// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math_test import ( "fmt" . "math" "testing" "unsafe" ) var vf = []float64{ 4.9790119248836735e+00, 7.7388724745781045e+00, -2.7688005719200159e-01, -5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00, 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00, -8.6859247685756013e+00, } // The expected results below were computed by the high precision calculators // at https://keisan.casio.com/. More exact input values (array vf[], above) // were obtained by printing them with "%.26f". The answers were calculated // to 26 digits (by using the "Digit number" drop-down control of each // calculator). var acos = []float64{ 1.0496193546107222142571536e+00, 6.8584012813664425171660692e-01, 1.5984878714577160325521819e+00, 2.0956199361475859327461799e+00, 2.7053008467824138592616927e-01, 1.2738121680361776018155625e+00, 1.0205369421140629186287407e+00, 1.2945003481781246062157835e+00, 1.3872364345374451433846657e+00, 2.6231510803970463967294145e+00, } var acosh = []float64{ 2.4743347004159012494457618e+00, 2.8576385344292769649802701e+00, 7.2796961502981066190593175e-01, 2.4796794418831451156471977e+00, 3.0552020742306061857212962e+00, 2.044238592688586588942468e+00, 2.5158701513104513595766636e+00, 1.99050839282411638174299e+00, 1.6988625798424034227205445e+00, 2.9611454842470387925531875e+00, } var asin = []float64{ 5.2117697218417440497416805e-01, 8.8495619865825236751471477e-01, -02.769154466281941332086016e-02, -5.2482360935268931351485822e-01, 1.3002662421166552333051524e+00, 2.9698415875871901741575922e-01, 5.5025938468083370060258102e-01, 2.7629597861677201301553823e-01, 1.83559892257451475846656e-01, -1.0523547536021497774980928e+00, } var asinh = []float64{ 2.3083139124923523427628243e+00, 2.743551594301593620039021e+00, -2.7345908534880091229413487e-01, -2.3145157644718338650499085e+00, 2.9613652154015058521951083e+00, 1.7949041616585821933067568e+00, 2.3564032905983506405561554e+00, 1.7287118790768438878045346e+00, 1.3626658083714826013073193e+00, -2.8581483626513914445234004e+00, } var atan = []float64{ 1.372590262129621651920085e+00, 1.442290609645298083020664e+00, -2.7011324359471758245192595e-01, -1.3738077684543379452781531e+00, 1.4673921193587666049154681e+00, 1.2415173565870168649117764e+00, 1.3818396865615168979966498e+00, 1.2194305844639670701091426e+00, 1.0696031952318783760193244e+00, -1.4561721938838084990898679e+00, } var atanh = []float64{ 5.4651163712251938116878204e-01, 1.0299474112843111224914709e+00, -2.7695084420740135145234906e-02, -5.5072096119207195480202529e-01, 1.9943940993171843235906642e+00, 3.01448604578089708203017e-01, 5.8033427206942188834370595e-01, 2.7987997499441511013958297e-01, 1.8459947964298794318714228e-01, -1.3273186910532645867272502e+00, } var atan2 = []float64{ 1.1088291730037004444527075e+00, 9.1218183188715804018797795e-01, 1.5984772603216203736068915e+00, 2.0352918654092086637227327e+00, 8.0391819139044720267356014e-01, 1.2861075249894661588866752e+00, 1.0889904479131695712182587e+00, 1.3044821793397925293797357e+00, 1.3902530903455392306872261e+00, 2.2859857424479142655411058e+00, } var cbrt = []float64{ 1.7075799841925094446722675e+00, 1.9779982212970353936691498e+00, -6.5177429017779910853339447e-01, -1.7111838886544019873338113e+00, 2.1279920909827937423960472e+00, 1.4303536770460741452312367e+00, 1.7357021059106154902341052e+00, 1.3972633462554328350552916e+00, 1.2221149580905388454977636e+00, -2.0556003730500069110343596e+00, } var ceil = []float64{ 5.0000000000000000e+00, 8.0000000000000000e+00, Copysign(0, -1), -5.0000000000000000e+00, 1.0000000000000000e+01, 3.0000000000000000e+00, 6.0000000000000000e+00, 3.0000000000000000e+00, 2.0000000000000000e+00, -8.0000000000000000e+00, } var copysign = []float64{ -4.9790119248836735e+00, -7.7388724745781045e+00, -2.7688005719200159e-01, -5.0106036182710749e+00, -9.6362937071984173e+00, -2.9263772392439646e+00, -5.2290834314593066e+00, -2.7279399104360102e+00, -1.8253080916808550e+00, -8.6859247685756013e+00, } var cos = []float64{ 2.634752140995199110787593e-01, 1.148551260848219865642039e-01, 9.6191297325640768154550453e-01, 2.938141150061714816890637e-01, -9.777138189897924126294461e-01, -9.7693041344303219127199518e-01, 4.940088096948647263961162e-01, -9.1565869021018925545016502e-01, -2.517729313893103197176091e-01, -7.39241351595676573201918e-01, } // Results for 100000 * Pi + vf[i] var cosLarge = []float64{ 2.634752141185559426744e-01, 1.14855126055543100712e-01, 9.61912973266488928113e-01, 2.9381411499556122552e-01, -9.777138189880161924641e-01, -9.76930413445147608049e-01, 4.940088097314976789841e-01, -9.15658690217517835002e-01, -2.51772931436786954751e-01, -7.3924135157173099849e-01, } var cosh = []float64{ 7.2668796942212842775517446e+01, 1.1479413465659254502011135e+03, 1.0385767908766418550935495e+00, 7.5000957789658051428857788e+01, 7.655246669605357888468613e+03, 9.3567491758321272072888257e+00, 9.331351599270605471131735e+01, 7.6833430994624643209296404e+00, 3.1829371625150718153881164e+00, 2.9595059261916188501640911e+03, } var erf = []float64{ 5.1865354817738701906913566e-01, 7.2623875834137295116929844e-01, -3.123458688281309990629839e-02, -5.2143121110253302920437013e-01, 8.2704742671312902508629582e-01, 3.2101767558376376743993945e-01, 5.403990312223245516066252e-01, 3.0034702916738588551174831e-01, 2.0369924417882241241559589e-01, -7.8069386968009226729944677e-01, } var erfc = []float64{ 4.8134645182261298093086434e-01, 2.7376124165862704883070156e-01, 1.0312345868828130999062984e+00, 1.5214312111025330292043701e+00, 1.7295257328687097491370418e-01, 6.7898232441623623256006055e-01, 4.596009687776754483933748e-01, 6.9965297083261411448825169e-01, 7.9630075582117758758440411e-01, 1.7806938696800922672994468e+00, } var erfinv = []float64{ 4.746037673358033586786350696e-01, 8.559054432692110956388764172e-01, -2.45427830571707336251331946e-02, -4.78116683518973366268905506e-01, 1.479804430319470983648120853e+00, 2.654485787128896161882650211e-01, 5.027444534221520197823192493e-01, 2.466703532707627818954585670e-01, 1.632011465103005426240343116e-01, -1.06672334642196900710000389e+00, } var exp = []float64{ 1.4533071302642137507696589e+02, 2.2958822575694449002537581e+03, 7.5814542574851666582042306e-01, 6.6668778421791005061482264e-03, 1.5310493273896033740861206e+04, 1.8659907517999328638667732e+01, 1.8662167355098714543942057e+02, 1.5301332413189378961665788e+01, 6.2047063430646876349125085e+00, 1.6894712385826521111610438e-04, } var expm1 = []float64{ 5.105047796122957327384770212e-02, 8.046199708567344080562675439e-02, -2.764970978891639815187418703e-03, -4.8871434888875355394330300273e-02, 1.0115864277221467777117227494e-01, 2.969616407795910726014621657e-02, 5.368214487944892300914037972e-02, 2.765488851131274068067445335e-02, 1.842068661871398836913874273e-02, -8.3193870863553801814961137573e-02, } var expm1Large = []float64{ 4.2031418113550844e+21, 4.0690789717473863e+33, -0.9372627915981363e+00, -1.0, 7.077694784145933e+41, 5.117936223839153e+12, 5.124137759001189e+22, 7.03546003972584e+11, 8.456921800389698e+07, -1.0, } var exp2 = []float64{ 3.1537839463286288034313104e+01, 2.1361549283756232296144849e+02, 8.2537402562185562902577219e-01, 3.1021158628740294833424229e-02, 7.9581744110252191462569661e+02, 7.6019905892596359262696423e+00, 3.7506882048388096973183084e+01, 6.6250893439173561733216375e+00, 3.5438267900243941544605339e+00, 2.4281533133513300984289196e-03, } var fabs = []float64{ 4.9790119248836735e+00, 7.7388724745781045e+00, 2.7688005719200159e-01, 5.0106036182710749e+00, 9.6362937071984173e+00, 2.9263772392439646e+00, 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00, 8.6859247685756013e+00, } var fdim = []float64{ 4.9790119248836735e+00, 7.7388724745781045e+00, 0.0000000000000000e+00, 0.0000000000000000e+00, 9.6362937071984173e+00, 2.9263772392439646e+00, 5.2290834314593066e+00, 2.7279399104360102e+00, 1.8253080916808550e+00, 0.0000000000000000e+00, } var floor = []float64{ 4.0000000000000000e+00, 7.0000000000000000e+00, -1.0000000000000000e+00, -6.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00, 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, -9.0000000000000000e+00, } var fmod = []float64{ 4.197615023265299782906368e-02, 2.261127525421895434476482e+00, 3.231794108794261433104108e-02, 4.989396381728925078391512e+00, 3.637062928015826201999516e-01, 1.220868282268106064236690e+00, 4.770916568540693347699744e+00, 1.816180268691969246219742e+00, 8.734595415957246977711748e-01, 1.314075231424398637614104e+00, } type fi struct { f float64 i int } var frexp = []fi{ {6.2237649061045918750e-01, 3}, {9.6735905932226306250e-01, 3}, {-5.5376011438400318000e-01, -1}, {-6.2632545228388436250e-01, 3}, {6.02268356699901081250e-01, 4}, {7.3159430981099115000e-01, 2}, {6.5363542893241332500e-01, 3}, {6.8198497760900255000e-01, 2}, {9.1265404584042750000e-01, 1}, {-5.4287029803597508250e-01, 4}, } var gamma = []float64{ 2.3254348370739963835386613898e+01, 2.991153837155317076427529816e+03, -4.561154336726758060575129109e+00, 7.719403468842639065959210984e-01, 1.6111876618855418534325755566e+05, 1.8706575145216421164173224946e+00, 3.4082787447257502836734201635e+01, 1.579733951448952054898583387e+00, 9.3834586598354592860187267089e-01, -2.093995902923148389186189429e-05, } var j0 = []float64{ -1.8444682230601672018219338e-01, 2.27353668906331975435892e-01, 9.809259936157051116270273e-01, -1.741170131426226587841181e-01, -2.1389448451144143352039069e-01, -2.340905848928038763337414e-01, -1.0029099691890912094586326e-01, -1.5466726714884328135358907e-01, 3.252650187653420388714693e-01, -8.72218484409407250005360235e-03, } var j1 = []float64{ -3.251526395295203422162967e-01, 1.893581711430515718062564e-01, -1.3711761352467242914491514e-01, 3.287486536269617297529617e-01, 1.3133899188830978473849215e-01, 3.660243417832986825301766e-01, -3.4436769271848174665420672e-01, 4.329481396640773768835036e-01, 5.8181350531954794639333955e-01, -2.7030574577733036112996607e-01, } var j2 = []float64{ 5.3837518920137802565192769e-02, -1.7841678003393207281244667e-01, 9.521746934916464142495821e-03, 4.28958355470987397983072e-02, 2.4115371837854494725492872e-01, 4.842458532394520316844449e-01, -3.142145220618633390125946e-02, 4.720849184745124761189957e-01, 3.122312022520957042957497e-01, 7.096213118930231185707277e-02, } var jM3 = []float64{ -3.684042080996403091021151e-01, 2.8157665936340887268092661e-01, 4.401005480841948348343589e-04, 3.629926999056814081597135e-01, 3.123672198825455192489266e-02, -2.958805510589623607540455e-01, -3.2033177696533233403289416e-01, -2.592737332129663376736604e-01, -1.0241334641061485092351251e-01, -2.3762660886100206491674503e-01, } var lgamma = []fi{ {3.146492141244545774319734e+00, 1}, {8.003414490659126375852113e+00, 1}, {1.517575735509779707488106e+00, -1}, {-2.588480028182145853558748e-01, 1}, {1.1989897050205555002007985e+01, 1}, {6.262899811091257519386906e-01, 1}, {3.5287924899091566764846037e+00, 1}, {4.5725644770161182299423372e-01, 1}, {-6.363667087767961257654854e-02, 1}, {-1.077385130910300066425564e+01, -1}, } var log = []float64{ 1.605231462693062999102599e+00, 2.0462560018708770653153909e+00, -1.2841708730962657801275038e+00, 1.6115563905281545116286206e+00, 2.2655365644872016636317461e+00, 1.0737652208918379856272735e+00, 1.6542360106073546632707956e+00, 1.0035467127723465801264487e+00, 6.0174879014578057187016475e-01, 2.161703872847352815363655e+00, } var logb = []float64{ 2.0000000000000000e+00, 2.0000000000000000e+00, -2.0000000000000000e+00, 2.0000000000000000e+00, 3.0000000000000000e+00, 1.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, 0.0000000000000000e+00, 3.0000000000000000e+00, } var log10 = []float64{ 6.9714316642508290997617083e-01, 8.886776901739320576279124e-01, -5.5770832400658929815908236e-01, 6.998900476822994346229723e-01, 9.8391002850684232013281033e-01, 4.6633031029295153334285302e-01, 7.1842557117242328821552533e-01, 4.3583479968917773161304553e-01, 2.6133617905227038228626834e-01, 9.3881606348649405716214241e-01, } var log1p = []float64{ 4.8590257759797794104158205e-02, 7.4540265965225865330849141e-02, -2.7726407903942672823234024e-03, -5.1404917651627649094953380e-02, 9.1998280672258624681335010e-02, 2.8843762576593352865894824e-02, 5.0969534581863707268992645e-02, 2.6913947602193238458458594e-02, 1.8088493239630770262045333e-02, -9.0865245631588989681559268e-02, } var log2 = []float64{ 2.3158594707062190618898251e+00, 2.9521233862883917703341018e+00, -1.8526669502700329984917062e+00, 2.3249844127278861543568029e+00, 3.268478366538305087466309e+00, 1.5491157592596970278166492e+00, 2.3865580889631732407886495e+00, 1.447811865817085365540347e+00, 8.6813999540425116282815557e-01, 3.118679457227342224364709e+00, } var modf = [][2]float64{ {4.0000000000000000e+00, 9.7901192488367350108546816e-01}, {7.0000000000000000e+00, 7.3887247457810456552351752e-01}, {Copysign(0, -1), -2.7688005719200159404635997e-01}, {-5.0000000000000000e+00, -1.060361827107492160848778e-02}, {9.0000000000000000e+00, 6.3629370719841737980004837e-01}, {2.0000000000000000e+00, 9.2637723924396464525443662e-01}, {5.0000000000000000e+00, 2.2908343145930665230025625e-01}, {2.0000000000000000e+00, 7.2793991043601025126008608e-01}, {1.0000000000000000e+00, 8.2530809168085506044576505e-01}, {-8.0000000000000000e+00, -6.8592476857560136238589621e-01}, } var nextafter32 = []float32{ 4.979012489318848e+00, 7.738873004913330e+00, -2.768800258636475e-01, -5.010602951049805e+00, 9.636294364929199e+00, 2.926377534866333e+00, 5.229084014892578e+00, 2.727940082550049e+00, 1.825308203697205e+00, -8.685923576354980e+00, } var nextafter64 = []float64{ 4.97901192488367438926388786e+00, 7.73887247457810545370193722e+00, -2.7688005719200153853520874e-01, -5.01060361827107403343006808e+00, 9.63629370719841915615688777e+00, 2.92637723924396508934364647e+00, 5.22908343145930754047867595e+00, 2.72793991043601069534929593e+00, 1.82530809168085528249036997e+00, -8.68592476857559958602905681e+00, } var pow = []float64{ 9.5282232631648411840742957e+04, 5.4811599352999901232411871e+07, 5.2859121715894396531132279e-01, 9.7587991957286474464259698e-06, 4.328064329346044846740467e+09, 8.4406761805034547437659092e+02, 1.6946633276191194947742146e+05, 5.3449040147551939075312879e+02, 6.688182138451414936380374e+01, 2.0609869004248742886827439e-09, } var remainder = []float64{ 4.197615023265299782906368e-02, 2.261127525421895434476482e+00, 3.231794108794261433104108e-02, -2.120723654214984321697556e-02, 3.637062928015826201999516e-01, 1.220868282268106064236690e+00, -4.581668629186133046005125e-01, -9.117596417440410050403443e-01, 8.734595415957246977711748e-01, 1.314075231424398637614104e+00, } var round = []float64{ 5, 8, Copysign(0, -1), -5, 10, 3, 5, 3, 2, -9, } var signbit = []bool{ false, false, true, true, false, false, false, false, false, true, } var sin = []float64{ -9.6466616586009283766724726e-01, 9.9338225271646545763467022e-01, -2.7335587039794393342449301e-01, 9.5586257685042792878173752e-01, -2.099421066779969164496634e-01, 2.135578780799860532750616e-01, -8.694568971167362743327708e-01, 4.019566681155577786649878e-01, 9.6778633541687993721617774e-01, -6.734405869050344734943028e-01, } // Results for 100000 * Pi + vf[i] var sinLarge = []float64{ -9.646661658548936063912e-01, 9.933822527198506903752e-01, -2.7335587036246899796e-01, 9.55862576853689321268e-01, -2.099421066862688873691e-01, 2.13557878070308981163e-01, -8.694568970959221300497e-01, 4.01956668098863248917e-01, 9.67786335404528727927e-01, -6.7344058693131973066e-01, } var sinh = []float64{ 7.2661916084208532301448439e+01, 1.1479409110035194500526446e+03, -2.8043136512812518927312641e-01, -7.499429091181587232835164e+01, 7.6552466042906758523925934e+03, 9.3031583421672014313789064e+00, 9.330815755828109072810322e+01, 7.6179893137269146407361477e+00, 3.021769180549615819524392e+00, -2.95950575724449499189888e+03, } var sqrt = []float64{ 2.2313699659365484748756904e+00, 2.7818829009464263511285458e+00, 5.2619393496314796848143251e-01, 2.2384377628763938724244104e+00, 3.1042380236055381099288487e+00, 1.7106657298385224403917771e+00, 2.286718922705479046148059e+00, 1.6516476350711159636222979e+00, 1.3510396336454586262419247e+00, 2.9471892997524949215723329e+00, } var tan = []float64{ -3.661316565040227801781974e+00, 8.64900232648597589369854e+00, -2.8417941955033612725238097e-01, 3.253290185974728640827156e+00, 2.147275640380293804770778e-01, -2.18600910711067004921551e-01, -1.760002817872367935518928e+00, -4.389808914752818126249079e-01, -3.843885560201130679995041e+00, 9.10988793377685105753416e-01, } // Results for 100000 * Pi + vf[i] var tanLarge = []float64{ -3.66131656475596512705e+00, 8.6490023287202547927e+00, -2.841794195104782406e-01, 3.2532901861033120983e+00, 2.14727564046880001365e-01, -2.18600910700688062874e-01, -1.760002817699722747043e+00, -4.38980891453536115952e-01, -3.84388555942723509071e+00, 9.1098879344275101051e-01, } var tanh = []float64{ 9.9990531206936338549262119e-01, 9.9999962057085294197613294e-01, -2.7001505097318677233756845e-01, -9.9991110943061718603541401e-01, 9.9999999146798465745022007e-01, 9.9427249436125236705001048e-01, 9.9994257600983138572705076e-01, 9.9149409509772875982054701e-01, 9.4936501296239685514466577e-01, -9.9999994291374030946055701e-01, } var trunc = []float64{ 4.0000000000000000e+00, 7.0000000000000000e+00, Copysign(0, -1), -5.0000000000000000e+00, 9.0000000000000000e+00, 2.0000000000000000e+00, 5.0000000000000000e+00, 2.0000000000000000e+00, 1.0000000000000000e+00, -8.0000000000000000e+00, } var y0 = []float64{ -3.053399153780788357534855e-01, 1.7437227649515231515503649e-01, -8.6221781263678836910392572e-01, -3.100664880987498407872839e-01, 1.422200649300982280645377e-01, 4.000004067997901144239363e-01, -3.3340749753099352392332536e-01, 4.5399790746668954555205502e-01, 4.8290004112497761007536522e-01, 2.7036697826604756229601611e-01, } var y1 = []float64{ 0.15494213737457922210218611, -0.2165955142081145245075746, -2.4644949631241895201032829, 0.1442740489541836405154505, 0.2215379960518984777080163, 0.3038800915160754150565448, 0.0691107642452362383808547, 0.2380116417809914424860165, -0.20849492979459761009678934, 0.0242503179793232308250804, } var y2 = []float64{ 0.3675780219390303613394936, -0.23034826393250119879267257, -16.939677983817727205631397, 0.367653980523052152867791, -0.0962401471767804440353136, -0.1923169356184851105200523, 0.35984072054267882391843766, -0.2794987252299739821654982, -0.7113490692587462579757954, -0.2647831587821263302087457, } var yM3 = []float64{ -0.14035984421094849100895341, -0.097535139617792072703973, 242.25775994555580176377379, -0.1492267014802818619511046, 0.26148702629155918694500469, 0.56675383593895176530394248, -0.206150264009006981070575, 0.64784284687568332737963658, 1.3503631555901938037008443, 0.1461869756579956803341844, } // arguments and expected results for special cases var vfacosSC = []float64{ -Pi, 1, Pi, NaN(), } var acosSC = []float64{ NaN(), 0, NaN(), NaN(), } var vfacoshSC = []float64{ Inf(-1), 0.5, 1, Inf(1), NaN(), } var acoshSC = []float64{ NaN(), NaN(), 0, Inf(1), NaN(), } var vfasinSC = []float64{ -Pi, Copysign(0, -1), 0, Pi, NaN(), } var asinSC = []float64{ NaN(), Copysign(0, -1), 0, NaN(), NaN(), } var vfasinhSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var asinhSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var vfatanSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var atanSC = []float64{ -Pi / 2, Copysign(0, -1), 0, Pi / 2, NaN(), } var vfatanhSC = []float64{ Inf(-1), -Pi, -1, Copysign(0, -1), 0, 1, Pi, Inf(1), NaN(), } var atanhSC = []float64{ NaN(), NaN(), Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), NaN(), NaN(), } var vfatan2SC = [][2]float64{ {Inf(-1), Inf(-1)}, {Inf(-1), -Pi}, {Inf(-1), 0}, {Inf(-1), +Pi}, {Inf(-1), Inf(1)}, {Inf(-1), NaN()}, {-Pi, Inf(-1)}, {-Pi, 0}, {-Pi, Inf(1)}, {-Pi, NaN()}, {Copysign(0, -1), Inf(-1)}, {Copysign(0, -1), -Pi}, {Copysign(0, -1), Copysign(0, -1)}, {Copysign(0, -1), 0}, {Copysign(0, -1), +Pi}, {Copysign(0, -1), Inf(1)}, {Copysign(0, -1), NaN()}, {0, Inf(-1)}, {0, -Pi}, {0, Copysign(0, -1)}, {0, 0}, {0, +Pi}, {0, Inf(1)}, {0, NaN()}, {+Pi, Inf(-1)}, {+Pi, 0}, {+Pi, Inf(1)}, {1.0, Inf(1)}, {-1.0, Inf(1)}, {+Pi, NaN()}, {Inf(1), Inf(-1)}, {Inf(1), -Pi}, {Inf(1), 0}, {Inf(1), +Pi}, {Inf(1), Inf(1)}, {Inf(1), NaN()}, {NaN(), NaN()}, } var atan2SC = []float64{ -3 * Pi / 4, // atan2(-Inf, -Inf) -Pi / 2, // atan2(-Inf, -Pi) -Pi / 2, // atan2(-Inf, +0) -Pi / 2, // atan2(-Inf, +Pi) -Pi / 4, // atan2(-Inf, +Inf) NaN(), // atan2(-Inf, NaN) -Pi, // atan2(-Pi, -Inf) -Pi / 2, // atan2(-Pi, +0) Copysign(0, -1), // atan2(-Pi, Inf) NaN(), // atan2(-Pi, NaN) -Pi, // atan2(-0, -Inf) -Pi, // atan2(-0, -Pi) -Pi, // atan2(-0, -0) Copysign(0, -1), // atan2(-0, +0) Copysign(0, -1), // atan2(-0, +Pi) Copysign(0, -1), // atan2(-0, +Inf) NaN(), // atan2(-0, NaN) Pi, // atan2(+0, -Inf) Pi, // atan2(+0, -Pi) Pi, // atan2(+0, -0) 0, // atan2(+0, +0) 0, // atan2(+0, +Pi) 0, // atan2(+0, +Inf) NaN(), // atan2(+0, NaN) Pi, // atan2(+Pi, -Inf) Pi / 2, // atan2(+Pi, +0) 0, // atan2(+Pi, +Inf) 0, // atan2(+1, +Inf) Copysign(0, -1), // atan2(-1, +Inf) NaN(), // atan2(+Pi, NaN) 3 * Pi / 4, // atan2(+Inf, -Inf) Pi / 2, // atan2(+Inf, -Pi) Pi / 2, // atan2(+Inf, +0) Pi / 2, // atan2(+Inf, +Pi) Pi / 4, // atan2(+Inf, +Inf) NaN(), // atan2(+Inf, NaN) NaN(), // atan2(NaN, NaN) } var vfcbrtSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var cbrtSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var vfceilSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), 1<<52 - 1, 1<<52 - 0.5, // largest fractional float64 1 << 52, -1 << 52, -1<<52 + 0.5, // smallest fractional float64 -1<<52 + 1, 1 << 53, -1 << 53, } var ceilBaseSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var ceilSC = append(ceilBaseSC, 1<<52-1, 1<<52, 1<<52, -1<<52, -1<<52+1, -1<<52+1, 1<<53, -1<<53, ) var floorSC = append(ceilBaseSC, 1<<52-1, 1<<52-1, 1<<52, -1<<52, -1<<52, -1<<52+1, 1<<53, -1<<53, ) var truncSC = append(ceilBaseSC, 1<<52-1, 1<<52-1, 1<<52, -1<<52, -1<<52+1, -1<<52+1, 1<<53, -1<<53, ) var vfcopysignSC = []float64{ Inf(-1), Inf(1), NaN(), } var copysignSC = []float64{ Inf(-1), Inf(-1), NaN(), } var vfcosSC = []float64{ Inf(-1), Inf(1), NaN(), } var cosSC = []float64{ NaN(), NaN(), NaN(), } var vfcoshSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var coshSC = []float64{ Inf(1), 1, 1, Inf(1), NaN(), } var vferfSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), -1000, 1000, } var erfSC = []float64{ -1, Copysign(0, -1), 0, 1, NaN(), -1, 1, } var vferfcSC = []float64{ Inf(-1), Inf(1), NaN(), -1000, 1000, } var erfcSC = []float64{ 2, 0, NaN(), 2, 0, } var vferfinvSC = []float64{ 1, -1, 0, Inf(-1), Inf(1), NaN(), } var erfinvSC = []float64{ Inf(+1), Inf(-1), 0, NaN(), NaN(), NaN(), } var vferfcinvSC = []float64{ 0, 2, 1, Inf(1), Inf(-1), NaN(), } var erfcinvSC = []float64{ Inf(+1), Inf(-1), 0, NaN(), NaN(), NaN(), } var vfexpSC = []float64{ Inf(-1), -2000, 2000, Inf(1), NaN(), // smallest float64 that overflows Exp(x) 7.097827128933841e+02, // Issue 18912 1.48852223e+09, 1.4885222e+09, 1, // near zero 3.725290298461915e-09, // denormal -740, } var expSC = []float64{ 0, 0, Inf(1), Inf(1), NaN(), Inf(1), Inf(1), Inf(1), 2.718281828459045, 1.0000000037252903, 4.2e-322, } var vfexp2SC = []float64{ Inf(-1), -2000, 2000, Inf(1), NaN(), // smallest float64 that overflows Exp2(x) 1024, // near underflow -1.07399999999999e+03, // near zero 3.725290298461915e-09, } var exp2SC = []float64{ 0, 0, Inf(1), Inf(1), NaN(), Inf(1), 5e-324, 1.0000000025821745, } var vfexpm1SC = []float64{ Inf(-1), -710, Copysign(0, -1), 0, 710, Inf(1), NaN(), } var expm1SC = []float64{ -1, -1, Copysign(0, -1), 0, Inf(1), Inf(1), NaN(), } var vffabsSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var fabsSC = []float64{ Inf(1), 0, 0, Inf(1), NaN(), } var vffdimSC = [][2]float64{ {Inf(-1), Inf(-1)}, {Inf(-1), Inf(1)}, {Inf(-1), NaN()}, {Copysign(0, -1), Copysign(0, -1)}, {Copysign(0, -1), 0}, {0, Copysign(0, -1)}, {0, 0}, {Inf(1), Inf(-1)}, {Inf(1), Inf(1)}, {Inf(1), NaN()}, {NaN(), Inf(-1)}, {NaN(), Copysign(0, -1)}, {NaN(), 0}, {NaN(), Inf(1)}, {NaN(), NaN()}, } var nan = Float64frombits(0xFFF8000000000000) // SSE2 DIVSD 0/0 var vffdim2SC = [][2]float64{ {Inf(-1), Inf(-1)}, {Inf(-1), Inf(1)}, {Inf(-1), nan}, {Copysign(0, -1), Copysign(0, -1)}, {Copysign(0, -1), 0}, {0, Copysign(0, -1)}, {0, 0}, {Inf(1), Inf(-1)}, {Inf(1), Inf(1)}, {Inf(1), nan}, {nan, Inf(-1)}, {nan, Copysign(0, -1)}, {nan, 0}, {nan, Inf(1)}, {nan, nan}, } var fdimSC = []float64{ NaN(), 0, NaN(), 0, 0, 0, 0, Inf(1), NaN(), NaN(), NaN(), NaN(), NaN(), NaN(), NaN(), } var fmaxSC = []float64{ Inf(-1), Inf(1), NaN(), Copysign(0, -1), 0, 0, 0, Inf(1), Inf(1), Inf(1), NaN(), NaN(), NaN(), Inf(1), NaN(), } var fminSC = []float64{ Inf(-1), Inf(-1), Inf(-1), Copysign(0, -1), Copysign(0, -1), Copysign(0, -1), 0, Inf(-1), Inf(1), NaN(), Inf(-1), NaN(), NaN(), NaN(), NaN(), } var vffmodSC = [][2]float64{ {Inf(-1), Inf(-1)}, {Inf(-1), -Pi}, {Inf(-1), 0}, {Inf(-1), Pi}, {Inf(-1), Inf(1)}, {Inf(-1), NaN()}, {-Pi, Inf(-1)}, {-Pi, 0}, {-Pi, Inf(1)}, {-Pi, NaN()}, {Copysign(0, -1), Inf(-1)}, {Copysign(0, -1), 0}, {Copysign(0, -1), Inf(1)}, {Copysign(0, -1), NaN()}, {0, Inf(-1)}, {0, 0}, {0, Inf(1)}, {0, NaN()}, {Pi, Inf(-1)}, {Pi, 0}, {Pi, Inf(1)}, {Pi, NaN()}, {Inf(1), Inf(-1)}, {Inf(1), -Pi}, {Inf(1), 0}, {Inf(1), Pi}, {Inf(1), Inf(1)}, {Inf(1), NaN()}, {NaN(), Inf(-1)}, {NaN(), -Pi}, {NaN(), 0}, {NaN(), Pi}, {NaN(), Inf(1)}, {NaN(), NaN()}, } var fmodSC = []float64{ NaN(), // fmod(-Inf, -Inf) NaN(), // fmod(-Inf, -Pi) NaN(), // fmod(-Inf, 0) NaN(), // fmod(-Inf, Pi) NaN(), // fmod(-Inf, +Inf) NaN(), // fmod(-Inf, NaN) -Pi, // fmod(-Pi, -Inf) NaN(), // fmod(-Pi, 0) -Pi, // fmod(-Pi, +Inf) NaN(), // fmod(-Pi, NaN) Copysign(0, -1), // fmod(-0, -Inf) NaN(), // fmod(-0, 0) Copysign(0, -1), // fmod(-0, Inf) NaN(), // fmod(-0, NaN) 0, // fmod(0, -Inf) NaN(), // fmod(0, 0) 0, // fmod(0, +Inf) NaN(), // fmod(0, NaN) Pi, // fmod(Pi, -Inf) NaN(), // fmod(Pi, 0) Pi, // fmod(Pi, +Inf) NaN(), // fmod(Pi, NaN) NaN(), // fmod(+Inf, -Inf) NaN(), // fmod(+Inf, -Pi) NaN(), // fmod(+Inf, 0) NaN(), // fmod(+Inf, Pi) NaN(), // fmod(+Inf, +Inf) NaN(), // fmod(+Inf, NaN) NaN(), // fmod(NaN, -Inf) NaN(), // fmod(NaN, -Pi) NaN(), // fmod(NaN, 0) NaN(), // fmod(NaN, Pi) NaN(), // fmod(NaN, +Inf) NaN(), // fmod(NaN, NaN) } var vffrexpSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var frexpSC = []fi{ {Inf(-1), 0}, {Copysign(0, -1), 0}, {0, 0}, {Inf(1), 0}, {NaN(), 0}, } var vfgamma = [][2]float64{ {Inf(1), Inf(1)}, {Inf(-1), NaN()}, {0, Inf(1)}, {Copysign(0, -1), Inf(-1)}, {NaN(), NaN()}, {-1, NaN()}, {-2, NaN()}, {-3, NaN()}, {-1e16, NaN()}, {-1e300, NaN()}, {1.7e308, Inf(1)}, // Test inputs inspired by Python test suite. // Outputs computed at high precision by PARI/GP. // If recomputing table entries, be careful to use // high-precision (%.1000g) formatting of the float64 inputs. // For example, -2.0000000000000004 is the float64 with exact value // -2.00000000000000044408920985626161695, and // gamma(-2.0000000000000004) = -1249999999999999.5386078562728167651513, while // gamma(-2.00000000000000044408920985626161695) = -1125899906826907.2044875028130093136826. // Thus the table lists -1.1258999068426235e+15 as the answer. {0.5, 1.772453850905516}, {1.5, 0.886226925452758}, {2.5, 1.329340388179137}, {3.5, 3.3233509704478426}, {-0.5, -3.544907701811032}, {-1.5, 2.363271801207355}, {-2.5, -0.9453087204829419}, {-3.5, 0.2700882058522691}, {0.1, 9.51350769866873}, {0.01, 99.4325851191506}, {1e-08, 9.999999942278434e+07}, {1e-16, 1e+16}, {0.001, 999.4237724845955}, {1e-16, 1e+16}, {1e-308, 1e+308}, {5.6e-309, 1.7857142857142864e+308}, {5.5e-309, Inf(1)}, {1e-309, Inf(1)}, {1e-323, Inf(1)}, {5e-324, Inf(1)}, {-0.1, -10.686287021193193}, {-0.01, -100.58719796441078}, {-1e-08, -1.0000000057721567e+08}, {-1e-16, -1e+16}, {-0.001, -1000.5782056293586}, {-1e-16, -1e+16}, {-1e-308, -1e+308}, {-5.6e-309, -1.7857142857142864e+308}, {-5.5e-309, Inf(-1)}, {-1e-309, Inf(-1)}, {-1e-323, Inf(-1)}, {-5e-324, Inf(-1)}, {-0.9999999999999999, -9.007199254740992e+15}, {-1.0000000000000002, 4.5035996273704955e+15}, {-1.9999999999999998, 2.2517998136852485e+15}, {-2.0000000000000004, -1.1258999068426235e+15}, {-100.00000000000001, -7.540083334883109e-145}, {-99.99999999999999, 7.540083334884096e-145}, {17, 2.0922789888e+13}, {171, 7.257415615307999e+306}, {171.6, 1.5858969096672565e+308}, {171.624, 1.7942117599248104e+308}, {171.625, Inf(1)}, {172, Inf(1)}, {2000, Inf(1)}, {-100.5, -3.3536908198076787e-159}, {-160.5, -5.255546447007829e-286}, {-170.5, -3.3127395215386074e-308}, {-171.5, 1.9316265431712e-310}, {-176.5, -1.196e-321}, {-177.5, 5e-324}, {-178.5, Copysign(0, -1)}, {-179.5, 0}, {-201.0001, 0}, {-202.9999, Copysign(0, -1)}, {-1000.5, Copysign(0, -1)}, {-1.0000000003e+09, Copysign(0, -1)}, {-4.5035996273704955e+15, 0}, {-63.349078729022985, 4.177797167776188e-88}, {-127.45117632943295, 1.183111089623681e-214}, } var vfhypotSC = [][2]float64{ {Inf(-1), Inf(-1)}, {Inf(-1), 0}, {Inf(-1), Inf(1)}, {Inf(-1), NaN()}, {Copysign(0, -1), Copysign(0, -1)}, {Copysign(0, -1), 0}, {0, Copysign(0, -1)}, {0, 0}, // +0, +0 {0, Inf(-1)}, {0, Inf(1)}, {0, NaN()}, {Inf(1), Inf(-1)}, {Inf(1), 0}, {Inf(1), Inf(1)}, {Inf(1), NaN()}, {NaN(), Inf(-1)}, {NaN(), 0}, {NaN(), Inf(1)}, {NaN(), NaN()}, } var hypotSC = []float64{ Inf(1), Inf(1), Inf(1), Inf(1), 0, 0, 0, 0, Inf(1), Inf(1), NaN(), Inf(1), Inf(1), Inf(1), Inf(1), Inf(1), NaN(), Inf(1), NaN(), } var ilogbSC = []int{ MaxInt32, MinInt32, MaxInt32, MaxInt32, } var vfj0SC = []float64{ Inf(-1), 0, Inf(1), NaN(), } var j0SC = []float64{ 0, 1, 0, NaN(), } var j1SC = []float64{ 0, 0, 0, NaN(), } var j2SC = []float64{ 0, 0, 0, NaN(), } var jM3SC = []float64{ 0, 0, 0, NaN(), } var vfldexpSC = []fi{ {0, 0}, {0, -1075}, {0, 1024}, {Copysign(0, -1), 0}, {Copysign(0, -1), -1075}, {Copysign(0, -1), 1024}, {Inf(1), 0}, {Inf(1), -1024}, {Inf(-1), 0}, {Inf(-1), -1024}, {NaN(), -1024}, {10, int(1) << (uint64(unsafe.Sizeof(0)-1) * 8)}, {10, -(int(1) << (uint64(unsafe.Sizeof(0)-1) * 8))}, } var ldexpSC = []float64{ 0, 0, 0, Copysign(0, -1), Copysign(0, -1), Copysign(0, -1), Inf(1), Inf(1), Inf(-1), Inf(-1), NaN(), Inf(1), 0, } var vflgammaSC = []float64{ Inf(-1), -3, 0, 1, 2, Inf(1), NaN(), } var lgammaSC = []fi{ {Inf(-1), 1}, {Inf(1), 1}, {Inf(1), 1}, {0, 1}, {0, 1}, {Inf(1), 1}, {NaN(), 1}, } var vflogSC = []float64{ Inf(-1), -Pi, Copysign(0, -1), 0, 1, Inf(1), NaN(), } var logSC = []float64{ NaN(), NaN(), Inf(-1), Inf(-1), 0, Inf(1), NaN(), } var vflogbSC = []float64{ Inf(-1), 0, Inf(1), NaN(), } var logbSC = []float64{ Inf(1), Inf(-1), Inf(1), NaN(), } var vflog1pSC = []float64{ Inf(-1), -Pi, -1, Copysign(0, -1), 0, Inf(1), NaN(), 4503599627370496.5, // Issue #29488 } var log1pSC = []float64{ NaN(), NaN(), Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), 36.04365338911715, // Issue #29488 } var vfmodfSC = []float64{ Inf(-1), Copysign(0, -1), Inf(1), NaN(), } var modfSC = [][2]float64{ {Inf(-1), NaN()}, // [2]float64{Copysign(0, -1), Inf(-1)}, {Copysign(0, -1), Copysign(0, -1)}, {Inf(1), NaN()}, // [2]float64{0, Inf(1)}, {NaN(), NaN()}, } var vfnextafter32SC = [][2]float32{ {0, 0}, {0, float32(Copysign(0, -1))}, {0, -1}, {0, float32(NaN())}, {float32(Copysign(0, -1)), 1}, {float32(Copysign(0, -1)), 0}, {float32(Copysign(0, -1)), float32(Copysign(0, -1))}, {float32(Copysign(0, -1)), -1}, {float32(NaN()), 0}, {float32(NaN()), float32(NaN())}, } var nextafter32SC = []float32{ 0, 0, -1.401298464e-45, // Float32frombits(0x80000001) float32(NaN()), 1.401298464e-45, // Float32frombits(0x00000001) float32(Copysign(0, -1)), float32(Copysign(0, -1)), -1.401298464e-45, // Float32frombits(0x80000001) float32(NaN()), float32(NaN()), } var vfnextafter64SC = [][2]float64{ {0, 0}, {0, Copysign(0, -1)}, {0, -1}, {0, NaN()}, {Copysign(0, -1), 1}, {Copysign(0, -1), 0}, {Copysign(0, -1), Copysign(0, -1)}, {Copysign(0, -1), -1}, {NaN(), 0}, {NaN(), NaN()}, } var nextafter64SC = []float64{ 0, 0, -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) NaN(), 4.9406564584124654418e-324, // Float64frombits(0x0000000000000001) Copysign(0, -1), Copysign(0, -1), -4.9406564584124654418e-324, // Float64frombits(0x8000000000000001) NaN(), NaN(), } var vfpowSC = [][2]float64{ {Inf(-1), -Pi}, {Inf(-1), -3}, {Inf(-1), Copysign(0, -1)}, {Inf(-1), 0}, {Inf(-1), 1}, {Inf(-1), 3}, {Inf(-1), Pi}, {Inf(-1), 0.5}, {Inf(-1), NaN()}, {-Pi, Inf(-1)}, {-Pi, -Pi}, {-Pi, Copysign(0, -1)}, {-Pi, 0}, {-Pi, 1}, {-Pi, Pi}, {-Pi, Inf(1)}, {-Pi, NaN()}, {-1, Inf(-1)}, {-1, Inf(1)}, {-1, NaN()}, {-0.5, Inf(-1)}, {-0.5, Inf(1)}, {Copysign(0, -1), Inf(-1)}, {Copysign(0, -1), -Pi}, {Copysign(0, -1), -0.5}, {Copysign(0, -1), -3}, {Copysign(0, -1), 3}, {Copysign(0, -1), Pi}, {Copysign(0, -1), 0.5}, {Copysign(0, -1), Inf(1)}, {0, Inf(-1)}, {0, -Pi}, {0, -3}, {0, Copysign(0, -1)}, {0, 0}, {0, 3}, {0, Pi}, {0, Inf(1)}, {0, NaN()}, {0.5, Inf(-1)}, {0.5, Inf(1)}, {1, Inf(-1)}, {1, Inf(1)}, {1, NaN()}, {Pi, Inf(-1)}, {Pi, Copysign(0, -1)}, {Pi, 0}, {Pi, 1}, {Pi, Inf(1)}, {Pi, NaN()}, {Inf(1), -Pi}, {Inf(1), Copysign(0, -1)}, {Inf(1), 0}, {Inf(1), 1}, {Inf(1), Pi}, {Inf(1), NaN()}, {NaN(), -Pi}, {NaN(), Copysign(0, -1)}, {NaN(), 0}, {NaN(), 1}, {NaN(), Pi}, {NaN(), NaN()}, // Issue #7394 overflow checks {2, float64(1 << 32)}, {2, -float64(1 << 32)}, {-2, float64(1<<32 + 1)}, {0.5, float64(1 << 45)}, {0.5, -float64(1 << 45)}, {Nextafter(1, 2), float64(1 << 63)}, {Nextafter(1, -2), float64(1 << 63)}, {Nextafter(-1, 2), float64(1 << 63)}, {Nextafter(-1, -2), float64(1 << 63)}, // Issue #57465 {Copysign(0, -1), 1e19}, {Copysign(0, -1), -1e19}, {Copysign(0, -1), 1<<53 - 1}, {Copysign(0, -1), -(1<<53 - 1)}, } var powSC = []float64{ 0, // pow(-Inf, -Pi) Copysign(0, -1), // pow(-Inf, -3) 1, // pow(-Inf, -0) 1, // pow(-Inf, +0) Inf(-1), // pow(-Inf, 1) Inf(-1), // pow(-Inf, 3) Inf(1), // pow(-Inf, Pi) Inf(1), // pow(-Inf, 0.5) NaN(), // pow(-Inf, NaN) 0, // pow(-Pi, -Inf) NaN(), // pow(-Pi, -Pi) 1, // pow(-Pi, -0) 1, // pow(-Pi, +0) -Pi, // pow(-Pi, 1) NaN(), // pow(-Pi, Pi) Inf(1), // pow(-Pi, +Inf) NaN(), // pow(-Pi, NaN) 1, // pow(-1, -Inf) IEEE 754-2008 1, // pow(-1, +Inf) IEEE 754-2008 NaN(), // pow(-1, NaN) Inf(1), // pow(-1/2, -Inf) 0, // pow(-1/2, +Inf) Inf(1), // pow(-0, -Inf) Inf(1), // pow(-0, -Pi) Inf(1), // pow(-0, -0.5) Inf(-1), // pow(-0, -3) IEEE 754-2008 Copysign(0, -1), // pow(-0, 3) IEEE 754-2008 0, // pow(-0, +Pi) 0, // pow(-0, 0.5) 0, // pow(-0, +Inf) Inf(1), // pow(+0, -Inf) Inf(1), // pow(+0, -Pi) Inf(1), // pow(+0, -3) 1, // pow(+0, -0) 1, // pow(+0, +0) 0, // pow(+0, 3) 0, // pow(+0, +Pi) 0, // pow(+0, +Inf) NaN(), // pow(+0, NaN) Inf(1), // pow(1/2, -Inf) 0, // pow(1/2, +Inf) 1, // pow(1, -Inf) IEEE 754-2008 1, // pow(1, +Inf) IEEE 754-2008 1, // pow(1, NaN) IEEE 754-2008 0, // pow(+Pi, -Inf) 1, // pow(+Pi, -0) 1, // pow(+Pi, +0) Pi, // pow(+Pi, 1) Inf(1), // pow(+Pi, +Inf) NaN(), // pow(+Pi, NaN) 0, // pow(+Inf, -Pi) 1, // pow(+Inf, -0) 1, // pow(+Inf, +0) Inf(1), // pow(+Inf, 1) Inf(1), // pow(+Inf, Pi) NaN(), // pow(+Inf, NaN) NaN(), // pow(NaN, -Pi) 1, // pow(NaN, -0) 1, // pow(NaN, +0) NaN(), // pow(NaN, 1) NaN(), // pow(NaN, +Pi) NaN(), // pow(NaN, NaN) // Issue #7394 overflow checks Inf(1), // pow(2, float64(1 << 32)) 0, // pow(2, -float64(1 << 32)) Inf(-1), // pow(-2, float64(1<<32 + 1)) 0, // pow(1/2, float64(1 << 45)) Inf(1), // pow(1/2, -float64(1 << 45)) Inf(1), // pow(Nextafter(1, 2), float64(1 << 63)) 0, // pow(Nextafter(1, -2), float64(1 << 63)) 0, // pow(Nextafter(-1, 2), float64(1 << 63)) Inf(1), // pow(Nextafter(-1, -2), float64(1 << 63)) // Issue #57465 0, // pow(-0, 1e19) Inf(1), // pow(-0, -1e19) Copysign(0, -1), // pow(-0, 1<<53 -1) Inf(-1), // pow(-0, -(1<<53 -1)) } var vfpow10SC = []int{ MinInt32, -324, -323, -50, -22, -1, 0, 1, 22, 50, 100, 200, 308, 309, MaxInt32, } var pow10SC = []float64{ 0, // pow10(MinInt32) 0, // pow10(-324) 1.0e-323, // pow10(-323) 1.0e-50, // pow10(-50) 1.0e-22, // pow10(-22) 1.0e-1, // pow10(-1) 1.0e0, // pow10(0) 1.0e1, // pow10(1) 1.0e22, // pow10(22) 1.0e50, // pow10(50) 1.0e100, // pow10(100) 1.0e200, // pow10(200) 1.0e308, // pow10(308) Inf(1), // pow10(309) Inf(1), // pow10(MaxInt32) } var vfroundSC = [][2]float64{ {0, 0}, {1.390671161567e-309, 0}, // denormal {0.49999999999999994, 0}, // 0.5-epsilon {0.5, 1}, {0.5000000000000001, 1}, // 0.5+epsilon {-1.5, -2}, {-2.5, -3}, {NaN(), NaN()}, {Inf(1), Inf(1)}, {2251799813685249.5, 2251799813685250}, // 1 bit fraction {2251799813685250.5, 2251799813685251}, {4503599627370495.5, 4503599627370496}, // 1 bit fraction, rounding to 0 bit fraction {4503599627370497, 4503599627370497}, // large integer } var vfroundEvenSC = [][2]float64{ {0, 0}, {1.390671161567e-309, 0}, // denormal {0.49999999999999994, 0}, // 0.5-epsilon {0.5, 0}, {0.5000000000000001, 1}, // 0.5+epsilon {-1.5, -2}, {-2.5, -2}, {NaN(), NaN()}, {Inf(1), Inf(1)}, {2251799813685249.5, 2251799813685250}, // 1 bit fraction {2251799813685250.5, 2251799813685250}, {4503599627370495.5, 4503599627370496}, // 1 bit fraction, rounding to 0 bit fraction {4503599627370497, 4503599627370497}, // large integer } var vfsignbitSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var signbitSC = []bool{ true, true, false, false, false, } var vfsinSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var sinSC = []float64{ NaN(), Copysign(0, -1), 0, NaN(), NaN(), } var vfsinhSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var sinhSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var vfsqrtSC = []float64{ Inf(-1), -Pi, Copysign(0, -1), 0, Inf(1), NaN(), Float64frombits(2), // subnormal; see https://golang.org/issue/13013 } var sqrtSC = []float64{ NaN(), NaN(), Copysign(0, -1), 0, Inf(1), NaN(), 3.1434555694052576e-162, } var vftanhSC = []float64{ Inf(-1), Copysign(0, -1), 0, Inf(1), NaN(), } var tanhSC = []float64{ -1, Copysign(0, -1), 0, 1, NaN(), } var vfy0SC = []float64{ Inf(-1), 0, Inf(1), NaN(), -1, } var y0SC = []float64{ NaN(), Inf(-1), 0, NaN(), NaN(), } var y1SC = []float64{ NaN(), Inf(-1), 0, NaN(), NaN(), } var y2SC = []float64{ NaN(), Inf(-1), 0, NaN(), NaN(), } var yM3SC = []float64{ NaN(), Inf(1), 0, NaN(), NaN(), } // arguments and expected results for boundary cases const ( SmallestNormalFloat64 = 2.2250738585072014e-308 // 2**-1022 LargestSubnormalFloat64 = SmallestNormalFloat64 - SmallestNonzeroFloat64 ) var vffrexpBC = []float64{ SmallestNormalFloat64, LargestSubnormalFloat64, SmallestNonzeroFloat64, MaxFloat64, -SmallestNormalFloat64, -LargestSubnormalFloat64, -SmallestNonzeroFloat64, -MaxFloat64, } var frexpBC = []fi{ {0.5, -1021}, {0.99999999999999978, -1022}, {0.5, -1073}, {0.99999999999999989, 1024}, {-0.5, -1021}, {-0.99999999999999978, -1022}, {-0.5, -1073}, {-0.99999999999999989, 1024}, } var vfldexpBC = []fi{ {SmallestNormalFloat64, -52}, {LargestSubnormalFloat64, -51}, {SmallestNonzeroFloat64, 1074}, {MaxFloat64, -(1023 + 1074)}, {1, -1075}, {-1, -1075}, {1, 1024}, {-1, 1024}, {1.0000000000000002, -1075}, {1, -1075}, } var ldexpBC = []float64{ SmallestNonzeroFloat64, 1e-323, // 2**-1073 1, 1e-323, // 2**-1073 0, Copysign(0, -1), Inf(1), Inf(-1), SmallestNonzeroFloat64, 0, } var logbBC = []float64{ -1022, -1023, -1074, 1023, -1022, -1023, -1074, 1023, } // Test cases were generated with Berkeley TestFloat-3e/testfloat_gen. // http://www.jhauser.us/arithmetic/TestFloat.html. // The default rounding mode is selected (nearest/even), and exception flags are ignored. var fmaC = []struct{ x, y, z, want float64 }{ // Large exponent spread {-3.999999999999087, -1.1123914289620494e-16, -7.999877929687506, -7.999877929687505}, {-262112.0000004768, -0.06251525855623184, 1.1102230248837136e-16, 16385.99945072085}, {-6.462348523533467e-27, -2.3763644720331857e-211, 4.000000000931324, 4.000000000931324}, // Effective addition {-2.0000000037252907, 6.7904383376e-313, -3.3951933161e-313, -1.697607001654e-312}, {-0.12499999999999999, 512.007568359375, -1.4193627164960366e-16, -64.00094604492188}, {-2.7550648847397148e-39, -3.4028301595800694e+38, 0.9960937495343386, 1.9335955376735676}, {5.723369164769208e+24, 3.8149300927159385e-06, 1.84489958778182e+19, 4.028324913621874e+19}, {-0.4843749999990904, -3.6893487872543293e+19, 9.223653786709391e+18, 2.7093936974938993e+19}, {-3.8146972665201165e-06, 4.2949672959999385e+09, -2.2204460489938386e-16, -16384.000003844263}, {6.98156394130982e-309, -1.1072962560000002e+09, -4.4414561548793455e-308, -7.73065965765153e-300}, // Effective subtraction {5e-324, 4.5, -2e-323, 0}, {5e-324, 7, -3.5e-323, 0}, {5e-324, 0.5000000000000001, -5e-324, Copysign(0, -1)}, {-2.1240680525e-314, -1.233647078189316e+308, -0.25781249999954525, -0.25780987964919844}, {8.579992955364441e-308, 0.6037391876780558, -4.4501307410480706e-308, 7.29947236107098e-309}, {-4.450143471986689e-308, -0.9960937499927239, -4.450419332475649e-308, -1.7659233458788e-310}, {1.4932076393918112, -2.2248022430460833e-308, 4.449875571054211e-308, 1.127783865601762e-308}, // Overflow {-2.288020632214759e+38, -8.98846570988901e+307, 1.7696041796300924e+308, Inf(0)}, {1.4888652783208255e+308, -9.007199254742012e+15, -6.807282911929205e+38, Inf(-1)}, {9.142703268902826e+192, -1.3504889569802838e+296, -1.9082200803806996e-89, Inf(-1)}, // Finite x and y, but non-finite z. {31.99218749627471, -1.7976930544991702e+308, Inf(0), Inf(0)}, {-1.7976931281784667e+308, -2.0009765625002265, Inf(-1), Inf(-1)}, // Special {0, 0, 0, 0}, {Copysign(0, -1), 0, 0, 0}, {0, 0, Copysign(0, -1), 0}, {Copysign(0, -1), 0, Copysign(0, -1), Copysign(0, -1)}, {-1.1754226043408471e-38, NaN(), Inf(0), NaN()}, {0, 0, 2.22507385643494e-308, 2.22507385643494e-308}, {-8.65697792e+09, NaN(), -7.516192799999999e+09, NaN()}, {-0.00012207403779029757, 3.221225471996093e+09, NaN(), NaN()}, {Inf(-1), 0.1252441407414153, -1.387184532981584e-76, Inf(-1)}, {Inf(0), 1.525878907671432e-05, -9.214364835452549e+18, Inf(0)}, // Random {0.1777916152213626, -32.000015266239636, -2.2204459148334633e-16, -5.689334401293007}, {-2.0816681711722314e-16, -0.4997558592585846, -0.9465627129124969, -0.9465627129124968}, {-1.9999997615814211, 1.8518819259933516e+19, 16.874999999999996, -3.703763410463646e+19}, {-0.12499994039717421, 32767.99999976135, -2.0752587082923246e+19, -2.075258708292325e+19}, {7.705600568510257e-34, -1.801432979000528e+16, -0.17224197722973714, -0.17224197722973716}, {3.8988133103758913e-308, -0.9848632812499999, 3.893879244098556e-308, 5.40811742605814e-310}, {-0.012651981190687427, 6.911985574912436e+38, 6.669240527007144e+18, -8.745031148409496e+36}, {4.612811918325842e+18, 1.4901161193847641e-08, 2.6077032311277997e-08, 6.873625395187494e+10}, {-9.094947033611148e-13, 4.450691014249257e-308, 2.086006742350485e-308, 2.086006742346437e-308}, {-7.751454006381804e-05, 5.588653777189071e-308, -2.2207280111272877e-308, -2.2211612130544025e-308}, // Issue #61130 {-1, 1, 1, 0}, {1, 1, -1, 0}, } var sqrt32 = []float32{ 0, float32(Copysign(0, -1)), float32(NaN()), float32(Inf(1)), float32(Inf(-1)), 1, 2, -2, 4.9790119248836735e+00, 7.7388724745781045e+00, -2.7688005719200159e-01, -5.0106036182710749e+00, } func tolerance(a, b, e float64) bool { // Multiplying by e here can underflow denormal values to zero. // Check a==b so that at least if a and b are small and identical // we say they match. if a == b { return true } d := a - b if d < 0 { d = -d } // note: b is correct (expected) value, a is actual value. // make error tolerance a fraction of b, not a. if b != 0 { e = e * b if e < 0 { e = -e } } return d < e } func close(a, b float64) bool { return tolerance(a, b, 1e-14) } func veryclose(a, b float64) bool { return tolerance(a, b, 4e-16) } func soclose(a, b, e float64) bool { return tolerance(a, b, e) } func alike(a, b float64) bool { switch { case IsNaN(a) && IsNaN(b): return true case a == b: return Signbit(a) == Signbit(b) } return false } func TestNaN(t *testing.T) { f64 := NaN() if f64 == f64 { t.Fatalf("NaN() returns %g, expected NaN", f64) } f32 := float32(f64) if f32 == f32 { t.Fatalf("float32(NaN()) is %g, expected NaN", f32) } } func TestAcos(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Acos(a); !close(acos[i], f) { t.Errorf("Acos(%g) = %g, want %g", a, f, acos[i]) } } for i := 0; i < len(vfacosSC); i++ { if f := Acos(vfacosSC[i]); !alike(acosSC[i], f) { t.Errorf("Acos(%g) = %g, want %g", vfacosSC[i], f, acosSC[i]) } } } func TestAcosh(t *testing.T) { for i := 0; i < len(vf); i++ { a := 1 + Abs(vf[i]) if f := Acosh(a); !veryclose(acosh[i], f) { t.Errorf("Acosh(%g) = %g, want %g", a, f, acosh[i]) } } for i := 0; i < len(vfacoshSC); i++ { if f := Acosh(vfacoshSC[i]); !alike(acoshSC[i], f) { t.Errorf("Acosh(%g) = %g, want %g", vfacoshSC[i], f, acoshSC[i]) } } } func TestAsin(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Asin(a); !veryclose(asin[i], f) { t.Errorf("Asin(%g) = %g, want %g", a, f, asin[i]) } } for i := 0; i < len(vfasinSC); i++ { if f := Asin(vfasinSC[i]); !alike(asinSC[i], f) { t.Errorf("Asin(%g) = %g, want %g", vfasinSC[i], f, asinSC[i]) } } } func TestAsinh(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Asinh(vf[i]); !veryclose(asinh[i], f) { t.Errorf("Asinh(%g) = %g, want %g", vf[i], f, asinh[i]) } } for i := 0; i < len(vfasinhSC); i++ { if f := Asinh(vfasinhSC[i]); !alike(asinhSC[i], f) { t.Errorf("Asinh(%g) = %g, want %g", vfasinhSC[i], f, asinhSC[i]) } } } func TestAtan(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Atan(vf[i]); !veryclose(atan[i], f) { t.Errorf("Atan(%g) = %g, want %g", vf[i], f, atan[i]) } } for i := 0; i < len(vfatanSC); i++ { if f := Atan(vfatanSC[i]); !alike(atanSC[i], f) { t.Errorf("Atan(%g) = %g, want %g", vfatanSC[i], f, atanSC[i]) } } } func TestAtanh(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Atanh(a); !veryclose(atanh[i], f) { t.Errorf("Atanh(%g) = %g, want %g", a, f, atanh[i]) } } for i := 0; i < len(vfatanhSC); i++ { if f := Atanh(vfatanhSC[i]); !alike(atanhSC[i], f) { t.Errorf("Atanh(%g) = %g, want %g", vfatanhSC[i], f, atanhSC[i]) } } } func TestAtan2(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Atan2(10, vf[i]); !veryclose(atan2[i], f) { t.Errorf("Atan2(10, %g) = %g, want %g", vf[i], f, atan2[i]) } } for i := 0; i < len(vfatan2SC); i++ { if f := Atan2(vfatan2SC[i][0], vfatan2SC[i][1]); !alike(atan2SC[i], f) { t.Errorf("Atan2(%g, %g) = %g, want %g", vfatan2SC[i][0], vfatan2SC[i][1], f, atan2SC[i]) } } } func TestCbrt(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Cbrt(vf[i]); !veryclose(cbrt[i], f) { t.Errorf("Cbrt(%g) = %g, want %g", vf[i], f, cbrt[i]) } } for i := 0; i < len(vfcbrtSC); i++ { if f := Cbrt(vfcbrtSC[i]); !alike(cbrtSC[i], f) { t.Errorf("Cbrt(%g) = %g, want %g", vfcbrtSC[i], f, cbrtSC[i]) } } } func TestCeil(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Ceil(vf[i]); !alike(ceil[i], f) { t.Errorf("Ceil(%g) = %g, want %g", vf[i], f, ceil[i]) } } for i := 0; i < len(vfceilSC); i++ { if f := Ceil(vfceilSC[i]); !alike(ceilSC[i], f) { t.Errorf("Ceil(%g) = %g, want %g", vfceilSC[i], f, ceilSC[i]) } } } func TestCopysign(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Copysign(vf[i], -1); copysign[i] != f { t.Errorf("Copysign(%g, -1) = %g, want %g", vf[i], f, copysign[i]) } } for i := 0; i < len(vf); i++ { if f := Copysign(vf[i], 1); -copysign[i] != f { t.Errorf("Copysign(%g, 1) = %g, want %g", vf[i], f, -copysign[i]) } } for i := 0; i < len(vfcopysignSC); i++ { if f := Copysign(vfcopysignSC[i], -1); !alike(copysignSC[i], f) { t.Errorf("Copysign(%g, -1) = %g, want %g", vfcopysignSC[i], f, copysignSC[i]) } } } func TestCos(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Cos(vf[i]); !veryclose(cos[i], f) { t.Errorf("Cos(%g) = %g, want %g", vf[i], f, cos[i]) } } for i := 0; i < len(vfcosSC); i++ { if f := Cos(vfcosSC[i]); !alike(cosSC[i], f) { t.Errorf("Cos(%g) = %g, want %g", vfcosSC[i], f, cosSC[i]) } } } func TestCosh(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Cosh(vf[i]); !close(cosh[i], f) { t.Errorf("Cosh(%g) = %g, want %g", vf[i], f, cosh[i]) } } for i := 0; i < len(vfcoshSC); i++ { if f := Cosh(vfcoshSC[i]); !alike(coshSC[i], f) { t.Errorf("Cosh(%g) = %g, want %g", vfcoshSC[i], f, coshSC[i]) } } } func TestErf(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Erf(a); !veryclose(erf[i], f) { t.Errorf("Erf(%g) = %g, want %g", a, f, erf[i]) } } for i := 0; i < len(vferfSC); i++ { if f := Erf(vferfSC[i]); !alike(erfSC[i], f) { t.Errorf("Erf(%g) = %g, want %g", vferfSC[i], f, erfSC[i]) } } } func TestErfc(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Erfc(a); !veryclose(erfc[i], f) { t.Errorf("Erfc(%g) = %g, want %g", a, f, erfc[i]) } } for i := 0; i < len(vferfcSC); i++ { if f := Erfc(vferfcSC[i]); !alike(erfcSC[i], f) { t.Errorf("Erfc(%g) = %g, want %g", vferfcSC[i], f, erfcSC[i]) } } } func TestErfinv(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 10 if f := Erfinv(a); !veryclose(erfinv[i], f) { t.Errorf("Erfinv(%g) = %g, want %g", a, f, erfinv[i]) } } for i := 0; i < len(vferfinvSC); i++ { if f := Erfinv(vferfinvSC[i]); !alike(erfinvSC[i], f) { t.Errorf("Erfinv(%g) = %g, want %g", vferfinvSC[i], f, erfinvSC[i]) } } for x := -0.9; x <= 0.90; x += 1e-2 { if f := Erf(Erfinv(x)); !close(x, f) { t.Errorf("Erf(Erfinv(%g)) = %g, want %g", x, f, x) } } for x := -0.9; x <= 0.90; x += 1e-2 { if f := Erfinv(Erf(x)); !close(x, f) { t.Errorf("Erfinv(Erf(%g)) = %g, want %g", x, f, x) } } } func TestErfcinv(t *testing.T) { for i := 0; i < len(vf); i++ { a := 1.0 - (vf[i] / 10) if f := Erfcinv(a); !veryclose(erfinv[i], f) { t.Errorf("Erfcinv(%g) = %g, want %g", a, f, erfinv[i]) } } for i := 0; i < len(vferfcinvSC); i++ { if f := Erfcinv(vferfcinvSC[i]); !alike(erfcinvSC[i], f) { t.Errorf("Erfcinv(%g) = %g, want %g", vferfcinvSC[i], f, erfcinvSC[i]) } } for x := 0.1; x <= 1.9; x += 1e-2 { if f := Erfc(Erfcinv(x)); !close(x, f) { t.Errorf("Erfc(Erfcinv(%g)) = %g, want %g", x, f, x) } } for x := 0.1; x <= 1.9; x += 1e-2 { if f := Erfcinv(Erfc(x)); !close(x, f) { t.Errorf("Erfcinv(Erfc(%g)) = %g, want %g", x, f, x) } } } func TestExp(t *testing.T) { testExp(t, Exp, "Exp") testExp(t, ExpGo, "ExpGo") } func testExp(t *testing.T, Exp func(float64) float64, name string) { for i := 0; i < len(vf); i++ { if f := Exp(vf[i]); !veryclose(exp[i], f) { t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp[i]) } } for i := 0; i < len(vfexpSC); i++ { if f := Exp(vfexpSC[i]); !alike(expSC[i], f) { t.Errorf("%s(%g) = %g, want %g", name, vfexpSC[i], f, expSC[i]) } } } func TestExpm1(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 100 if f := Expm1(a); !veryclose(expm1[i], f) { t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1[i]) } } for i := 0; i < len(vf); i++ { a := vf[i] * 10 if f := Expm1(a); !close(expm1Large[i], f) { t.Errorf("Expm1(%g) = %g, want %g", a, f, expm1Large[i]) } } for i := 0; i < len(vfexpm1SC); i++ { if f := Expm1(vfexpm1SC[i]); !alike(expm1SC[i], f) { t.Errorf("Expm1(%g) = %g, want %g", vfexpm1SC[i], f, expm1SC[i]) } } } func TestExp2(t *testing.T) { testExp2(t, Exp2, "Exp2") testExp2(t, Exp2Go, "Exp2Go") } func testExp2(t *testing.T, Exp2 func(float64) float64, name string) { for i := 0; i < len(vf); i++ { if f := Exp2(vf[i]); !close(exp2[i], f) { t.Errorf("%s(%g) = %g, want %g", name, vf[i], f, exp2[i]) } } for i := 0; i < len(vfexp2SC); i++ { if f := Exp2(vfexp2SC[i]); !alike(exp2SC[i], f) { t.Errorf("%s(%g) = %g, want %g", name, vfexp2SC[i], f, exp2SC[i]) } } for n := -1074; n < 1024; n++ { f := Exp2(float64(n)) vf := Ldexp(1, n) if f != vf { t.Errorf("%s(%d) = %g, want %g", name, n, f, vf) } } } func TestAbs(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Abs(vf[i]); fabs[i] != f { t.Errorf("Abs(%g) = %g, want %g", vf[i], f, fabs[i]) } } for i := 0; i < len(vffabsSC); i++ { if f := Abs(vffabsSC[i]); !alike(fabsSC[i], f) { t.Errorf("Abs(%g) = %g, want %g", vffabsSC[i], f, fabsSC[i]) } } } func TestDim(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Dim(vf[i], 0); fdim[i] != f { t.Errorf("Dim(%g, %g) = %g, want %g", vf[i], 0.0, f, fdim[i]) } } for i := 0; i < len(vffdimSC); i++ { if f := Dim(vffdimSC[i][0], vffdimSC[i][1]); !alike(fdimSC[i], f) { t.Errorf("Dim(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fdimSC[i]) } } for i := 0; i < len(vffdim2SC); i++ { if f := Dim(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fdimSC[i], f) { t.Errorf("Dim(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fdimSC[i]) } } } func TestFloor(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Floor(vf[i]); !alike(floor[i], f) { t.Errorf("Floor(%g) = %g, want %g", vf[i], f, floor[i]) } } for i := 0; i < len(vfceilSC); i++ { if f := Floor(vfceilSC[i]); !alike(floorSC[i], f) { t.Errorf("Floor(%g) = %g, want %g", vfceilSC[i], f, floorSC[i]) } } } func TestMax(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Max(vf[i], ceil[i]); ceil[i] != f { t.Errorf("Max(%g, %g) = %g, want %g", vf[i], ceil[i], f, ceil[i]) } } for i := 0; i < len(vffdimSC); i++ { if f := Max(vffdimSC[i][0], vffdimSC[i][1]); !alike(fmaxSC[i], f) { t.Errorf("Max(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fmaxSC[i]) } } for i := 0; i < len(vffdim2SC); i++ { if f := Max(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fmaxSC[i], f) { t.Errorf("Max(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fmaxSC[i]) } } } func TestMin(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Min(vf[i], floor[i]); floor[i] != f { t.Errorf("Min(%g, %g) = %g, want %g", vf[i], floor[i], f, floor[i]) } } for i := 0; i < len(vffdimSC); i++ { if f := Min(vffdimSC[i][0], vffdimSC[i][1]); !alike(fminSC[i], f) { t.Errorf("Min(%g, %g) = %g, want %g", vffdimSC[i][0], vffdimSC[i][1], f, fminSC[i]) } } for i := 0; i < len(vffdim2SC); i++ { if f := Min(vffdim2SC[i][0], vffdim2SC[i][1]); !alike(fminSC[i], f) { t.Errorf("Min(%g, %g) = %g, want %g", vffdim2SC[i][0], vffdim2SC[i][1], f, fminSC[i]) } } } func TestMod(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Mod(10, vf[i]); fmod[i] != f { t.Errorf("Mod(10, %g) = %g, want %g", vf[i], f, fmod[i]) } } for i := 0; i < len(vffmodSC); i++ { if f := Mod(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { t.Errorf("Mod(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) } } // verify precision of result for extreme inputs if f := Mod(5.9790119248836734e+200, 1.1258465975523544); 0.6447968302508578 != f { t.Errorf("Remainder(5.9790119248836734e+200, 1.1258465975523544) = %g, want 0.6447968302508578", f) } } func TestFrexp(t *testing.T) { for i := 0; i < len(vf); i++ { if f, j := Frexp(vf[i]); !veryclose(frexp[i].f, f) || frexp[i].i != j { t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vf[i], f, j, frexp[i].f, frexp[i].i) } } for i := 0; i < len(vffrexpSC); i++ { if f, j := Frexp(vffrexpSC[i]); !alike(frexpSC[i].f, f) || frexpSC[i].i != j { t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpSC[i], f, j, frexpSC[i].f, frexpSC[i].i) } } for i := 0; i < len(vffrexpBC); i++ { if f, j := Frexp(vffrexpBC[i]); !alike(frexpBC[i].f, f) || frexpBC[i].i != j { t.Errorf("Frexp(%g) = %g, %d, want %g, %d", vffrexpBC[i], f, j, frexpBC[i].f, frexpBC[i].i) } } } func TestGamma(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Gamma(vf[i]); !close(gamma[i], f) { t.Errorf("Gamma(%g) = %g, want %g", vf[i], f, gamma[i]) } } for _, g := range vfgamma { f := Gamma(g[0]) var ok bool if IsNaN(g[1]) || IsInf(g[1], 0) || g[1] == 0 || f == 0 { ok = alike(g[1], f) } else if g[0] > -50 && g[0] <= 171 { ok = veryclose(g[1], f) } else { ok = close(g[1], f) } if !ok { t.Errorf("Gamma(%g) = %g, want %g", g[0], f, g[1]) } } } func TestHypot(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(1e200 * tanh[i] * Sqrt(2)) if f := Hypot(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { t.Errorf("Hypot(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) } } for i := 0; i < len(vfhypotSC); i++ { if f := Hypot(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { t.Errorf("Hypot(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) } } } func TestHypotGo(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(1e200 * tanh[i] * Sqrt(2)) if f := HypotGo(1e200*tanh[i], 1e200*tanh[i]); !veryclose(a, f) { t.Errorf("HypotGo(%g, %g) = %g, want %g", 1e200*tanh[i], 1e200*tanh[i], f, a) } } for i := 0; i < len(vfhypotSC); i++ { if f := HypotGo(vfhypotSC[i][0], vfhypotSC[i][1]); !alike(hypotSC[i], f) { t.Errorf("HypotGo(%g, %g) = %g, want %g", vfhypotSC[i][0], vfhypotSC[i][1], f, hypotSC[i]) } } } func TestIlogb(t *testing.T) { for i := 0; i < len(vf); i++ { a := frexp[i].i - 1 // adjust because fr in the interval [½, 1) if e := Ilogb(vf[i]); a != e { t.Errorf("Ilogb(%g) = %d, want %d", vf[i], e, a) } } for i := 0; i < len(vflogbSC); i++ { if e := Ilogb(vflogbSC[i]); ilogbSC[i] != e { t.Errorf("Ilogb(%g) = %d, want %d", vflogbSC[i], e, ilogbSC[i]) } } for i := 0; i < len(vffrexpBC); i++ { if e := Ilogb(vffrexpBC[i]); int(logbBC[i]) != e { t.Errorf("Ilogb(%g) = %d, want %d", vffrexpBC[i], e, int(logbBC[i])) } } } func TestJ0(t *testing.T) { for i := 0; i < len(vf); i++ { if f := J0(vf[i]); !soclose(j0[i], f, 4e-14) { t.Errorf("J0(%g) = %g, want %g", vf[i], f, j0[i]) } } for i := 0; i < len(vfj0SC); i++ { if f := J0(vfj0SC[i]); !alike(j0SC[i], f) { t.Errorf("J0(%g) = %g, want %g", vfj0SC[i], f, j0SC[i]) } } } func TestJ1(t *testing.T) { for i := 0; i < len(vf); i++ { if f := J1(vf[i]); !close(j1[i], f) { t.Errorf("J1(%g) = %g, want %g", vf[i], f, j1[i]) } } for i := 0; i < len(vfj0SC); i++ { if f := J1(vfj0SC[i]); !alike(j1SC[i], f) { t.Errorf("J1(%g) = %g, want %g", vfj0SC[i], f, j1SC[i]) } } } func TestJn(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Jn(2, vf[i]); !close(j2[i], f) { t.Errorf("Jn(2, %g) = %g, want %g", vf[i], f, j2[i]) } if f := Jn(-3, vf[i]); !close(jM3[i], f) { t.Errorf("Jn(-3, %g) = %g, want %g", vf[i], f, jM3[i]) } } for i := 0; i < len(vfj0SC); i++ { if f := Jn(2, vfj0SC[i]); !alike(j2SC[i], f) { t.Errorf("Jn(2, %g) = %g, want %g", vfj0SC[i], f, j2SC[i]) } if f := Jn(-3, vfj0SC[i]); !alike(jM3SC[i], f) { t.Errorf("Jn(-3, %g) = %g, want %g", vfj0SC[i], f, jM3SC[i]) } } } func TestLdexp(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Ldexp(frexp[i].f, frexp[i].i); !veryclose(vf[i], f) { t.Errorf("Ldexp(%g, %d) = %g, want %g", frexp[i].f, frexp[i].i, f, vf[i]) } } for i := 0; i < len(vffrexpSC); i++ { if f := Ldexp(frexpSC[i].f, frexpSC[i].i); !alike(vffrexpSC[i], f) { t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpSC[i].f, frexpSC[i].i, f, vffrexpSC[i]) } } for i := 0; i < len(vfldexpSC); i++ { if f := Ldexp(vfldexpSC[i].f, vfldexpSC[i].i); !alike(ldexpSC[i], f) { t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpSC[i].f, vfldexpSC[i].i, f, ldexpSC[i]) } } for i := 0; i < len(vffrexpBC); i++ { if f := Ldexp(frexpBC[i].f, frexpBC[i].i); !alike(vffrexpBC[i], f) { t.Errorf("Ldexp(%g, %d) = %g, want %g", frexpBC[i].f, frexpBC[i].i, f, vffrexpBC[i]) } } for i := 0; i < len(vfldexpBC); i++ { if f := Ldexp(vfldexpBC[i].f, vfldexpBC[i].i); !alike(ldexpBC[i], f) { t.Errorf("Ldexp(%g, %d) = %g, want %g", vfldexpBC[i].f, vfldexpBC[i].i, f, ldexpBC[i]) } } } func TestLgamma(t *testing.T) { for i := 0; i < len(vf); i++ { if f, s := Lgamma(vf[i]); !close(lgamma[i].f, f) || lgamma[i].i != s { t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vf[i], f, s, lgamma[i].f, lgamma[i].i) } } for i := 0; i < len(vflgammaSC); i++ { if f, s := Lgamma(vflgammaSC[i]); !alike(lgammaSC[i].f, f) || lgammaSC[i].i != s { t.Errorf("Lgamma(%g) = %g, %d, want %g, %d", vflgammaSC[i], f, s, lgammaSC[i].f, lgammaSC[i].i) } } } func TestLog(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Log(a); log[i] != f { t.Errorf("Log(%g) = %g, want %g", a, f, log[i]) } } if f := Log(10); f != Ln10 { t.Errorf("Log(%g) = %g, want %g", 10.0, f, Ln10) } for i := 0; i < len(vflogSC); i++ { if f := Log(vflogSC[i]); !alike(logSC[i], f) { t.Errorf("Log(%g) = %g, want %g", vflogSC[i], f, logSC[i]) } } } func TestLogb(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Logb(vf[i]); logb[i] != f { t.Errorf("Logb(%g) = %g, want %g", vf[i], f, logb[i]) } } for i := 0; i < len(vflogbSC); i++ { if f := Logb(vflogbSC[i]); !alike(logbSC[i], f) { t.Errorf("Logb(%g) = %g, want %g", vflogbSC[i], f, logbSC[i]) } } for i := 0; i < len(vffrexpBC); i++ { if f := Logb(vffrexpBC[i]); !alike(logbBC[i], f) { t.Errorf("Logb(%g) = %g, want %g", vffrexpBC[i], f, logbBC[i]) } } } func TestLog10(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Log10(a); !veryclose(log10[i], f) { t.Errorf("Log10(%g) = %g, want %g", a, f, log10[i]) } } if f := Log10(E); f != Log10E { t.Errorf("Log10(%g) = %g, want %g", E, f, Log10E) } for i := 0; i < len(vflogSC); i++ { if f := Log10(vflogSC[i]); !alike(logSC[i], f) { t.Errorf("Log10(%g) = %g, want %g", vflogSC[i], f, logSC[i]) } } } func TestLog1p(t *testing.T) { for i := 0; i < len(vf); i++ { a := vf[i] / 100 if f := Log1p(a); !veryclose(log1p[i], f) { t.Errorf("Log1p(%g) = %g, want %g", a, f, log1p[i]) } } a := 9.0 if f := Log1p(a); f != Ln10 { t.Errorf("Log1p(%g) = %g, want %g", a, f, Ln10) } for i := 0; i < len(vflogSC); i++ { if f := Log1p(vflog1pSC[i]); !alike(log1pSC[i], f) { t.Errorf("Log1p(%g) = %g, want %g", vflog1pSC[i], f, log1pSC[i]) } } } func TestLog2(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Log2(a); !veryclose(log2[i], f) { t.Errorf("Log2(%g) = %g, want %g", a, f, log2[i]) } } if f := Log2(E); f != Log2E { t.Errorf("Log2(%g) = %g, want %g", E, f, Log2E) } for i := 0; i < len(vflogSC); i++ { if f := Log2(vflogSC[i]); !alike(logSC[i], f) { t.Errorf("Log2(%g) = %g, want %g", vflogSC[i], f, logSC[i]) } } for i := -1074; i <= 1023; i++ { f := Ldexp(1, i) l := Log2(f) if l != float64(i) { t.Errorf("Log2(2**%d) = %g, want %d", i, l, i) } } } func TestModf(t *testing.T) { for i := 0; i < len(vf); i++ { if f, g := Modf(vf[i]); !veryclose(modf[i][0], f) || !veryclose(modf[i][1], g) { t.Errorf("Modf(%g) = %g, %g, want %g, %g", vf[i], f, g, modf[i][0], modf[i][1]) } } for i := 0; i < len(vfmodfSC); i++ { if f, g := Modf(vfmodfSC[i]); !alike(modfSC[i][0], f) || !alike(modfSC[i][1], g) { t.Errorf("Modf(%g) = %g, %g, want %g, %g", vfmodfSC[i], f, g, modfSC[i][0], modfSC[i][1]) } } } func TestNextafter32(t *testing.T) { for i := 0; i < len(vf); i++ { vfi := float32(vf[i]) if f := Nextafter32(vfi, 10); nextafter32[i] != f { t.Errorf("Nextafter32(%g, %g) = %g want %g", vfi, 10.0, f, nextafter32[i]) } } for i := 0; i < len(vfnextafter32SC); i++ { if f := Nextafter32(vfnextafter32SC[i][0], vfnextafter32SC[i][1]); !alike(float64(nextafter32SC[i]), float64(f)) { t.Errorf("Nextafter32(%g, %g) = %g want %g", vfnextafter32SC[i][0], vfnextafter32SC[i][1], f, nextafter32SC[i]) } } } func TestNextafter64(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Nextafter(vf[i], 10); nextafter64[i] != f { t.Errorf("Nextafter64(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter64[i]) } } for i := 0; i < len(vfnextafter64SC); i++ { if f := Nextafter(vfnextafter64SC[i][0], vfnextafter64SC[i][1]); !alike(nextafter64SC[i], f) { t.Errorf("Nextafter64(%g, %g) = %g want %g", vfnextafter64SC[i][0], vfnextafter64SC[i][1], f, nextafter64SC[i]) } } } func TestPow(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Pow(10, vf[i]); !close(pow[i], f) { t.Errorf("Pow(10, %g) = %g, want %g", vf[i], f, pow[i]) } } for i := 0; i < len(vfpowSC); i++ { if f := Pow(vfpowSC[i][0], vfpowSC[i][1]); !alike(powSC[i], f) { t.Errorf("Pow(%g, %g) = %g, want %g", vfpowSC[i][0], vfpowSC[i][1], f, powSC[i]) } } } func TestPow10(t *testing.T) { for i := 0; i < len(vfpow10SC); i++ { if f := Pow10(vfpow10SC[i]); !alike(pow10SC[i], f) { t.Errorf("Pow10(%d) = %g, want %g", vfpow10SC[i], f, pow10SC[i]) } } } func TestRemainder(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Remainder(10, vf[i]); remainder[i] != f { t.Errorf("Remainder(10, %g) = %g, want %g", vf[i], f, remainder[i]) } } for i := 0; i < len(vffmodSC); i++ { if f := Remainder(vffmodSC[i][0], vffmodSC[i][1]); !alike(fmodSC[i], f) { t.Errorf("Remainder(%g, %g) = %g, want %g", vffmodSC[i][0], vffmodSC[i][1], f, fmodSC[i]) } } // verify precision of result for extreme inputs if f := Remainder(5.9790119248836734e+200, 1.1258465975523544); -0.4810497673014966 != f { t.Errorf("Remainder(5.9790119248836734e+200, 1.1258465975523544) = %g, want -0.4810497673014966", f) } // verify that sign is correct when r == 0. test := func(x, y float64) { if r := Remainder(x, y); r == 0 && Signbit(r) != Signbit(x) { t.Errorf("Remainder(x=%f, y=%f) = %f, sign of (zero) result should agree with sign of x", x, y, r) } } for x := 0.0; x <= 3.0; x += 1 { for y := 1.0; y <= 3.0; y += 1 { test(x, y) test(x, -y) test(-x, y) test(-x, -y) } } } func TestRound(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Round(vf[i]); !alike(round[i], f) { t.Errorf("Round(%g) = %g, want %g", vf[i], f, round[i]) } } for i := 0; i < len(vfroundSC); i++ { if f := Round(vfroundSC[i][0]); !alike(vfroundSC[i][1], f) { t.Errorf("Round(%g) = %g, want %g", vfroundSC[i][0], f, vfroundSC[i][1]) } } } func TestRoundToEven(t *testing.T) { for i := 0; i < len(vf); i++ { if f := RoundToEven(vf[i]); !alike(round[i], f) { t.Errorf("RoundToEven(%g) = %g, want %g", vf[i], f, round[i]) } } for i := 0; i < len(vfroundEvenSC); i++ { if f := RoundToEven(vfroundEvenSC[i][0]); !alike(vfroundEvenSC[i][1], f) { t.Errorf("RoundToEven(%g) = %g, want %g", vfroundEvenSC[i][0], f, vfroundEvenSC[i][1]) } } } func TestSignbit(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Signbit(vf[i]); signbit[i] != f { t.Errorf("Signbit(%g) = %t, want %t", vf[i], f, signbit[i]) } } for i := 0; i < len(vfsignbitSC); i++ { if f := Signbit(vfsignbitSC[i]); signbitSC[i] != f { t.Errorf("Signbit(%g) = %t, want %t", vfsignbitSC[i], f, signbitSC[i]) } } } func TestSin(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Sin(vf[i]); !veryclose(sin[i], f) { t.Errorf("Sin(%g) = %g, want %g", vf[i], f, sin[i]) } } for i := 0; i < len(vfsinSC); i++ { if f := Sin(vfsinSC[i]); !alike(sinSC[i], f) { t.Errorf("Sin(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) } } } func TestSincos(t *testing.T) { for i := 0; i < len(vf); i++ { if s, c := Sincos(vf[i]); !veryclose(sin[i], s) || !veryclose(cos[i], c) { t.Errorf("Sincos(%g) = %g, %g want %g, %g", vf[i], s, c, sin[i], cos[i]) } } } func TestSinh(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Sinh(vf[i]); !close(sinh[i], f) { t.Errorf("Sinh(%g) = %g, want %g", vf[i], f, sinh[i]) } } for i := 0; i < len(vfsinhSC); i++ { if f := Sinh(vfsinhSC[i]); !alike(sinhSC[i], f) { t.Errorf("Sinh(%g) = %g, want %g", vfsinhSC[i], f, sinhSC[i]) } } } func TestSqrt(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := SqrtGo(a); sqrt[i] != f { t.Errorf("SqrtGo(%g) = %g, want %g", a, f, sqrt[i]) } a = Abs(vf[i]) if f := Sqrt(a); sqrt[i] != f { t.Errorf("Sqrt(%g) = %g, want %g", a, f, sqrt[i]) } } for i := 0; i < len(vfsqrtSC); i++ { if f := SqrtGo(vfsqrtSC[i]); !alike(sqrtSC[i], f) { t.Errorf("SqrtGo(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) } if f := Sqrt(vfsqrtSC[i]); !alike(sqrtSC[i], f) { t.Errorf("Sqrt(%g) = %g, want %g", vfsqrtSC[i], f, sqrtSC[i]) } } } func TestTan(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Tan(vf[i]); !veryclose(tan[i], f) { t.Errorf("Tan(%g) = %g, want %g", vf[i], f, tan[i]) } } // same special cases as Sin for i := 0; i < len(vfsinSC); i++ { if f := Tan(vfsinSC[i]); !alike(sinSC[i], f) { t.Errorf("Tan(%g) = %g, want %g", vfsinSC[i], f, sinSC[i]) } } } func TestTanh(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Tanh(vf[i]); !veryclose(tanh[i], f) { t.Errorf("Tanh(%g) = %g, want %g", vf[i], f, tanh[i]) } } for i := 0; i < len(vftanhSC); i++ { if f := Tanh(vftanhSC[i]); !alike(tanhSC[i], f) { t.Errorf("Tanh(%g) = %g, want %g", vftanhSC[i], f, tanhSC[i]) } } } func TestTrunc(t *testing.T) { for i := 0; i < len(vf); i++ { if f := Trunc(vf[i]); !alike(trunc[i], f) { t.Errorf("Trunc(%g) = %g, want %g", vf[i], f, trunc[i]) } } for i := 0; i < len(vfceilSC); i++ { if f := Trunc(vfceilSC[i]); !alike(truncSC[i], f) { t.Errorf("Trunc(%g) = %g, want %g", vfceilSC[i], f, truncSC[i]) } } } func TestY0(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Y0(a); !close(y0[i], f) { t.Errorf("Y0(%g) = %g, want %g", a, f, y0[i]) } } for i := 0; i < len(vfy0SC); i++ { if f := Y0(vfy0SC[i]); !alike(y0SC[i], f) { t.Errorf("Y0(%g) = %g, want %g", vfy0SC[i], f, y0SC[i]) } } } func TestY1(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Y1(a); !soclose(y1[i], f, 2e-14) { t.Errorf("Y1(%g) = %g, want %g", a, f, y1[i]) } } for i := 0; i < len(vfy0SC); i++ { if f := Y1(vfy0SC[i]); !alike(y1SC[i], f) { t.Errorf("Y1(%g) = %g, want %g", vfy0SC[i], f, y1SC[i]) } } } func TestYn(t *testing.T) { for i := 0; i < len(vf); i++ { a := Abs(vf[i]) if f := Yn(2, a); !close(y2[i], f) { t.Errorf("Yn(2, %g) = %g, want %g", a, f, y2[i]) } if f := Yn(-3, a); !close(yM3[i], f) { t.Errorf("Yn(-3, %g) = %g, want %g", a, f, yM3[i]) } } for i := 0; i < len(vfy0SC); i++ { if f := Yn(2, vfy0SC[i]); !alike(y2SC[i], f) { t.Errorf("Yn(2, %g) = %g, want %g", vfy0SC[i], f, y2SC[i]) } if f := Yn(-3, vfy0SC[i]); !alike(yM3SC[i], f) { t.Errorf("Yn(-3, %g) = %g, want %g", vfy0SC[i], f, yM3SC[i]) } } if f := Yn(0, 0); !alike(Inf(-1), f) { t.Errorf("Yn(0, 0) = %g, want %g", f, Inf(-1)) } } var PortableFMA = FMA // hide call from compiler intrinsic; falls back to portable code func TestFMA(t *testing.T) { for _, c := range fmaC { got := FMA(c.x, c.y, c.z) if !alike(got, c.want) { t.Errorf("FMA(%g,%g,%g) == %g; want %g", c.x, c.y, c.z, got, c.want) } got = PortableFMA(c.x, c.y, c.z) if !alike(got, c.want) { t.Errorf("PortableFMA(%g,%g,%g) == %g; want %g", c.x, c.y, c.z, got, c.want) } } } //go:noinline func fmsub(x, y, z float64) float64 { return FMA(x, y, -z) } //go:noinline func fnmsub(x, y, z float64) float64 { return FMA(-x, y, z) } //go:noinline func fnmadd(x, y, z float64) float64 { return FMA(-x, y, -z) } func TestFMANegativeArgs(t *testing.T) { // Some architectures have instructions for fused multiply-subtract and // also negated variants of fused multiply-add and subtract. This test // aims to check that the optimizations that generate those instructions // are applied correctly, if they exist. for _, c := range fmaC { want := PortableFMA(c.x, c.y, -c.z) got := fmsub(c.x, c.y, c.z) if !alike(got, want) { t.Errorf("FMA(%g, %g, -(%g)) == %g, want %g", c.x, c.y, c.z, got, want) } want = PortableFMA(-c.x, c.y, c.z) got = fnmsub(c.x, c.y, c.z) if !alike(got, want) { t.Errorf("FMA(-(%g), %g, %g) == %g, want %g", c.x, c.y, c.z, got, want) } want = PortableFMA(-c.x, c.y, -c.z) got = fnmadd(c.x, c.y, c.z) if !alike(got, want) { t.Errorf("FMA(-(%g), %g, -(%g)) == %g, want %g", c.x, c.y, c.z, got, want) } } } // Check that math functions of high angle values // return accurate results. [Since (vf[i] + large) - large != vf[i], // testing for Trig(vf[i] + large) == Trig(vf[i]), where large is // a multiple of 2*Pi, is misleading.] func TestLargeCos(t *testing.T) { large := float64(100000 * Pi) for i := 0; i < len(vf); i++ { f1 := cosLarge[i] f2 := Cos(vf[i] + large) if !close(f1, f2) { t.Errorf("Cos(%g) = %g, want %g", vf[i]+large, f2, f1) } } } func TestLargeSin(t *testing.T) { large := float64(100000 * Pi) for i := 0; i < len(vf); i++ { f1 := sinLarge[i] f2 := Sin(vf[i] + large) if !close(f1, f2) { t.Errorf("Sin(%g) = %g, want %g", vf[i]+large, f2, f1) } } } func TestLargeSincos(t *testing.T) { large := float64(100000 * Pi) for i := 0; i < len(vf); i++ { f1, g1 := sinLarge[i], cosLarge[i] f2, g2 := Sincos(vf[i] + large) if !close(f1, f2) || !close(g1, g2) { t.Errorf("Sincos(%g) = %g, %g, want %g, %g", vf[i]+large, f2, g2, f1, g1) } } } func TestLargeTan(t *testing.T) { large := float64(100000 * Pi) for i := 0; i < len(vf); i++ { f1 := tanLarge[i] f2 := Tan(vf[i] + large) if !close(f1, f2) { t.Errorf("Tan(%g) = %g, want %g", vf[i]+large, f2, f1) } } } // Check that trigReduce matches the standard reduction results for input values // below reduceThreshold. func TestTrigReduce(t *testing.T) { inputs := make([]float64, len(vf)) // all of the standard inputs copy(inputs, vf) // all of the large inputs large := float64(100000 * Pi) for _, v := range vf { inputs = append(inputs, v+large) } // Also test some special inputs, Pi and right below the reduceThreshold inputs = append(inputs, Pi, Nextafter(ReduceThreshold, 0)) for _, x := range inputs { // reduce the value to compare j, z := TrigReduce(x) xred := float64(j)*(Pi/4) + z if f, fred := Sin(x), Sin(xred); !close(f, fred) { t.Errorf("Sin(trigReduce(%g)) != Sin(%g), got %g, want %g", x, x, fred, f) } if f, fred := Cos(x), Cos(xred); !close(f, fred) { t.Errorf("Cos(trigReduce(%g)) != Cos(%g), got %g, want %g", x, x, fred, f) } if f, fred := Tan(x), Tan(xred); !close(f, fred) { t.Errorf(" Tan(trigReduce(%g)) != Tan(%g), got %g, want %g", x, x, fred, f) } f, g := Sincos(x) fred, gred := Sincos(xred) if !close(f, fred) || !close(g, gred) { t.Errorf(" Sincos(trigReduce(%g)) != Sincos(%g), got %g, %g, want %g, %g", x, x, fred, gred, f, g) } } } // Check that math constants are accepted by compiler // and have right value (assumes strconv.ParseFloat works). // https://golang.org/issue/201 type floatTest struct { val any name string str string } var floatTests = []floatTest{ {float64(MaxFloat64), "MaxFloat64", "1.7976931348623157e+308"}, {float64(SmallestNonzeroFloat64), "SmallestNonzeroFloat64", "5e-324"}, {float32(MaxFloat32), "MaxFloat32", "3.4028235e+38"}, {float32(SmallestNonzeroFloat32), "SmallestNonzeroFloat32", "1e-45"}, } func TestFloatMinMax(t *testing.T) { for _, tt := range floatTests { s := fmt.Sprint(tt.val) if s != tt.str { t.Errorf("Sprint(%v) = %s, want %s", tt.name, s, tt.str) } } } func TestFloatMinima(t *testing.T) { if q := float32(SmallestNonzeroFloat32 / 2); q != 0 { t.Errorf("float32(SmallestNonzeroFloat32 / 2) = %g, want 0", q) } if q := float64(SmallestNonzeroFloat64 / 2); q != 0 { t.Errorf("float64(SmallestNonzeroFloat64 / 2) = %g, want 0", q) } } var indirectSqrt = Sqrt // TestFloat32Sqrt checks the correctness of the float32 square root optimization result. func TestFloat32Sqrt(t *testing.T) { for _, v := range sqrt32 { want := float32(indirectSqrt(float64(v))) got := float32(Sqrt(float64(v))) if IsNaN(float64(want)) { if !IsNaN(float64(got)) { t.Errorf("got=%#v want=NaN, v=%#v", got, v) } continue } if got != want { t.Errorf("got=%#v want=%#v, v=%#v", got, want, v) } } } // Benchmarks // Global exported variables are used to store the // return values of functions measured in the benchmarks. // Storing the results in these variables prevents the compiler // from completely optimizing the benchmarked functions away. var ( GlobalI int GlobalB bool GlobalF float64 ) func BenchmarkAcos(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Acos(.5) } GlobalF = x } func BenchmarkAcosh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Acosh(1.5) } GlobalF = x } func BenchmarkAsin(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Asin(.5) } GlobalF = x } func BenchmarkAsinh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Asinh(.5) } GlobalF = x } func BenchmarkAtan(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Atan(.5) } GlobalF = x } func BenchmarkAtanh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Atanh(.5) } GlobalF = x } func BenchmarkAtan2(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Atan2(.5, 1) } GlobalF = x } func BenchmarkCbrt(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Cbrt(10) } GlobalF = x } func BenchmarkCeil(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Ceil(.5) } GlobalF = x } var copysignNeg = -1.0 func BenchmarkCopysign(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Copysign(.5, copysignNeg) } GlobalF = x } func BenchmarkCos(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Cos(.5) } GlobalF = x } func BenchmarkCosh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Cosh(2.5) } GlobalF = x } func BenchmarkErf(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Erf(.5) } GlobalF = x } func BenchmarkErfc(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Erfc(.5) } GlobalF = x } func BenchmarkErfinv(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Erfinv(.5) } GlobalF = x } func BenchmarkErfcinv(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Erfcinv(.5) } GlobalF = x } func BenchmarkExp(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Exp(.5) } GlobalF = x } func BenchmarkExpGo(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = ExpGo(.5) } GlobalF = x } func BenchmarkExpm1(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Expm1(.5) } GlobalF = x } func BenchmarkExp2(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Exp2(.5) } GlobalF = x } func BenchmarkExp2Go(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Exp2Go(.5) } GlobalF = x } var absPos = .5 func BenchmarkAbs(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Abs(absPos) } GlobalF = x } func BenchmarkDim(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Dim(GlobalF, x) } GlobalF = x } func BenchmarkFloor(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Floor(.5) } GlobalF = x } func BenchmarkMax(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Max(10, 3) } GlobalF = x } func BenchmarkMin(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Min(10, 3) } GlobalF = x } func BenchmarkMod(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Mod(10, 3) } GlobalF = x } func BenchmarkFrexp(b *testing.B) { x := 0.0 y := 0 for i := 0; i < b.N; i++ { x, y = Frexp(8) } GlobalF = x GlobalI = y } func BenchmarkGamma(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Gamma(2.5) } GlobalF = x } func BenchmarkHypot(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Hypot(3, 4) } GlobalF = x } func BenchmarkHypotGo(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = HypotGo(3, 4) } GlobalF = x } func BenchmarkIlogb(b *testing.B) { x := 0 for i := 0; i < b.N; i++ { x = Ilogb(.5) } GlobalI = x } func BenchmarkJ0(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = J0(2.5) } GlobalF = x } func BenchmarkJ1(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = J1(2.5) } GlobalF = x } func BenchmarkJn(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Jn(2, 2.5) } GlobalF = x } func BenchmarkLdexp(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Ldexp(.5, 2) } GlobalF = x } func BenchmarkLgamma(b *testing.B) { x := 0.0 y := 0 for i := 0; i < b.N; i++ { x, y = Lgamma(2.5) } GlobalF = x GlobalI = y } func BenchmarkLog(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Log(.5) } GlobalF = x } func BenchmarkLogb(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Logb(.5) } GlobalF = x } func BenchmarkLog1p(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Log1p(.5) } GlobalF = x } func BenchmarkLog10(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Log10(.5) } GlobalF = x } func BenchmarkLog2(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Log2(.5) } GlobalF += x } func BenchmarkModf(b *testing.B) { x := 0.0 y := 0.0 for i := 0; i < b.N; i++ { x, y = Modf(1.5) } GlobalF += x GlobalF += y } func BenchmarkNextafter32(b *testing.B) { x := float32(0.0) for i := 0; i < b.N; i++ { x = Nextafter32(.5, 1) } GlobalF = float64(x) } func BenchmarkNextafter64(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Nextafter(.5, 1) } GlobalF = x } func BenchmarkPowInt(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Pow(2, 2) } GlobalF = x } func BenchmarkPowFrac(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Pow(2.5, 1.5) } GlobalF = x } var pow10pos = int(300) func BenchmarkPow10Pos(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Pow10(pow10pos) } GlobalF = x } var pow10neg = int(-300) func BenchmarkPow10Neg(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Pow10(pow10neg) } GlobalF = x } var roundNeg = float64(-2.5) func BenchmarkRound(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Round(roundNeg) } GlobalF = x } func BenchmarkRoundToEven(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = RoundToEven(roundNeg) } GlobalF = x } func BenchmarkRemainder(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Remainder(10, 3) } GlobalF = x } var signbitPos = 2.5 func BenchmarkSignbit(b *testing.B) { x := false for i := 0; i < b.N; i++ { x = Signbit(signbitPos) } GlobalB = x } func BenchmarkSin(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Sin(.5) } GlobalF = x } func BenchmarkSincos(b *testing.B) { x := 0.0 y := 0.0 for i := 0; i < b.N; i++ { x, y = Sincos(.5) } GlobalF += x GlobalF += y } func BenchmarkSinh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Sinh(2.5) } GlobalF = x } func BenchmarkSqrtIndirect(b *testing.B) { x, y := 0.0, 10.0 f := Sqrt for i := 0; i < b.N; i++ { x += f(y) } GlobalF = x } func BenchmarkSqrtLatency(b *testing.B) { x := 10.0 for i := 0; i < b.N; i++ { x = Sqrt(x) } GlobalF = x } func BenchmarkSqrtIndirectLatency(b *testing.B) { x := 10.0 f := Sqrt for i := 0; i < b.N; i++ { x = f(x) } GlobalF = x } func BenchmarkSqrtGoLatency(b *testing.B) { x := 10.0 for i := 0; i < b.N; i++ { x = SqrtGo(x) } GlobalF = x } func isPrime(i int) bool { // Yes, this is a dumb way to write this code, // but calling Sqrt repeatedly in this way demonstrates // the benefit of using a direct SQRT instruction on systems // that have one, whereas the obvious loop seems not to // demonstrate such a benefit. for j := 2; float64(j) <= Sqrt(float64(i)); j++ { if i%j == 0 { return false } } return true } func BenchmarkSqrtPrime(b *testing.B) { x := false for i := 0; i < b.N; i++ { x = isPrime(100003) } GlobalB = x } func BenchmarkTan(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Tan(.5) } GlobalF = x } func BenchmarkTanh(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Tanh(2.5) } GlobalF = x } func BenchmarkTrunc(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Trunc(.5) } GlobalF = x } func BenchmarkY0(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Y0(2.5) } GlobalF = x } func BenchmarkY1(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Y1(2.5) } GlobalF = x } func BenchmarkYn(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Yn(2, 2.5) } GlobalF = x } func BenchmarkFloat64bits(b *testing.B) { y := uint64(0) for i := 0; i < b.N; i++ { y = Float64bits(roundNeg) } GlobalI = int(y) } var roundUint64 = uint64(5) func BenchmarkFloat64frombits(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = Float64frombits(roundUint64) } GlobalF = x } var roundFloat32 = float32(-2.5) func BenchmarkFloat32bits(b *testing.B) { y := uint32(0) for i := 0; i < b.N; i++ { y = Float32bits(roundFloat32) } GlobalI = int(y) } var roundUint32 = uint32(5) func BenchmarkFloat32frombits(b *testing.B) { x := float32(0.0) for i := 0; i < b.N; i++ { x = Float32frombits(roundUint32) } GlobalF = float64(x) } func BenchmarkFMA(b *testing.B) { x := 0.0 for i := 0; i < b.N; i++ { x = FMA(E, Pi, x) } GlobalF = x }