// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package regexp implements regular expression search. // // The syntax of the regular expressions accepted is the same // general syntax used by Perl, Python, and other languages. // More precisely, it is the syntax accepted by RE2 and described at // https://golang.org/s/re2syntax, except for \C. // For an overview of the syntax, see the [regexp/syntax] package. // // The regexp implementation provided by this package is // guaranteed to run in time linear in the size of the input. // (This is a property not guaranteed by most open source // implementations of regular expressions.) For more information // about this property, see https://swtch.com/~rsc/regexp/regexp1.html // or any book about automata theory. // // All characters are UTF-8-encoded code points. // Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence // is treated as if it encoded utf8.RuneError (U+FFFD). // // There are 16 methods of [Regexp] that match a regular expression and identify // the matched text. Their names are matched by this regular expression: // // Find(All)?(String)?(Submatch)?(Index)? // // If 'All' is present, the routine matches successive non-overlapping // matches of the entire expression. Empty matches abutting a preceding // match are ignored. The return value is a slice containing the successive // return values of the corresponding non-'All' routine. These routines take // an extra integer argument, n. If n >= 0, the function returns at most n // matches/submatches; otherwise, it returns all of them. // // If 'String' is present, the argument is a string; otherwise it is a slice // of bytes; return values are adjusted as appropriate. // // If 'Submatch' is present, the return value is a slice identifying the // successive submatches of the expression. Submatches are matches of // parenthesized subexpressions (also known as capturing groups) within the // regular expression, numbered from left to right in order of opening // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is // the match of the first parenthesized subexpression, and so on. // // If 'Index' is present, matches and submatches are identified by byte index // pairs within the input string: result[2*n:2*n+2] identifies the indexes of // the nth submatch. The pair for n==0 identifies the match of the entire // expression. If 'Index' is not present, the match is identified by the text // of the match/submatch. If an index is negative or text is nil, it means that // subexpression did not match any string in the input. For 'String' versions // an empty string means either no match or an empty match. // // There is also a subset of the methods that can be applied to text read from // an [io.RuneReader]: [Regexp.MatchReader], [Regexp.FindReaderIndex], // [Regexp.FindReaderSubmatchIndex]. // // This set may grow. Note that regular expression matches may need to // examine text beyond the text returned by a match, so the methods that // match text from an [io.RuneReader] may read arbitrarily far into the input // before returning. // // (There are a few other methods that do not match this pattern.) package regexp import ( "bytes" "io" "regexp/syntax" "strconv" "strings" "sync" "unicode" "unicode/utf8" ) // Regexp is the representation of a compiled regular expression. // A Regexp is safe for concurrent use by multiple goroutines, // except for configuration methods, such as [Regexp.Longest]. type Regexp struct { expr string // as passed to Compile prog *syntax.Prog // compiled program onepass *onePassProg // onepass program or nil numSubexp int maxBitStateLen int subexpNames []string prefix string // required prefix in unanchored matches prefixBytes []byte // prefix, as a []byte prefixRune rune // first rune in prefix prefixEnd uint32 // pc for last rune in prefix mpool int // pool for machines matchcap int // size of recorded match lengths prefixComplete bool // prefix is the entire regexp cond syntax.EmptyOp // empty-width conditions required at start of match minInputLen int // minimum length of the input in bytes // This field can be modified by the Longest method, // but it is otherwise read-only. longest bool // whether regexp prefers leftmost-longest match } // String returns the source text used to compile the regular expression. func (re *Regexp) String() string { return re.expr } // Copy returns a new [Regexp] object copied from re. // Calling [Regexp.Longest] on one copy does not affect another. // // Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines, // giving each goroutine its own copy helped to avoid lock contention. // As of Go 1.12, using Copy is no longer necessary to avoid lock contention. // Copy may still be appropriate if the reason for its use is to make // two copies with different [Regexp.Longest] settings. func (re *Regexp) Copy() *Regexp { re2 := *re return &re2 } // Compile parses a regular expression and returns, if successful, // a [Regexp] object that can be used to match against text. // // When matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses the one that a backtracking search would have found first. // This so-called leftmost-first matching is the same semantics // that Perl, Python, and other implementations use, although this // package implements it without the expense of backtracking. // For POSIX leftmost-longest matching, see [CompilePOSIX]. func Compile(expr string) (*Regexp, error) { return compile(expr, syntax.Perl, false) } // CompilePOSIX is like [Compile] but restricts the regular expression // to POSIX ERE (egrep) syntax and changes the match semantics to // leftmost-longest. // // That is, when matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses a match that is as long as possible. // This so-called leftmost-longest matching is the same semantics // that early regular expression implementations used and that POSIX // specifies. // // However, there can be multiple leftmost-longest matches, with different // submatch choices, and here this package diverges from POSIX. // Among the possible leftmost-longest matches, this package chooses // the one that a backtracking search would have found first, while POSIX // specifies that the match be chosen to maximize the length of the first // subexpression, then the second, and so on from left to right. // The POSIX rule is computationally prohibitive and not even well-defined. // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details. func CompilePOSIX(expr string) (*Regexp, error) { return compile(expr, syntax.POSIX, true) } // Longest makes future searches prefer the leftmost-longest match. // That is, when matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses a match that is as long as possible. // This method modifies the [Regexp] and may not be called concurrently // with any other methods. func (re *Regexp) Longest() { re.longest = true } func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) { re, err := syntax.Parse(expr, mode) if err != nil { return nil, err } maxCap := re.MaxCap() capNames := re.CapNames() re = re.Simplify() prog, err := syntax.Compile(re) if err != nil { return nil, err } matchcap := prog.NumCap if matchcap < 2 { matchcap = 2 } regexp := &Regexp{ expr: expr, prog: prog, onepass: compileOnePass(prog), numSubexp: maxCap, subexpNames: capNames, cond: prog.StartCond(), longest: longest, matchcap: matchcap, minInputLen: minInputLen(re), } if regexp.onepass == nil { regexp.prefix, regexp.prefixComplete = prog.Prefix() regexp.maxBitStateLen = maxBitStateLen(prog) } else { regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog) } if regexp.prefix != "" { // TODO(rsc): Remove this allocation by adding // IndexString to package bytes. regexp.prefixBytes = []byte(regexp.prefix) regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix) } n := len(prog.Inst) i := 0 for matchSize[i] != 0 && matchSize[i] < n { i++ } regexp.mpool = i return regexp, nil } // Pools of *machine for use during (*Regexp).doExecute, // split up by the size of the execution queues. // matchPool[i] machines have queue size matchSize[i]. // On a 64-bit system each queue entry is 16 bytes, // so matchPool[0] has 16*2*128 = 4kB queues, etc. // The final matchPool is a catch-all for very large queues. var ( matchSize = [...]int{128, 512, 2048, 16384, 0} matchPool [len(matchSize)]sync.Pool ) // get returns a machine to use for matching re. // It uses the re's machine cache if possible, to avoid // unnecessary allocation. func (re *Regexp) get() *machine { m, ok := matchPool[re.mpool].Get().(*machine) if !ok { m = new(machine) } m.re = re m.p = re.prog if cap(m.matchcap) < re.matchcap { m.matchcap = make([]int, re.matchcap) for _, t := range m.pool { t.cap = make([]int, re.matchcap) } } // Allocate queues if needed. // Or reallocate, for "large" match pool. n := matchSize[re.mpool] if n == 0 { // large pool n = len(re.prog.Inst) } if len(m.q0.sparse) < n { m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} } return m } // put returns a machine to the correct machine pool. func (re *Regexp) put(m *machine) { m.re = nil m.p = nil m.inputs.clear() matchPool[re.mpool].Put(m) } // minInputLen walks the regexp to find the minimum length of any matchable input. func minInputLen(re *syntax.Regexp) int { switch re.Op { default: return 0 case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass: return 1 case syntax.OpLiteral: l := 0 for _, r := range re.Rune { if r == utf8.RuneError { l++ } else { l += utf8.RuneLen(r) } } return l case syntax.OpCapture, syntax.OpPlus: return minInputLen(re.Sub[0]) case syntax.OpRepeat: return re.Min * minInputLen(re.Sub[0]) case syntax.OpConcat: l := 0 for _, sub := range re.Sub { l += minInputLen(sub) } return l case syntax.OpAlternate: l := minInputLen(re.Sub[0]) var lnext int for _, sub := range re.Sub[1:] { lnext = minInputLen(sub) if lnext < l { l = lnext } } return l } } // MustCompile is like [Compile] but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func MustCompile(str string) *Regexp { regexp, err := Compile(str) if err != nil { panic(`regexp: Compile(` + quote(str) + `): ` + err.Error()) } return regexp } // MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func MustCompilePOSIX(str string) *Regexp { regexp, err := CompilePOSIX(str) if err != nil { panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error()) } return regexp } func quote(s string) string { if strconv.CanBackquote(s) { return "`" + s + "`" } return strconv.Quote(s) } // NumSubexp returns the number of parenthesized subexpressions in this [Regexp]. func (re *Regexp) NumSubexp() int { return re.numSubexp } // SubexpNames returns the names of the parenthesized subexpressions // in this [Regexp]. The name for the first sub-expression is names[1], // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. // Since the Regexp as a whole cannot be named, names[0] is always // the empty string. The slice should not be modified. func (re *Regexp) SubexpNames() []string { return re.subexpNames } // SubexpIndex returns the index of the first subexpression with the given name, // or -1 if there is no subexpression with that name. // // Note that multiple subexpressions can be written using the same name, as in // (?Pa+)(?Pb+), which declares two subexpressions named "bob". // In this case, SubexpIndex returns the index of the leftmost such subexpression // in the regular expression. func (re *Regexp) SubexpIndex(name string) int { if name != "" { for i, s := range re.subexpNames { if name == s { return i } } } return -1 } const endOfText rune = -1 // input abstracts different representations of the input text. It provides // one-character lookahead. type input interface { step(pos int) (r rune, width int) // advance one rune canCheckPrefix() bool // can we look ahead without losing info? hasPrefix(re *Regexp) bool index(re *Regexp, pos int) int context(pos int) lazyFlag } // inputString scans a string. type inputString struct { str string } func (i *inputString) step(pos int) (rune, int) { if pos < len(i.str) { c := i.str[pos] if c < utf8.RuneSelf { return rune(c), 1 } return utf8.DecodeRuneInString(i.str[pos:]) } return endOfText, 0 } func (i *inputString) canCheckPrefix() bool { return true } func (i *inputString) hasPrefix(re *Regexp) bool { return strings.HasPrefix(i.str, re.prefix) } func (i *inputString) index(re *Regexp, pos int) int { return strings.Index(i.str[pos:], re.prefix) } func (i *inputString) context(pos int) lazyFlag { r1, r2 := endOfText, endOfText // 0 < pos && pos <= len(i.str) if uint(pos-1) < uint(len(i.str)) { r1 = rune(i.str[pos-1]) if r1 >= utf8.RuneSelf { r1, _ = utf8.DecodeLastRuneInString(i.str[:pos]) } } // 0 <= pos && pos < len(i.str) if uint(pos) < uint(len(i.str)) { r2 = rune(i.str[pos]) if r2 >= utf8.RuneSelf { r2, _ = utf8.DecodeRuneInString(i.str[pos:]) } } return newLazyFlag(r1, r2) } // inputBytes scans a byte slice. type inputBytes struct { str []byte } func (i *inputBytes) step(pos int) (rune, int) { if pos < len(i.str) { c := i.str[pos] if c < utf8.RuneSelf { return rune(c), 1 } return utf8.DecodeRune(i.str[pos:]) } return endOfText, 0 } func (i *inputBytes) canCheckPrefix() bool { return true } func (i *inputBytes) hasPrefix(re *Regexp) bool { return bytes.HasPrefix(i.str, re.prefixBytes) } func (i *inputBytes) index(re *Regexp, pos int) int { return bytes.Index(i.str[pos:], re.prefixBytes) } func (i *inputBytes) context(pos int) lazyFlag { r1, r2 := endOfText, endOfText // 0 < pos && pos <= len(i.str) if uint(pos-1) < uint(len(i.str)) { r1 = rune(i.str[pos-1]) if r1 >= utf8.RuneSelf { r1, _ = utf8.DecodeLastRune(i.str[:pos]) } } // 0 <= pos && pos < len(i.str) if uint(pos) < uint(len(i.str)) { r2 = rune(i.str[pos]) if r2 >= utf8.RuneSelf { r2, _ = utf8.DecodeRune(i.str[pos:]) } } return newLazyFlag(r1, r2) } // inputReader scans a RuneReader. type inputReader struct { r io.RuneReader atEOT bool pos int } func (i *inputReader) step(pos int) (rune, int) { if !i.atEOT && pos != i.pos { return endOfText, 0 } r, w, err := i.r.ReadRune() if err != nil { i.atEOT = true return endOfText, 0 } i.pos += w return r, w } func (i *inputReader) canCheckPrefix() bool { return false } func (i *inputReader) hasPrefix(re *Regexp) bool { return false } func (i *inputReader) index(re *Regexp, pos int) int { return -1 } func (i *inputReader) context(pos int) lazyFlag { return 0 // not used } // LiteralPrefix returns a literal string that must begin any match // of the regular expression re. It returns the boolean true if the // literal string comprises the entire regular expression. func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { return re.prefix, re.prefixComplete } // MatchReader reports whether the text returned by the [io.RuneReader] // contains any match of the regular expression re. func (re *Regexp) MatchReader(r io.RuneReader) bool { return re.doMatch(r, nil, "") } // MatchString reports whether the string s // contains any match of the regular expression re. func (re *Regexp) MatchString(s string) bool { return re.doMatch(nil, nil, s) } // Match reports whether the byte slice b // contains any match of the regular expression re. func (re *Regexp) Match(b []byte) bool { return re.doMatch(nil, b, "") } // MatchReader reports whether the text returned by the [io.RuneReader] // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) { re, err := Compile(pattern) if err != nil { return false, err } return re.MatchReader(r), nil } // MatchString reports whether the string s // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func MatchString(pattern string, s string) (matched bool, err error) { re, err := Compile(pattern) if err != nil { return false, err } return re.MatchString(s), nil } // Match reports whether the byte slice b // contains any match of the regular expression pattern. // More complicated queries need to use [Compile] and the full [Regexp] interface. func Match(pattern string, b []byte) (matched bool, err error) { re, err := Compile(pattern) if err != nil { return false, err } return re.Match(b), nil } // ReplaceAllString returns a copy of src, replacing matches of the [Regexp] // with the replacement string repl. // Inside repl, $ signs are interpreted as in [Regexp.Expand]. func (re *Regexp) ReplaceAllString(src, repl string) string { n := 2 if strings.Contains(repl, "$") { n = 2 * (re.numSubexp + 1) } b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte { return re.expand(dst, repl, nil, src, match) }) return string(b) } // ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp] // with the replacement string repl. The replacement repl is substituted directly, // without using [Regexp.Expand]. func (re *Regexp) ReplaceAllLiteralString(src, repl string) string { return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { return append(dst, repl...) })) } // ReplaceAllStringFunc returns a copy of src in which all matches of the // [Regexp] have been replaced by the return value of function repl applied // to the matched substring. The replacement returned by repl is substituted // directly, without using [Regexp.Expand]. func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { return append(dst, repl(src[match[0]:match[1]])...) }) return string(b) } func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte { lastMatchEnd := 0 // end position of the most recent match searchPos := 0 // position where we next look for a match var buf []byte var endPos int if bsrc != nil { endPos = len(bsrc) } else { endPos = len(src) } if nmatch > re.prog.NumCap { nmatch = re.prog.NumCap } var dstCap [2]int for searchPos <= endPos { a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0]) if len(a) == 0 { break // no more matches } // Copy the unmatched characters before this match. if bsrc != nil { buf = append(buf, bsrc[lastMatchEnd:a[0]]...) } else { buf = append(buf, src[lastMatchEnd:a[0]]...) } // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if a[1] > lastMatchEnd || a[0] == 0 { buf = repl(buf, a) } lastMatchEnd = a[1] // Advance past this match; always advance at least one character. var width int if bsrc != nil { _, width = utf8.DecodeRune(bsrc[searchPos:]) } else { _, width = utf8.DecodeRuneInString(src[searchPos:]) } if searchPos+width > a[1] { searchPos += width } else if searchPos+1 > a[1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. searchPos++ } else { searchPos = a[1] } } // Copy the unmatched characters after the last match. if bsrc != nil { buf = append(buf, bsrc[lastMatchEnd:]...) } else { buf = append(buf, src[lastMatchEnd:]...) } return buf } // ReplaceAll returns a copy of src, replacing matches of the [Regexp] // with the replacement text repl. // Inside repl, $ signs are interpreted as in [Regexp.Expand]. func (re *Regexp) ReplaceAll(src, repl []byte) []byte { n := 2 if bytes.IndexByte(repl, '$') >= 0 { n = 2 * (re.numSubexp + 1) } srepl := "" b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte { if len(srepl) != len(repl) { srepl = string(repl) } return re.expand(dst, srepl, src, "", match) }) return b } // ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp] // with the replacement bytes repl. The replacement repl is substituted directly, // without using [Regexp.Expand]. func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte { return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { return append(dst, repl...) }) } // ReplaceAllFunc returns a copy of src in which all matches of the // [Regexp] have been replaced by the return value of function repl applied // to the matched byte slice. The replacement returned by repl is substituted // directly, without using [Regexp.Expand]. func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { return append(dst, repl(src[match[0]:match[1]])...) }) } // Bitmap used by func special to check whether a character needs to be escaped. var specialBytes [16]byte // special reports whether byte b needs to be escaped by QuoteMeta. func special(b byte) bool { return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0 } func init() { for _, b := range []byte(`\.+*?()|[]{}^$`) { specialBytes[b%16] |= 1 << (b / 16) } } // QuoteMeta returns a string that escapes all regular expression metacharacters // inside the argument text; the returned string is a regular expression matching // the literal text. func QuoteMeta(s string) string { // A byte loop is correct because all metacharacters are ASCII. var i int for i = 0; i < len(s); i++ { if special(s[i]) { break } } // No meta characters found, so return original string. if i >= len(s) { return s } b := make([]byte, 2*len(s)-i) copy(b, s[:i]) j := i for ; i < len(s); i++ { if special(s[i]) { b[j] = '\\' j++ } b[j] = s[i] j++ } return string(b[:j]) } // The number of capture values in the program may correspond // to fewer capturing expressions than are in the regexp. // For example, "(a){0}" turns into an empty program, so the // maximum capture in the program is 0 but we need to return // an expression for \1. Pad appends -1s to the slice a as needed. func (re *Regexp) pad(a []int) []int { if a == nil { // No match. return nil } n := (1 + re.numSubexp) * 2 for len(a) < n { a = append(a, -1) } return a } // allMatches calls deliver at most n times // with the location of successive matches in the input text. // The input text is b if non-nil, otherwise s. func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { var end int if b == nil { end = len(s) } else { end = len(b) } for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil) if len(matches) == 0 { break } accept := true if matches[1] == pos { // We've found an empty match. if matches[0] == prevMatchEnd { // We don't allow an empty match right // after a previous match, so ignore it. accept = false } var width int if b == nil { is := inputString{str: s} _, width = is.step(pos) } else { ib := inputBytes{str: b} _, width = ib.step(pos) } if width > 0 { pos += width } else { pos = end + 1 } } else { pos = matches[1] } prevMatchEnd = matches[1] if accept { deliver(re.pad(matches)) i++ } } } // Find returns a slice holding the text of the leftmost match in b of the regular expression. // A return value of nil indicates no match. func (re *Regexp) Find(b []byte) []byte { var dstCap [2]int a := re.doExecute(nil, b, "", 0, 2, dstCap[:0]) if a == nil { return nil } return b[a[0]:a[1]:a[1]] } // FindIndex returns a two-element slice of integers defining the location of // the leftmost match in b of the regular expression. The match itself is at // b[loc[0]:loc[1]]. // A return value of nil indicates no match. func (re *Regexp) FindIndex(b []byte) (loc []int) { a := re.doExecute(nil, b, "", 0, 2, nil) if a == nil { return nil } return a[0:2] } // FindString returns a string holding the text of the leftmost match in s of the regular // expression. If there is no match, the return value is an empty string, // but it will also be empty if the regular expression successfully matches // an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is // necessary to distinguish these cases. func (re *Regexp) FindString(s string) string { var dstCap [2]int a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0]) if a == nil { return "" } return s[a[0]:a[1]] } // FindStringIndex returns a two-element slice of integers defining the // location of the leftmost match in s of the regular expression. The match // itself is at s[loc[0]:loc[1]]. // A return value of nil indicates no match. func (re *Regexp) FindStringIndex(s string) (loc []int) { a := re.doExecute(nil, nil, s, 0, 2, nil) if a == nil { return nil } return a[0:2] } // FindReaderIndex returns a two-element slice of integers defining the // location of the leftmost match of the regular expression in text read from // the [io.RuneReader]. The match text was found in the input stream at // byte offset loc[0] through loc[1]-1. // A return value of nil indicates no match. func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) { a := re.doExecute(r, nil, "", 0, 2, nil) if a == nil { return nil } return a[0:2] } // FindSubmatch returns a slice of slices holding the text of the leftmost // match of the regular expression in b and the matches, if any, of its // subexpressions, as defined by the 'Submatch' descriptions in the package // comment. // A return value of nil indicates no match. func (re *Regexp) FindSubmatch(b []byte) [][]byte { var dstCap [4]int a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0]) if a == nil { return nil } ret := make([][]byte, 1+re.numSubexp) for i := range ret { if 2*i < len(a) && a[2*i] >= 0 { ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]] } } return ret } // Expand appends template to dst and returns the result; during the // append, Expand replaces variables in the template with corresponding // matches drawn from src. The match slice should have been returned by // [Regexp.FindSubmatchIndex]. // // In the template, a variable is denoted by a substring of the form // $name or ${name}, where name is a non-empty sequence of letters, // digits, and underscores. A purely numeric name like $1 refers to // the submatch with the corresponding index; other names refer to // capturing parentheses named with the (?P...) syntax. A // reference to an out of range or unmatched index or a name that is not // present in the regular expression is replaced with an empty slice. // // In the $name form, name is taken to be as long as possible: $1x is // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0. // // To insert a literal $ in the output, use $$ in the template. func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte { return re.expand(dst, string(template), src, "", match) } // ExpandString is like [Regexp.Expand] but the template and source are strings. // It appends to and returns a byte slice in order to give the calling // code control over allocation. func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte { return re.expand(dst, template, nil, src, match) } func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte { for len(template) > 0 { before, after, ok := strings.Cut(template, "$") if !ok { break } dst = append(dst, before...) template = after if template != "" && template[0] == '$' { // Treat $$ as $. dst = append(dst, '$') template = template[1:] continue } name, num, rest, ok := extract(template) if !ok { // Malformed; treat $ as raw text. dst = append(dst, '$') continue } template = rest if num >= 0 { if 2*num+1 < len(match) && match[2*num] >= 0 { if bsrc != nil { dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...) } else { dst = append(dst, src[match[2*num]:match[2*num+1]]...) } } } else { for i, namei := range re.subexpNames { if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 { if bsrc != nil { dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...) } else { dst = append(dst, src[match[2*i]:match[2*i+1]]...) } break } } } } dst = append(dst, template...) return dst } // extract returns the name from a leading "name" or "{name}" in str. // (The $ has already been removed by the caller.) // If it is a number, extract returns num set to that number; otherwise num = -1. func extract(str string) (name string, num int, rest string, ok bool) { if str == "" { return } brace := false if str[0] == '{' { brace = true str = str[1:] } i := 0 for i < len(str) { rune, size := utf8.DecodeRuneInString(str[i:]) if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' { break } i += size } if i == 0 { // empty name is not okay return } name = str[:i] if brace { if i >= len(str) || str[i] != '}' { // missing closing brace return } i++ } // Parse number. num = 0 for i := 0; i < len(name); i++ { if name[i] < '0' || '9' < name[i] || num >= 1e8 { num = -1 break } num = num*10 + int(name[i]) - '0' } // Disallow leading zeros. if name[0] == '0' && len(name) > 1 { num = -1 } rest = str[i:] ok = true return } // FindSubmatchIndex returns a slice holding the index pairs identifying the // leftmost match of the regular expression in b and the matches, if any, of // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindSubmatchIndex(b []byte) []int { return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil)) } // FindStringSubmatch returns a slice of strings holding the text of the // leftmost match of the regular expression in s and the matches, if any, of // its subexpressions, as defined by the 'Submatch' description in the // package comment. // A return value of nil indicates no match. func (re *Regexp) FindStringSubmatch(s string) []string { var dstCap [4]int a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0]) if a == nil { return nil } ret := make([]string, 1+re.numSubexp) for i := range ret { if 2*i < len(a) && a[2*i] >= 0 { ret[i] = s[a[2*i]:a[2*i+1]] } } return ret } // FindStringSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression in s and the // matches, if any, of its subexpressions, as defined by the 'Submatch' and // 'Index' descriptions in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindStringSubmatchIndex(s string) []int { return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil)) } // FindReaderSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression of text read by // the [io.RuneReader], and the matches, if any, of its subexpressions, as defined // by the 'Submatch' and 'Index' descriptions in the package comment. A // return value of nil indicates no match. func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil)) } const startSize = 10 // The size at which to start a slice in the 'All' routines. // FindAll is the 'All' version of [Regexp.Find]; it returns a slice of all successive // matches of the expression, as defined by the 'All' description in the // package comment. // A return value of nil indicates no match. func (re *Regexp) FindAll(b []byte, n int) [][]byte { if n < 0 { n = len(b) + 1 } var result [][]byte re.allMatches("", b, n, func(match []int) { if result == nil { result = make([][]byte, 0, startSize) } result = append(result, b[match[0]:match[1]:match[1]]) }) return result } // FindAllIndex is the 'All' version of [Regexp.FindIndex]; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { if n < 0 { n = len(b) + 1 } var result [][]int re.allMatches("", b, n, func(match []int) { if result == nil { result = make([][]int, 0, startSize) } result = append(result, match[0:2]) }) return result } // FindAllString is the 'All' version of [Regexp.FindString]; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllString(s string, n int) []string { if n < 0 { n = len(s) + 1 } var result []string re.allMatches(s, nil, n, func(match []int) { if result == nil { result = make([]string, 0, startSize) } result = append(result, s[match[0]:match[1]]) }) return result } // FindAllStringIndex is the 'All' version of [Regexp.FindStringIndex]; it returns a // slice of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { if n < 0 { n = len(s) + 1 } var result [][]int re.allMatches(s, nil, n, func(match []int) { if result == nil { result = make([][]int, 0, startSize) } result = append(result, match[0:2]) }) return result } // FindAllSubmatch is the 'All' version of [Regexp.FindSubmatch]; it returns a slice // of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { if n < 0 { n = len(b) + 1 } var result [][][]byte re.allMatches("", b, n, func(match []int) { if result == nil { result = make([][][]byte, 0, startSize) } slice := make([][]byte, len(match)/2) for j := range slice { if match[2*j] >= 0 { slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]] } } result = append(result, slice) }) return result } // FindAllSubmatchIndex is the 'All' version of [Regexp.FindSubmatchIndex]; it returns // a slice of all successive matches of the expression, as defined by the // 'All' description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { if n < 0 { n = len(b) + 1 } var result [][]int re.allMatches("", b, n, func(match []int) { if result == nil { result = make([][]int, 0, startSize) } result = append(result, match) }) return result } // FindAllStringSubmatch is the 'All' version of [Regexp.FindStringSubmatch]; it // returns a slice of all successive matches of the expression, as defined by // the 'All' description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { if n < 0 { n = len(s) + 1 } var result [][]string re.allMatches(s, nil, n, func(match []int) { if result == nil { result = make([][]string, 0, startSize) } slice := make([]string, len(match)/2) for j := range slice { if match[2*j] >= 0 { slice[j] = s[match[2*j]:match[2*j+1]] } } result = append(result, slice) }) return result } // FindAllStringSubmatchIndex is the 'All' version of // [Regexp.FindStringSubmatchIndex]; it returns a slice of all successive matches of // the expression, as defined by the 'All' description in the package // comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { if n < 0 { n = len(s) + 1 } var result [][]int re.allMatches(s, nil, n, func(match []int) { if result == nil { result = make([][]int, 0, startSize) } result = append(result, match) }) return result } // Split slices s into substrings separated by the expression and returns a slice of // the substrings between those expression matches. // // The slice returned by this method consists of all the substrings of s // not contained in the slice returned by [Regexp.FindAllString]. When called on an expression // that contains no metacharacters, it is equivalent to [strings.SplitN]. // // Example: // // s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5) // // s: ["", "b", "b", "c", "cadaaae"] // // The count determines the number of substrings to return: // - n > 0: at most n substrings; the last substring will be the unsplit remainder; // - n == 0: the result is nil (zero substrings); // - n < 0: all substrings. func (re *Regexp) Split(s string, n int) []string { if n == 0 { return nil } if len(re.expr) > 0 && len(s) == 0 { return []string{""} } matches := re.FindAllStringIndex(s, n) strings := make([]string, 0, len(matches)) beg := 0 end := 0 for _, match := range matches { if n > 0 && len(strings) >= n-1 { break } end = match[0] if match[1] != 0 { strings = append(strings, s[beg:end]) } beg = match[1] } if end != len(s) { strings = append(strings, s[beg:]) } return strings } // AppendText implements [encoding.TextAppender]. The output // matches that of calling the [Regexp.String] method. // // Note that the output is lossy in some cases: This method does not indicate // POSIX regular expressions (i.e. those compiled by calling [CompilePOSIX]), or // those for which the [Regexp.Longest] method has been called. func (re *Regexp) AppendText(b []byte) ([]byte, error) { return append(b, re.String()...), nil } // MarshalText implements [encoding.TextMarshaler]. The output // matches that of calling the [Regexp.AppendText] method. // // See [Regexp.AppendText] for more information. func (re *Regexp) MarshalText() ([]byte, error) { return re.AppendText(nil) } // UnmarshalText implements [encoding.TextUnmarshaler] by calling // [Compile] on the encoded value. func (re *Regexp) UnmarshalText(text []byte) error { newRE, err := Compile(string(text)) if err != nil { return err } *re = *newRE return nil }