// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements rat-to-string conversion functions. package big import ( "errors" "fmt" "io" "strconv" "strings" ) func ratTok(ch rune) bool { return strings.ContainsRune("+-/0123456789.eE", ch) } var ratZero Rat var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner // Scan is a support routine for fmt.Scanner. It accepts the formats // 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. func (z *Rat) Scan(s fmt.ScanState, ch rune) error { tok, err := s.Token(true, ratTok) if err != nil { return err } if !strings.ContainsRune("efgEFGv", ch) { return errors.New("Rat.Scan: invalid verb") } if _, ok := z.SetString(string(tok)); !ok { return errors.New("Rat.Scan: invalid syntax") } return nil } // SetString sets z to the value of s and returns z and a boolean indicating // success. s can be given as a (possibly signed) fraction "a/b", or as a // floating-point number optionally followed by an exponent. // If a fraction is provided, both the dividend and the divisor may be a // decimal integer or independently use a prefix of “0b”, “0” or “0o”, // or “0x” (or their upper-case variants) to denote a binary, octal, or // hexadecimal integer, respectively. The divisor may not be signed. // If a floating-point number is provided, it may be in decimal form or // use any of the same prefixes as above but for “0” to denote a non-decimal // mantissa. A leading “0” is considered a decimal leading 0; it does not // indicate octal representation in this case. // An optional base-10 “e” or base-2 “p” (or their upper-case variants) // exponent may be provided as well, except for hexadecimal floats which // only accept an (optional) “p” exponent (because an “e” or “E” cannot // be distinguished from a mantissa digit). If the exponent's absolute value // is too large, the operation may fail. // The entire string, not just a prefix, must be valid for success. If the // operation failed, the value of z is undefined but the returned value is nil. func (z *Rat) SetString(s string) (*Rat, bool) { if len(s) == 0 { return nil, false } // len(s) > 0 // parse fraction a/b, if any if sep := strings.Index(s, "/"); sep >= 0 { if _, ok := z.a.SetString(s[:sep], 0); !ok { return nil, false } r := strings.NewReader(s[sep+1:]) var err error if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil { return nil, false } // entire string must have been consumed if _, err = r.ReadByte(); err != io.EOF { return nil, false } if len(z.b.abs) == 0 { return nil, false } return z.norm(), true } // parse floating-point number r := strings.NewReader(s) // sign neg, err := scanSign(r) if err != nil { return nil, false } // mantissa var base int var fcount int // fractional digit count; valid if <= 0 z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true) if err != nil { return nil, false } // exponent var exp int64 var ebase int exp, ebase, err = scanExponent(r, true, true) if err != nil { return nil, false } // there should be no unread characters left if _, err = r.ReadByte(); err != io.EOF { return nil, false } // special-case 0 (see also issue #16176) if len(z.a.abs) == 0 { return z.norm(), true } // len(z.a.abs) > 0 // The mantissa may have a radix point (fcount <= 0) and there // may be a nonzero exponent exp. The radix point amounts to a // division by base**(-fcount), which equals a multiplication by // base**fcount. An exponent means multiplication by ebase**exp. // Multiplications are commutative, so we can apply them in any // order. We only have powers of 2 and 10, and we split powers // of 10 into the product of the same powers of 2 and 5. This // may reduce the size of shift/multiplication factors or // divisors required to create the final fraction, depending // on the actual floating-point value. // determine binary or decimal exponent contribution of radix point var exp2, exp5 int64 if fcount < 0 { // The mantissa has a radix point ddd.dddd; and // -fcount is the number of digits to the right // of '.'. Adjust relevant exponent accordingly. d := int64(fcount) switch base { case 10: exp5 = d fallthrough // 10**e == 5**e * 2**e case 2: exp2 = d case 8: exp2 = d * 3 // octal digits are 3 bits each case 16: exp2 = d * 4 // hexadecimal digits are 4 bits each default: panic("unexpected mantissa base") } // fcount consumed - not needed anymore } // take actual exponent into account switch ebase { case 10: exp5 += exp fallthrough // see fallthrough above case 2: exp2 += exp default: panic("unexpected exponent base") } // exp consumed - not needed anymore // apply exp5 contributions // (start with exp5 so the numbers to multiply are smaller) if exp5 != 0 { n := exp5 if n < 0 { n = -n if n < 0 { // This can occur if -n overflows. -(-1 << 63) would become // -1 << 63, which is still negative. return nil, false } } if n > 1e6 { return nil, false // avoid excessively large exponents } pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil, false) // use underlying array of z.b.abs if exp5 > 0 { z.a.abs = z.a.abs.mul(z.a.abs, pow5) z.b.abs = z.b.abs.setWord(1) } else { z.b.abs = pow5 } } else { z.b.abs = z.b.abs.setWord(1) } // apply exp2 contributions if exp2 < -1e7 || exp2 > 1e7 { return nil, false // avoid excessively large exponents } if exp2 > 0 { z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2)) } else if exp2 < 0 { z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2)) } z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign return z.norm(), true } // scanExponent scans the longest possible prefix of r representing a base 10 // (“e”, “E”) or a base 2 (“p”, “P”) exponent, if any. It returns the // exponent, the exponent base (10 or 2), or a read or syntax error, if any. // // If sepOk is set, an underscore character “_” may appear between successive // exponent digits; such underscores do not change the value of the exponent. // Incorrect placement of underscores is reported as an error if there are no // other errors. If sepOk is not set, underscores are not recognized and thus // terminate scanning like any other character that is not a valid digit. // // exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits . // sign = "+" | "-" . // digits = digit { [ '_' ] digit } . // digit = "0" ... "9" . // // A base 2 exponent is only permitted if base2ok is set. func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) { // one char look-ahead ch, err := r.ReadByte() if err != nil { if err == io.EOF { err = nil } return 0, 10, err } // exponent char switch ch { case 'e', 'E': base = 10 case 'p', 'P': if base2ok { base = 2 break // ok } fallthrough // binary exponent not permitted default: r.UnreadByte() // ch does not belong to exponent anymore return 0, 10, nil } // sign var digits []byte ch, err = r.ReadByte() if err == nil && (ch == '+' || ch == '-') { if ch == '-' { digits = append(digits, '-') } ch, err = r.ReadByte() } // prev encodes the previously seen char: it is one // of '_', '0' (a digit), or '.' (anything else). A // valid separator '_' may only occur after a digit. prev := '.' invalSep := false // exponent value hasDigits := false for err == nil { if '0' <= ch && ch <= '9' { digits = append(digits, ch) prev = '0' hasDigits = true } else if ch == '_' && sepOk { if prev != '0' { invalSep = true } prev = '_' } else { r.UnreadByte() // ch does not belong to number anymore break } ch, err = r.ReadByte() } if err == io.EOF { err = nil } if err == nil && !hasDigits { err = errNoDigits } if err == nil { exp, err = strconv.ParseInt(string(digits), 10, 64) } // other errors take precedence over invalid separators if err == nil && (invalSep || prev == '_') { err = errInvalSep } return } // String returns a string representation of x in the form "a/b" (even if b == 1). func (x *Rat) String() string { return string(x.marshal(nil)) } // marshal implements [Rat.String] returning a slice of bytes. // It appends the string representation of x in the form "a/b" (even if b == 1) to buf, // and returns the extended buffer. func (x *Rat) marshal(buf []byte) []byte { buf = x.a.Append(buf, 10) buf = append(buf, '/') if len(x.b.abs) != 0 { buf = x.b.Append(buf, 10) } else { buf = append(buf, '1') } return buf } // RatString returns a string representation of x in the form "a/b" if b != 1, // and in the form "a" if b == 1. func (x *Rat) RatString() string { if x.IsInt() { return x.a.String() } return x.String() } // FloatString returns a string representation of x in decimal form with prec // digits of precision after the radix point. The last digit is rounded to // nearest, with halves rounded away from zero. func (x *Rat) FloatString(prec int) string { var buf []byte if x.IsInt() { buf = x.a.Append(buf, 10) if prec > 0 { buf = append(buf, '.') for i := prec; i > 0; i-- { buf = append(buf, '0') } } return string(buf) } // x.b.abs != 0 q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs) p := natOne if prec > 0 { p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil, false) } r = r.mul(r, p) r, r2 := r.div(nat(nil), r, x.b.abs) // see if we need to round up r2 = r2.add(r2, r2) if x.b.abs.cmp(r2) <= 0 { r = r.add(r, natOne) if r.cmp(p) >= 0 { q = nat(nil).add(q, natOne) r = nat(nil).sub(r, p) } } if x.a.neg { buf = append(buf, '-') } buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0 if prec > 0 { buf = append(buf, '.') rs := r.utoa(10) for i := prec - len(rs); i > 0; i-- { buf = append(buf, '0') } buf = append(buf, rs...) } return string(buf) } // Note: FloatPrec (below) is in this file rather than rat.go because // its results are relevant for decimal representation/printing. // FloatPrec returns the number n of non-repeating digits immediately // following the decimal point of the decimal representation of x. // The boolean result indicates whether a decimal representation of x // with that many fractional digits is exact or rounded. // // Examples: // // x n exact decimal representation n fractional digits // 0 0 true 0 // 1 0 true 1 // 1/2 1 true 0.5 // 1/3 0 false 0 (0.333... rounded) // 1/4 2 true 0.25 // 1/6 1 false 0.2 (0.166... rounded) func (x *Rat) FloatPrec() (n int, exact bool) { // Determine q and largest p2, p5 such that d = q·2^p2·5^p5. // The results n, exact are: // // n = max(p2, p5) // exact = q == 1 // // For details see: // https://en.wikipedia.org/wiki/Repeating_decimal#Reciprocals_of_integers_not_coprime_to_10 d := x.Denom().abs // d >= 1 // Determine p2 by counting factors of 2. // p2 corresponds to the trailing zero bits in d. // Do this first to reduce q as much as possible. var q nat p2 := d.trailingZeroBits() q = q.shr(d, p2) // Determine p5 by counting factors of 5. // Build a table starting with an initial power of 5, // and use repeated squaring until the factor doesn't // divide q anymore. Then use the table to determine // the power of 5 in q. const fp = 13 // f == 5^fp var tab []nat // tab[i] == (5^fp)^(2^i) == 5^(fp·2^i) f := nat{1220703125} // == 5^fp (must fit into a uint32 Word) var t, r nat // temporaries for { if _, r = t.div(r, q, f); len(r) != 0 { break // f doesn't divide q evenly } tab = append(tab, f) f = nat(nil).sqr(f) // nat(nil) to ensure a new f for each table entry } // Factor q using the table entries, if any. // We start with the largest factor f = tab[len(tab)-1] // that evenly divides q. It does so at most once because // otherwise f·f would also divide q. That can't be true // because f·f is the next higher table entry, contradicting // how f was chosen in the first place. // The same reasoning applies to the subsequent factors. var p5 uint for i := len(tab) - 1; i >= 0; i-- { if t, r = t.div(r, q, tab[i]); len(r) == 0 { p5 += fp * (1 << i) // tab[i] == 5^(fp·2^i) q = q.set(t) } } // If fp != 1, we may still have multiples of 5 left. for { if t, r = t.div(r, q, natFive); len(r) != 0 { break } p5++ q = q.set(t) } return int(max(p2, p5)), q.cmp(natOne) == 0 }