simply point to the
   627  		// existing object.
   628  		slotElem := tab.uncheckedPutSlot(typ, hash, key)
   629  		typedmemmove(typ.Elem, slotElem, elem)
   630  		tab.used++
   631  	}
   632  
   633  	directory := make([]*table, 1)
   634  
   635  	directory[0] = tab
   636  
   637  	m.dirPtr = unsafe.Pointer(&directory[0])
   638  	m.dirLen = len(directory)
   639  
   640  	m.globalDepth = 0
   641  	m.globalShift = depthToShift(m.globalDepth)
   642  }
   643  
   644  func (m *Map) Delete(typ *abi.SwissMapType, key unsafe.Pointer) {
   645  	if m == nil || m.Used() == 0 {
   646  		if err := mapKeyError(typ, key); err != nil {
   647  			panic(err) // see issue 23734
   648  		}
   649  		return
   650  	}
   651  
   652  	if m.writing != 0 {
   653  		fatal("concurrent map writes")
   654  	}
   655  
   656  	hash := typ.Hasher(key, m.seed)
   657  
   658  	// Set writing after calling Hasher, since Hasher may panic, in which
   659  	// case we have not actually done a write.
   660  	m.writing ^= 1 // toggle, see comment on writing
   661  
   662  	if m.dirLen == 0 {
   663  		m.deleteSmall(typ, hash, key)
   664  	} else {
   665  		idx := m.directoryIndex(hash)
   666  		m.directoryAt(idx).Delete(typ, m, hash, key)
   667  	}
   668  
   669  	if m.used == 0 {
   670  		// Reset the hash seed to make it more difficult for attackers
   671  		// to repeatedly trigger hash collisions. See
   672  		// https://go.dev/issue/25237.
   673  		m.seed = uintptr(rand())
   674  	}
   675  
   676  	if m.writing == 0 {
   677  		fatal("concurrent map writes")
   678  	}
   679  	m.writing ^= 1
   680  }
   681  
   682  func (m *Map) deleteSmall(typ *abi.SwissMapType, hash uintptr, key unsafe.Pointer) {
   683  	g := groupReference{
   684  		data: m.dirPtr,
   685  	}
   686  
   687  	match := g.ctrls().matchH2(h2(hash))
   688  
   689  	for match != 0 {
   690  		i := match.first()
   691  		slotKey := g.key(typ, i)
   692  		origSlotKey := slotKey
   693  		if typ.IndirectKey() {
   694  			slotKey = *((*unsafe.Pointer)(slotKey))
   695  		}
   696  		if typ.Key.Equal(key, slotKey) {
   697  			m.used--
   698  
   699  			if typ.IndirectKey() {
   700  				// Clearing the pointer is sufficient.
   701  				*(*unsafe.Pointer)(origSlotKey) = nil
   702  			} else if typ.Key.Pointers() {
   703  				// Only bother clearing if there are pointers.
   704  				typedmemclr(typ.Key, slotKey)
   705  			}
   706  
   707  			slotElem := g.elem(typ, i)
   708  			if typ.IndirectElem() {
   709  				// Clearing the pointer is sufficient.
   710  				*(*unsafe.Pointer)(slotElem) = nil
   711  			} else {
   712  				// Unlike keys, always clear the elem (even if
   713  				// it contains no pointers), as compound
   714  				// assignment operations depend on cleared
   715  				// deleted values. See
   716  				// https://go.dev/issue/25936.
   717  				typedmemclr(typ.Elem, slotElem)
   718  			}
   719  
   720  			// We only have 1 group, so it is OK to immediately
   721  			// reuse deleted slots.
   722  			g.ctrls().set(i, ctrlEmpty)
   723  			return
   724  		}
   725  		match = match.removeFirst()
   726  	}
   727  }
   728  
   729  // Clear deletes all entries from the map resulting in an empty map.
   730  func (m *Map) Clear(typ *abi.SwissMapType) {
   731  	if m == nil || m.Used() == 0 {
   732  		return
   733  	}
   734  
   735  	if m.writing != 0 {
   736  		fatal("concurrent map writes")
   737  	}
   738  	m.writing ^= 1 // toggle, see comment on writing
   739  
   740  	if m.dirLen == 0 {
   741  		m.clearSmall(typ)
   742  	} else {
   743  		var lastTab *table
   744  		for i := range m.dirLen {
   745  			t := m.directoryAt(uintptr(i))
   746  			if t == lastTab {
   747  				continue
   748  			}
   749  			t.Clear(typ)
   750  			lastTab = t
   751  		}
   752  		m.used = 0
   753  		m.clearSeq++
   754  		// TODO: shrink directory?
   755  	}
   756  
   757  	// Reset the hash seed to make it more difficult for attackers to
   758  	// repeatedly trigger hash collisions. See https://go.dev/issue/25237.
   759  	m.seed = uintptr(rand())
   760  
   761  	if m.writing == 0 {
   762  		fatal("concurrent map writes")
   763  	}
   764  	m.writing ^= 1
   765  }
   766  
   767  func (m *Map) clearSmall(typ *abi.SwissMapType) {
   768  	g := groupReference{
   769  		data: m.dirPtr,
   770  	}
   771  
   772  	typedmemclr(typ.Group, g.data)
   773  	g.ctrls().setEmpty()
   774  
   775  	m.used = 0
   776  	m.clearSeq++
   777  }
   778  

View as plain text