// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements Float-to-string conversion functions. // It is closely following the corresponding implementation // in strconv/ftoa.go, but modified and simplified for Float. package big import ( "bytes" "fmt" "strconv" ) // Text converts the floating-point number x to a string according // to the given format and precision prec. The format is one of: // // 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits // 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits // 'f' -ddddd.dddd, no exponent // 'g' like 'e' for large exponents, like 'f' otherwise // 'G' like 'E' for large exponents, like 'f' otherwise // 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent // 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard) // 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard) // // For the power-of-two exponent formats, the mantissa is printed in normalized form: // // 'x' hexadecimal mantissa in [1, 2), or 0 // 'p' hexadecimal mantissa in [½, 1), or 0 // 'b' decimal integer mantissa using x.Prec() bits, or 0 // // Note that the 'x' form is the one used by most other languages and libraries. // // If format is a different character, Text returns a "%" followed by the // unrecognized format character. // // The precision prec controls the number of digits (excluding the exponent) // printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats. // For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point. // For 'g' and 'G' it is the total number of digits. A negative precision selects // the smallest number of decimal digits necessary to identify the value x uniquely // using x.Prec() mantissa bits. // The prec value is ignored for the 'b' and 'p' formats. func (x *Float) Text(format byte, prec int) string { cap := 10 // TODO(gri) determine a good/better value here if prec > 0 { cap += prec } return string(x.Append(make([]byte, 0, cap), format, prec)) } // String formats x like x.Text('g', 10). // (String must be called explicitly, [Float.Format] does not support %s verb.) func (x *Float) String() string { return x.Text('g', 10) } // Append appends to buf the string form of the floating-point number x, // as generated by x.Text, and returns the extended buffer. func (x *Float) Append(buf []byte, fmt byte, prec int) []byte { // sign if x.neg { buf = append(buf, '-') } // Inf if x.form == inf { if !x.neg { buf = append(buf, '+') } return append(buf, "Inf"...) } // pick off easy formats switch fmt { case 'b': return x.fmtB(buf) case 'p': return x.fmtP(buf) case 'x': return x.fmtX(buf, prec) } // Algorithm: // 1) convert Float to multiprecision decimal // 2) round to desired precision // 3) read digits out and format // 1) convert Float to multiprecision decimal var d decimal // == 0.0 if x.form == finite { // x != 0 d.init(x.mant, int(x.exp)-x.mant.bitLen()) } // 2) round to desired precision shortest := false if prec < 0 { shortest = true roundShortest(&d, x) // Precision for shortest representation mode. switch fmt { case 'e', 'E': prec = len(d.mant) - 1 case 'f': prec = max(len(d.mant)-d.exp, 0) case 'g', 'G': prec = len(d.mant) } } else { // round appropriately switch fmt { case 'e', 'E': // one digit before and number of digits after decimal point d.round(1 + prec) case 'f': // number of digits before and after decimal point d.round(d.exp + prec) case 'g', 'G': if prec == 0 { prec = 1 } d.round(prec) } } // 3) read digits out and format switch fmt { case 'e', 'E': return fmtE(buf, fmt, prec, d) case 'f': return fmtF(buf, prec, d) case 'g', 'G': // trim trailing fractional zeros in %e format eprec := prec if eprec > len(d.mant) && len(d.mant) >= d.exp { eprec = len(d.mant) } // %e is used if the exponent from the conversion // is less than -4 or greater than or equal to the precision. // If precision was the shortest possible, use eprec = 6 for // this decision. if shortest { eprec = 6 } exp := d.exp - 1 if exp < -4 || exp >= eprec { if prec > len(d.mant) { prec = len(d.mant) } return fmtE(buf, fmt+'e'-'g', prec-1, d) } if prec > d.exp { prec = len(d.mant) } return fmtF(buf, max(prec-d.exp, 0), d) } // unknown format if x.neg { buf = buf[:len(buf)-1] // sign was added prematurely - remove it again } return append(buf, '%', fmt) } func roundShortest(d *decimal, x *Float) { // if the mantissa is zero, the number is zero - stop now if len(d.mant) == 0 { return } // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp] // (possibly exclusive) round to x for the given precision of x. // Compute the lower and upper bound in decimal form and find the // shortest decimal number d such that lower <= d <= upper. // TODO(gri) strconv/ftoa.do describes a shortcut in some cases. // See if we can use it (in adjusted form) here as well. // 1) Compute normalized mantissa mant and exponent exp for x such // that the lsb of mant corresponds to 1/2 ulp for the precision of // x (i.e., for mant we want x.prec + 1 bits). mant := nat(nil).set(x.mant) exp := int(x.exp) - mant.bitLen() s := mant.bitLen() - int(x.prec+1) switch { case s < 0: mant = mant.shl(mant, uint(-s)) case s > 0: mant = mant.shr(mant, uint(+s)) } exp += s // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec // 2) Compute lower bound by subtracting 1/2 ulp. var lower decimal var tmp nat lower.init(tmp.sub(mant, natOne), exp) // 3) Compute upper bound by adding 1/2 ulp. var upper decimal upper.init(tmp.add(mant, natOne), exp) // The upper and lower bounds are possible outputs only if // the original mantissa is even, so that ToNearestEven rounding // would round to the original mantissa and not the neighbors. inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1 // Now we can figure out the minimum number of digits required. // Walk along until d has distinguished itself from upper and lower. for i, m := range d.mant { l := lower.at(i) u := upper.at(i) // Okay to round down (truncate) if lower has a different digit // or if lower is inclusive and is exactly the result of rounding // down (i.e., and we have reached the final digit of lower). okdown := l != m || inclusive && i+1 == len(lower.mant) // Okay to round up if upper has a different digit and either upper // is inclusive or upper is bigger than the result of rounding up. okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant)) // If it's okay to do either, then round to the nearest one. // If it's okay to do only one, do it. switch { case okdown && okup: d.round(i + 1) return case okdown: d.roundDown(i + 1) return case okup: d.roundUp(i + 1) return } } } // %e: d.ddddde±dd func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte { // first digit ch := byte('0') if len(d.mant) > 0 { ch = d.mant[0] } buf = append(buf, ch) // .moredigits if prec > 0 { buf = append(buf, '.') i := 1 m := min(len(d.mant), prec+1) if i < m { buf = append(buf, d.mant[i:m]...) i = m } for ; i <= prec; i++ { buf = append(buf, '0') } } // e± buf = append(buf, fmt) var exp int64 if len(d.mant) > 0 { exp = int64(d.exp) - 1 // -1 because first digit was printed before '.' } if exp < 0 { ch = '-' exp = -exp } else { ch = '+' } buf = append(buf, ch) // dd...d if exp < 10 { buf = append(buf, '0') // at least 2 exponent digits } return strconv.AppendInt(buf, exp, 10) } // %f: ddddddd.ddddd func fmtF(buf []byte, prec int, d decimal) []byte { // integer, padded with zeros as needed if d.exp > 0 { m := min(len(d.mant), d.exp) buf = append(buf, d.mant[:m]...) for ; m < d.exp; m++ { buf = append(buf, '0') } } else { buf = append(buf, '0') } // fraction if prec > 0 { buf = append(buf, '.') for i := 0; i < prec; i++ { buf = append(buf, d.at(d.exp+i)) } } return buf } // fmtB appends the string of x in the format mantissa "p" exponent // with a decimal mantissa and a binary exponent, or "0" if x is zero, // and returns the extended buffer. // The mantissa is normalized such that is uses x.Prec() bits in binary // representation. // The sign of x is ignored, and x must not be an Inf. // (The caller handles Inf before invoking fmtB.) func (x *Float) fmtB(buf []byte) []byte { if x.form == zero { return append(buf, '0') } if debugFloat && x.form != finite { panic("non-finite float") } // x != 0 // adjust mantissa to use exactly x.prec bits m := x.mant switch w := uint32(len(x.mant)) * _W; { case w < x.prec: m = nat(nil).shl(m, uint(x.prec-w)) case w > x.prec: m = nat(nil).shr(m, uint(w-x.prec)) } buf = append(buf, m.utoa(10)...) buf = append(buf, 'p') e := int64(x.exp) - int64(x.prec) if e >= 0 { buf = append(buf, '+') } return strconv.AppendInt(buf, e, 10) } // fmtX appends the string of x in the format "0x1." mantissa "p" exponent // with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero, // and returns the extended buffer. // A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0. // The sign of x is ignored, and x must not be an Inf. // (The caller handles Inf before invoking fmtX.) func (x *Float) fmtX(buf []byte, prec int) []byte { if x.form == zero { buf = append(buf, "0x0"...) if prec > 0 { buf = append(buf, '.') for i := 0; i < prec; i++ { buf = append(buf, '0') } } buf = append(buf, "p+00"...) return buf } if debugFloat && x.form != finite { panic("non-finite float") } // round mantissa to n bits var n uint if prec < 0 { n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4 } else { n = 1 + 4*uint(prec) } // n%4 == 1 x = new(Float).SetPrec(n).SetMode(x.mode).Set(x) // adjust mantissa to use exactly n bits m := x.mant switch w := uint(len(x.mant)) * _W; { case w < n: m = nat(nil).shl(m, n-w) case w > n: m = nat(nil).shr(m, w-n) } exp64 := int64(x.exp) - 1 // avoid wrap-around hm := m.utoa(16) if debugFloat && hm[0] != '1' { panic("incorrect mantissa: " + string(hm)) } buf = append(buf, "0x1"...) if len(hm) > 1 { buf = append(buf, '.') buf = append(buf, hm[1:]...) } buf = append(buf, 'p') if exp64 >= 0 { buf = append(buf, '+') } else { exp64 = -exp64 buf = append(buf, '-') } // Force at least two exponent digits, to match fmt. if exp64 < 10 { buf = append(buf, '0') } return strconv.AppendInt(buf, exp64, 10) } // fmtP appends the string of x in the format "0x." mantissa "p" exponent // with a hexadecimal mantissa and a binary exponent, or "0" if x is zero, // and returns the extended buffer. // The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0. // The sign of x is ignored, and x must not be an Inf. // (The caller handles Inf before invoking fmtP.) func (x *Float) fmtP(buf []byte) []byte { if x.form == zero { return append(buf, '0') } if debugFloat && x.form != finite { panic("non-finite float") } // x != 0 // remove trailing 0 words early // (no need to convert to hex 0's and trim later) m := x.mant i := 0 for i < len(m) && m[i] == 0 { i++ } m = m[i:] buf = append(buf, "0x."...) buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...) buf = append(buf, 'p') if x.exp >= 0 { buf = append(buf, '+') } return strconv.AppendInt(buf, int64(x.exp), 10) } var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter // Format implements [fmt.Formatter]. It accepts all the regular // formats for floating-point numbers ('b', 'e', 'E', 'f', 'F', // 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the // interpretation of 'p'. The 'v' format is handled like 'g'. // Format also supports specification of the minimum precision // in digits, the output field width, as well as the format flags // '+' and ' ' for sign control, '0' for space or zero padding, // and '-' for left or right justification. See the fmt package // for details. func (x *Float) Format(s fmt.State, format rune) { prec, hasPrec := s.Precision() if !hasPrec { prec = 6 // default precision for 'e', 'f' } switch format { case 'e', 'E', 'f', 'b', 'p', 'x': // nothing to do case 'F': // (*Float).Text doesn't support 'F'; handle like 'f' format = 'f' case 'v': // handle like 'g' format = 'g' fallthrough case 'g', 'G': if !hasPrec { prec = -1 // default precision for 'g', 'G' } default: fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String()) return } var buf []byte buf = x.Append(buf, byte(format), prec) if len(buf) == 0 { buf = []byte("?") // should never happen, but don't crash } // len(buf) > 0 var sign string switch { case buf[0] == '-': sign = "-" buf = buf[1:] case buf[0] == '+': // +Inf sign = "+" if s.Flag(' ') { sign = " " } buf = buf[1:] case s.Flag('+'): sign = "+" case s.Flag(' '): sign = " " } var padding int if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) { padding = width - len(sign) - len(buf) } switch { case s.Flag('0') && !x.IsInf(): // 0-padding on left writeMultiple(s, sign, 1) writeMultiple(s, "0", padding) s.Write(buf) case s.Flag('-'): // padding on right writeMultiple(s, sign, 1) s.Write(buf) writeMultiple(s, " ", padding) default: // padding on left writeMultiple(s, " ", padding) writeMultiple(s, sign, 1) s.Write(buf) } }