// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sys // Copied from math/bits to avoid dependence. var deBruijn32tab = [32]byte{ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, } const deBruijn32 = 0x077CB531 var deBruijn64tab = [64]byte{ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, } const deBruijn64 = 0x03f79d71b4ca8b09 const ntz8tab = "" + "\x08\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x07\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x06\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x05\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" + "\x04\x00\x01\x00\x02\x00\x01\x00\x03\x00\x01\x00\x02\x00\x01\x00" // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0. func TrailingZeros32(x uint32) int { if x == 0 { return 32 } // see comment in TrailingZeros64 return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)]) } // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0. func TrailingZeros64(x uint64) int { if x == 0 { return 64 } // If popcount is fast, replace code below with return popcount(^x & (x - 1)). // // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multiplying by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn (64 bit) constant // is such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)]) } // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0. func TrailingZeros8(x uint8) int { return int(ntz8tab[x]) } const len8tab = "" + "\x00\x01\x02\x02\x03\x03\x03\x03\x04\x04\x04\x04\x04\x04\x04\x04" + "\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05\x05" + "\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06" + "\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06\x06" + "\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" + "\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" + "\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" + "\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07\x07" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" + "\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08\x08" // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. // // nosplit because this is used in src/runtime/histogram.go, which make run in sensitive contexts. // //go:nosplit func Len64(x uint64) (n int) { if x >= 1<<32 { x >>= 32 n = 32 } if x >= 1<<16 { x >>= 16 n += 16 } if x >= 1<<8 { x >>= 8 n += 8 } return n + int(len8tab[x]) } // --- OnesCount --- const m0 = 0x5555555555555555 // 01010101 ... const m1 = 0x3333333333333333 // 00110011 ... const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... // OnesCount64 returns the number of one bits ("population count") in x. func OnesCount64(x uint64) int { // Implementation: Parallel summing of adjacent bits. // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // // x = x>>1&(m0&m) + x&(m0&m) // x = x>>2&(m1&m) + x&(m1&m) // x = x>>4&(m2&m) + x&(m2&m) // x = x>>8&(m3&m) + x&(m3&m) // x = x>>16&(m4&m) + x&(m4&m) // x = x>>32&(m5&m) + x&(m5&m) // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next // field: Since the result cannot be > 64, 8 bits is enough // and we can ignore the masks for the shifts by 8 and up. // Per "Hacker's Delight", the first line can be simplified // more, but it saves at best one instruction, so we leave // it alone for clarity. const m = 1<<64 - 1 x = x>>1&(m0&m) + x&(m0&m) x = x>>2&(m1&m) + x&(m1&m) x = (x>>4 + x) & (m2 & m) x += x >> 8 x += x >> 16 x += x >> 32 return int(x) & (1<<7 - 1) } // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0. func LeadingZeros64(x uint64) int { return 64 - Len64(x) } // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0. func LeadingZeros8(x uint8) int { return 8 - Len8(x) } // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. func Len8(x uint8) int { return int(len8tab[x]) } // Bswap64 returns its input with byte order reversed // 0x0102030405060708 -> 0x0807060504030201 func Bswap64(x uint64) uint64 { c8 := uint64(0x00ff00ff00ff00ff) a := x >> 8 & c8 b := (x & c8) << 8 x = a | b c16 := uint64(0x0000ffff0000ffff) a = x >> 16 & c16 b = (x & c16) << 16 x = a | b c32 := uint64(0x00000000ffffffff) a = x >> 32 & c32 b = (x & c32) << 32 x = a | b return x } // Bswap32 returns its input with byte order reversed // 0x01020304 -> 0x04030201 func Bswap32(x uint32) uint32 { c8 := uint32(0x00ff00ff) a := x >> 8 & c8 b := (x & c8) << 8 x = a | b c16 := uint32(0x0000ffff) a = x >> 16 & c16 b = (x & c16) << 16 x = a | b return x } // Prefetch prefetches data from memory addr to cache // // AMD64: Produce PREFETCHT0 instruction // // ARM64: Produce PRFM instruction with PLDL1KEEP option func Prefetch(addr uintptr) {} // PrefetchStreamed prefetches data from memory addr, with a hint that this data is being streamed. // That is, it is likely to be accessed very soon, but only once. If possible, this will avoid polluting the cache. // // AMD64: Produce PREFETCHNTA instruction // // ARM64: Produce PRFM instruction with PLDL1STRM option func PrefetchStreamed(addr uintptr) {} // GetCallerPC returns the program counter (PC) of its caller's caller. // GetCallerSP returns the stack pointer (SP) of its caller's caller. // Both are implemented as intrinsics on every platform. // // For example: // // func f(arg1, arg2, arg3 int) { // pc := GetCallerPC() // sp := GetCallerSP() // } // // These two lines find the PC and SP immediately following // the call to f (where f will return). // // The call to GetCallerPC and GetCallerSP must be done in the // frame being asked about. // // The result of GetCallerSP is correct at the time of the return, // but it may be invalidated by any subsequent call to a function // that might relocate the stack in order to grow or shrink it. // A general rule is that the result of GetCallerSP should be used // immediately and can only be passed to nosplit functions. func GetCallerPC() uintptr func GetCallerSP() uintptr // GetClosurePtr returns the pointer to the current closure. // GetClosurePtr can only be used in an assignment statement // at the entry of a function. Moreover, go:nosplit directive // must be specified at the declaration of caller function, // so that the function prolog does not clobber the closure register. // for example: // // //go:nosplit // func f(arg1, arg2, arg3 int) { // dx := GetClosurePtr() // } // // The compiler rewrites calls to this function into instructions that fetch the // pointer from a well-known register (DX on x86 architecture, etc.) directly. // // WARNING: PGO-based devirtualization cannot detect that caller of // GetClosurePtr requires closure context, and thus must maintain a list of // these functions, which is in // cmd/compile/internal/devirtualize/pgo.maybeDevirtualizeFunctionCall. func GetClosurePtr() uintptr