// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #define REGCTXT R29 TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 // R3 = stack; R4 = argc; R5 = argv ADDV $-24, R3 MOVW R4, 8(R3) // argc MOVV R5, 16(R3) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVV $runtime·g0(SB), g MOVV $(-64*1024), R30 ADDV R30, R3, R19 MOVV R19, g_stackguard0(g) MOVV R19, g_stackguard1(g) MOVV R19, (g_stack+stack_lo)(g) MOVV R3, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVV _cgo_init(SB), R25 BEQ R25, nocgo MOVV R0, R7 // arg 3: not used MOVV R0, R6 // arg 2: not used MOVV $setg_gcc<>(SB), R5 // arg 1: setg MOVV g, R4 // arg 0: G JAL (R25) nocgo: // update stackguard after _cgo_init MOVV (g_stack+stack_lo)(g), R19 ADDV $const_stackGuard, R19 MOVV R19, g_stackguard0(g) MOVV R19, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVV $runtime·m0(SB), R19 // save m->g0 = g0 MOVV g, m_g0(R19) // save m0 to g0->m MOVV R19, g_m(g) JAL runtime·check(SB) // args are already prepared JAL runtime·args(SB) JAL runtime·osinit(SB) JAL runtime·schedinit(SB) // create a new goroutine to start program MOVV $runtime·mainPC(SB), R19 // entry ADDV $-16, R3 MOVV R19, 8(R3) MOVV R0, 0(R3) JAL runtime·newproc(SB) ADDV $16, R3 // start this M JAL runtime·mstart(SB) // Prevent dead-code elimination of debugCallV2, which is // intended to be called by debuggers. MOVV $runtime·debugCallV2(SB), R0 MOVV R0, 1(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 BREAK RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 JAL runtime·mstart0(SB) RET // not reached // func cputicks() int64 TEXT runtime·cputicks(SB),NOSPLIT,$0-8 RDTIMED R0, R4 RET /* * go-routine */ // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 MOVV buf+0(FP), R4 MOVV gobuf_g(R4), R5 MOVV 0(R5), R0 // make sure g != nil JMP gogo<>(SB) TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 MOVV R5, g JAL runtime·save_g(SB) MOVV gobuf_sp(R4), R3 MOVV gobuf_lr(R4), R1 MOVV gobuf_ret(R4), R19 MOVV gobuf_ctxt(R4), REGCTXT MOVV R0, gobuf_sp(R4) MOVV R0, gobuf_ret(R4) MOVV R0, gobuf_lr(R4) MOVV R0, gobuf_ctxt(R4) MOVV gobuf_pc(R4), R6 JMP (R6) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 MOVV R4, REGCTXT // Save caller state in g->sched MOVV R3, (g_sched+gobuf_sp)(g) MOVV R1, (g_sched+gobuf_pc)(g) MOVV R0, (g_sched+gobuf_lr)(g) // Switch to m->g0 & its stack, call fn. MOVV g, R4 // arg = g MOVV g_m(g), R20 MOVV m_g0(R20), g JAL runtime·save_g(SB) BNE g, R4, 2(PC) JMP runtime·badmcall(SB) MOVV 0(REGCTXT), R20 // code pointer MOVV (g_sched+gobuf_sp)(g), R3 // sp = m->g0->sched.sp ADDV $-16, R3 MOVV R4, 8(R3) MOVV R0, 0(R3) JAL (R20) JMP runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF JAL (R1) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVV fn+0(FP), R19 // R19 = fn MOVV R19, REGCTXT // context MOVV g_m(g), R4 // R4 = m MOVV m_gsignal(R4), R5 // R5 = gsignal BEQ g, R5, noswitch MOVV m_g0(R4), R5 // R5 = g0 BEQ g, R5, noswitch MOVV m_curg(R4), R6 BEQ g, R6, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVV $runtime·badsystemstack(SB), R7 JAL (R7) JAL runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. JAL gosave_systemstack_switch<>(SB) // switch to g0 MOVV R5, g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R19 MOVV R19, R3 // call target function MOVV 0(REGCTXT), R6 // code pointer JAL (R6) // switch back to g MOVV g_m(g), R4 MOVV m_curg(R4), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R3 MOVV R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVV 0(REGCTXT), R4 // code pointer MOVV 0(R3), R1 // restore LR ADDV $8, R3 JMP (R4) // func switchToCrashStack0(fn func()) TEXT runtime·switchToCrashStack0(SB),NOSPLIT,$0-8 MOVV R4, REGCTXT // context register MOVV g_m(g), R5 // curm // set g to gcrash MOVV $runtime·gcrash(SB), g // g = &gcrash JAL runtime·save_g(SB) MOVV R5, g_m(g) // g.m = curm MOVV g, m_g0(R5) // curm.g0 = g // switch to crashstack MOVV (g_stack+stack_hi)(g), R5 ADDV $(-4*8), R5, R3 // call target function MOVV 0(REGCTXT), R6 JAL (R6) // should never return JAL runtime·abort(SB) UNDEF /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // loong64: R31: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Called from f. // Set g->sched to context in f. MOVV R3, (g_sched+gobuf_sp)(g) MOVV R1, (g_sched+gobuf_pc)(g) MOVV R31, (g_sched+gobuf_lr)(g) MOVV REGCTXT, (g_sched+gobuf_ctxt)(g) // Cannot grow scheduler stack (m->g0). MOVV g_m(g), R7 MOVV m_g0(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackg0(SB) JAL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVV m_gsignal(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackgsignal(SB) JAL runtime·abort(SB) // Called from f. // Set m->morebuf to f's caller. MOVV R31, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVV R3, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVV g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVV m_g0(R7), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R3 // Create a stack frame on g0 to call newstack. MOVV R0, -8(R3) // Zero saved LR in frame ADDV $-8, R3 JAL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 // Force SPWRITE. This function doesn't actually write SP, // but it is called with a special calling convention where // the caller doesn't save LR on stack but passes it as a // register (R5), and the unwinder currently doesn't understand. // Make it SPWRITE to stop unwinding. (See issue 54332) MOVV R3, R3 MOVV R0, REGCTXT JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVV $MAXSIZE, R30; \ SGTU R19, R30, R30; \ BNE R30, 3(PC); \ MOVV $NAME(SB), R4; \ JMP (R4) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48 MOVWU frameSize+32(FP), R19 DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVV $runtime·badreflectcall(SB), R4 JMP (R4) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVV arg+16(FP), R4; \ MOVWU argsize+24(FP), R5; \ MOVV R3, R12; \ ADDV $8, R12; \ ADDV R12, R5; \ BEQ R12, R5, 6(PC); \ MOVBU (R4), R6; \ ADDV $1, R4; \ MOVBU R6, (R12); \ ADDV $1, R12; \ JMP -5(PC); \ /* set up argument registers */ \ MOVV regArgs+40(FP), R25; \ JAL ·unspillArgs(SB); \ /* call function */ \ MOVV f+8(FP), REGCTXT; \ MOVV (REGCTXT), R25; \ PCDATA $PCDATA_StackMapIndex, $0; \ JAL (R25); \ /* copy return values back */ \ MOVV regArgs+40(FP), R25; \ JAL ·spillArgs(SB); \ MOVV argtype+0(FP), R7; \ MOVV arg+16(FP), R4; \ MOVWU n+24(FP), R5; \ MOVWU retoffset+28(FP), R6; \ ADDV $8, R3, R12; \ ADDV R6, R12; \ ADDV R6, R4; \ SUBVU R6, R5; \ JAL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $40-0 NO_LOCAL_POINTERS MOVV R7, 8(R3) MOVV R4, 16(R3) MOVV R12, 24(R3) MOVV R5, 32(R3) MOVV R25, 40(R3) JAL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // Save state of caller into g->sched. // but using fake PC from systemstack_switch. // Must only be called from functions with no locals ($0) // or else unwinding from systemstack_switch is incorrect. // Smashes R19. TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 MOVV $runtime·systemstack_switch(SB), R19 ADDV $8, R19 MOVV R19, (g_sched+gobuf_pc)(g) MOVV R3, (g_sched+gobuf_sp)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV R0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVV (g_sched+gobuf_ctxt)(g), R19 BEQ R19, 2(PC) JAL runtime·abort(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVV fn+0(FP), R25 MOVV arg+8(FP), R4 MOVV R3, R12 // save original stack pointer MOVV g, R13 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVV g_m(g), R5 MOVV m_gsignal(R5), R6 BEQ R6, g, g0 MOVV m_g0(R5), R6 BEQ R6, g, g0 JAL gosave_systemstack_switch<>(SB) MOVV R6, g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R3 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers. ADDV $-16, R3 MOVV R13, 0(R3) // save old g on stack MOVV (g_stack+stack_hi)(R13), R13 SUBVU R12, R13 MOVV R13, 8(R3) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) JAL (R25) // Restore g, stack pointer. R4 is return value. MOVV 0(R3), g JAL runtime·save_g(SB) MOVV (g_stack+stack_hi)(g), R5 MOVV 8(R3), R6 SUBVU R6, R5 MOVV R5, R3 MOVW R4, ret+16(FP) RET // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) // See cgocall.go for more details. TEXT ·cgocallback(SB),NOSPLIT,$24-24 NO_LOCAL_POINTERS // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g. // It is used to dropm while thread is exiting. MOVV fn+0(FP), R5 BNE R5, loadg // Restore the g from frame. MOVV frame+8(FP), g JMP dropm loadg: // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R19 BEQ R19, nocgo JAL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread, // or if this thread never called into Go on pthread platforms. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. BEQ g, needm MOVV g_m(g), R12 MOVV R12, savedm-8(SP) JMP havem needm: MOVV g, savedm-8(SP) // g is zero, so is m. MOVV $runtime·needAndBindM(SB), R4 JAL (R4) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVV g_m(g), R12 MOVV m_g0(R12), R19 MOVV R3, (g_sched+gobuf_sp)(R19) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R29) aka savedsp-16(SP). MOVV m_g0(R12), R19 MOVV (g_sched+gobuf_sp)(R19), R13 MOVV R13, savedsp-24(SP) // must match frame size MOVV R3, (g_sched+gobuf_sp)(R19) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. MOVV m_curg(R12), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R13 // prepare stack as R13 MOVV (g_sched+gobuf_pc)(g), R4 MOVV R4, -(24+8)(R13) // "saved LR"; must match frame size MOVV fn+0(FP), R5 MOVV frame+8(FP), R6 MOVV ctxt+16(FP), R7 MOVV $-(24+8)(R13), R3 MOVV R5, 8(R3) MOVV R6, 16(R3) MOVV R7, 24(R3) JAL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVV 0(R3), R4 MOVV R4, (g_sched+gobuf_pc)(g) MOVV $(24+8)(R3), R13 // must match frame size MOVV R13, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVV g_m(g), R12 MOVV m_g0(R12), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R3 MOVV savedsp-24(SP), R13 // must match frame size MOVV R13, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m, // 1. for the duration of the call on non-pthread platforms, // 2. or the duration of the C thread alive on pthread platforms. // If the m on entry wasn't nil, // 1. the thread might be a Go thread, // 2. or it wasn't the first call from a C thread on pthread platforms, // since then we skip dropm to resue the m in the first call. MOVV savedm-8(SP), R12 BNE R12, droppedm // Skip dropm to reuse it in the next call, when a pthread key has been created. MOVV _cgo_pthread_key_created(SB), R12 // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm. BEQ R12, dropm MOVV (R12), R12 BNE R12, droppedm dropm: MOVV $runtime·dropm(SB), R4 JAL (R4) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVV gg+0(FP), g // This only happens if iscgo, so jump straight to save_g JAL runtime·save_g(SB) RET // void setg_gcc(G*); set g called from gcc with g in R19 TEXT setg_gcc<>(SB),NOSPLIT,$0-0 MOVV R19, g JAL runtime·save_g(SB) RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF // AES hashing not implemented for loong64 TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32 JMP runtime·memhashFallback(SB) TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·strhashFallback(SB) TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash32Fallback(SB) TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24 JMP runtime·memhash64Fallback(SB) TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R19 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$16 // g (R22) and REGTMP (R30) might be clobbered by load_g. They // are callee-save in the gcc calling convention, so save them. MOVV R30, savedREGTMP-16(SP) MOVV g, savedG-8(SP) JAL runtime·load_g(SB) MOVV g_m(g), R19 MOVV m_curg(R19), R19 MOVV (g_stack+stack_hi)(R19), R4 // return value in R4 MOVV savedG-8(SP), g MOVV savedREGTMP-16(SP), R30 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 NOOP JAL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit NOOP // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 ADDV $-0x10, R3 MOVV R30, 8(R3) // The access to global variables below implicitly uses R30, which is callee-save MOVV runtime·lastmoduledatap(SB), R12 MOVV R4, moduledata_next(R12) MOVV R4, runtime·lastmoduledatap(SB) MOVV 8(R3), R30 ADDV $0x10, R3 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R19 MOVB R19, ret+0(FP) RET // spillArgs stores return values from registers to a *internal/abi.RegArgs in R25. TEXT ·spillArgs(SB),NOSPLIT,$0-0 MOVV R4, (0*8)(R25) MOVV R5, (1*8)(R25) MOVV R6, (2*8)(R25) MOVV R7, (3*8)(R25) MOVV R8, (4*8)(R25) MOVV R9, (5*8)(R25) MOVV R10, (6*8)(R25) MOVV R11, (7*8)(R25) MOVV R12, (8*8)(R25) MOVV R13, (9*8)(R25) MOVV R14, (10*8)(R25) MOVV R15, (11*8)(R25) MOVV R16, (12*8)(R25) MOVV R17, (13*8)(R25) MOVV R18, (14*8)(R25) MOVV R19, (15*8)(R25) MOVD F0, (16*8)(R25) MOVD F1, (17*8)(R25) MOVD F2, (18*8)(R25) MOVD F3, (19*8)(R25) MOVD F4, (20*8)(R25) MOVD F5, (21*8)(R25) MOVD F6, (22*8)(R25) MOVD F7, (23*8)(R25) MOVD F8, (24*8)(R25) MOVD F9, (25*8)(R25) MOVD F10, (26*8)(R25) MOVD F11, (27*8)(R25) MOVD F12, (28*8)(R25) MOVD F13, (29*8)(R25) MOVD F14, (30*8)(R25) MOVD F15, (31*8)(R25) RET // unspillArgs loads args into registers from a *internal/abi.RegArgs in R25. TEXT ·unspillArgs(SB),NOSPLIT,$0-0 MOVV (0*8)(R25), R4 MOVV (1*8)(R25), R5 MOVV (2*8)(R25), R6 MOVV (3*8)(R25), R7 MOVV (4*8)(R25), R8 MOVV (5*8)(R25), R9 MOVV (6*8)(R25), R10 MOVV (7*8)(R25), R11 MOVV (8*8)(R25), R12 MOVV (9*8)(R25), R13 MOVV (10*8)(R25), R14 MOVV (11*8)(R25), R15 MOVV (12*8)(R25), R16 MOVV (13*8)(R25), R17 MOVV (14*8)(R25), R18 MOVV (15*8)(R25), R19 MOVD (16*8)(R25), F0 MOVD (17*8)(R25), F1 MOVD (18*8)(R25), F2 MOVD (19*8)(R25), F3 MOVD (20*8)(R25), F4 MOVD (21*8)(R25), F5 MOVD (22*8)(R25), F6 MOVD (23*8)(R25), F7 MOVD (24*8)(R25), F8 MOVD (25*8)(R25), F9 MOVD (26*8)(R25), F10 MOVD (27*8)(R25), F11 MOVD (28*8)(R25), F12 MOVD (29*8)(R25), F13 MOVD (30*8)(R25), F14 MOVD (31*8)(R25), F15 RET // gcWriteBarrier informs the GC about heap pointer writes. // // gcWriteBarrier does NOT follow the Go ABI. It accepts the // number of bytes of buffer needed in R29, and returns a pointer // to the buffer space in R29. // It clobbers R30 (the linker temp register). // The act of CALLing gcWriteBarrier will clobber R1 (LR). // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). TEXT gcWriteBarrier<>(SB),NOSPLIT,$216 // Save the registers clobbered by the fast path. MOVV R19, 208(R3) MOVV R13, 216(R3) retry: MOVV g_m(g), R19 MOVV m_p(R19), R19 MOVV (p_wbBuf+wbBuf_next)(R19), R13 MOVV (p_wbBuf+wbBuf_end)(R19), R30 // R30 is linker temp register // Increment wbBuf.next position. ADDV R29, R13 // Is the buffer full? BLTU R30, R13, flush // Commit to the larger buffer. MOVV R13, (p_wbBuf+wbBuf_next)(R19) // Make return value (the original next position) SUBV R29, R13, R29 // Restore registers. MOVV 208(R3), R19 MOVV 216(R3), R13 RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. MOVV R27, 8(R3) MOVV R28, 16(R3) // R1 is LR, which was saved by the prologue. MOVV R2, 24(R3) // R3 is SP. MOVV R4, 32(R3) MOVV R5, 40(R3) MOVV R6, 48(R3) MOVV R7, 56(R3) MOVV R8, 64(R3) MOVV R9, 72(R3) MOVV R10, 80(R3) MOVV R11, 88(R3) MOVV R12, 96(R3) // R13 already saved MOVV R14, 104(R3) MOVV R15, 112(R3) MOVV R16, 120(R3) MOVV R17, 128(R3) MOVV R18, 136(R3) // R19 already saved MOVV R20, 144(R3) MOVV R21, 152(R3) // R22 is g. MOVV R23, 160(R3) MOVV R24, 168(R3) MOVV R25, 176(R3) MOVV R26, 184(R3) // R27 already saved // R28 already saved. MOVV R29, 192(R3) // R30 is tmp register. MOVV R31, 200(R3) CALL runtime·wbBufFlush(SB) MOVV 8(R3), R27 MOVV 16(R3), R28 MOVV 24(R3), R2 MOVV 32(R3), R4 MOVV 40(R3), R5 MOVV 48(R3), R6 MOVV 56(R3), R7 MOVV 64(R3), R8 MOVV 72(R3), R9 MOVV 80(R3), R10 MOVV 88(R3), R11 MOVV 96(R3), R12 MOVV 104(R3), R14 MOVV 112(R3), R15 MOVV 120(R3), R16 MOVV 128(R3), R17 MOVV 136(R3), R18 MOVV 144(R3), R20 MOVV 152(R3), R21 MOVV 160(R3), R23 MOVV 168(R3), R24 MOVV 176(R3), R25 MOVV 184(R3), R26 MOVV 192(R3), R29 MOVV 200(R3), R31 JMP retry TEXT runtime·gcWriteBarrier1(SB),NOSPLIT,$0 MOVV $8, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier2(SB),NOSPLIT,$0 MOVV $16, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier3(SB),NOSPLIT,$0 MOVV $24, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier4(SB),NOSPLIT,$0 MOVV $32, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier5(SB),NOSPLIT,$0 MOVV $40, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier6(SB),NOSPLIT,$0 MOVV $48, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier7(SB),NOSPLIT,$0 MOVV $56, R29 JMP gcWriteBarrier<>(SB) TEXT runtime·gcWriteBarrier8(SB),NOSPLIT,$0 MOVV $64, R29 JMP gcWriteBarrier<>(SB) DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below // debugCallV2 is the entry point for debugger-injected function // calls on running goroutines. It informs the runtime that a // debug call has been injected and creates a call frame for the // debugger to fill in. // // To inject a function call, a debugger should: // 1. Check that the goroutine is in state _Grunning and that // there are at least 280 bytes free on the stack. // 2. Set SP as SP-8. // 3. Store the current LR in (SP) (using the SP after step 2). // 4. Store the current PC in the LR register. // 5. Write the desired argument frame size at SP-8 // 6. Save all machine registers so they can be restored later by the debugger. // 7. Set the PC to debugCallV2 and resume execution. // // If the goroutine is in state _Grunnable, then it's not generally // safe to inject a call because it may return out via other runtime // operations. Instead, the debugger should unwind the stack to find // the return to non-runtime code, add a temporary breakpoint there, // and inject the call once that breakpoint is hit. // // If the goroutine is in any other state, it's not safe to inject a call. // // This function communicates back to the debugger by setting R19 and // invoking BREAK to raise a breakpoint signal. Note that the signal PC of // the signal triggered by the BREAK instruction is the PC where the signal // is trapped, not the next PC, so to resume execution, the debugger needs // to set the signal PC to PC+4. See the comments in the implementation for // the protocol the debugger is expected to follow. InjectDebugCall in the // runtime tests demonstrates this protocol. // // The debugger must ensure that any pointers passed to the function // obey escape analysis requirements. Specifically, it must not pass // a stack pointer to an escaping argument. debugCallV2 cannot check // this invariant. // // This is ABIInternal because Go code injects its PC directly into new // goroutine stacks. TEXT runtime·debugCallV2(SB),NOSPLIT|NOFRAME,$0-0 MOVV R1, -272(R3) ADDV $-272, R3 // We can't do anything that might clobber any of these // registers before this. MOVV R2, (4*8)(R3) MOVV R4, (5*8)(R3) MOVV R5, (6*8)(R3) MOVV R6, (7*8)(R3) MOVV R7, (8*8)(R3) MOVV R8, (9*8)(R3) MOVV R9, (10*8)(R3) MOVV R10, (11*8)(R3) MOVV R11, (12*8)(R3) MOVV R12, (13*8)(R3) MOVV R13, (14*8)(R3) MOVV R14, (15*8)(R3) MOVV R15, (16*8)(R3) MOVV R16, (17*8)(R3) MOVV R17, (18*8)(R3) MOVV R18, (19*8)(R3) MOVV R19, (20*8)(R3) MOVV R20, (21*8)(R3) MOVV R21, (22*8)(R3) MOVV g, (23*8)(R3) MOVV R23, (24*8)(R3) MOVV R24, (25*8)(R3) MOVV R25, (26*8)(R3) MOVV R26, (27*8)(R3) MOVV R27, (28*8)(R3) MOVV R28, (29*8)(R3) MOVV R29, (30*8)(R3) MOVV R30, (31*8)(R3) MOVV R31, (32*8)(R3) // Perform a safe-point check. MOVV R1, 8(R3) CALL runtime·debugCallCheck(SB) MOVV 16(R3), R30 BEQ R30, good // The safety check failed. Put the reason string at the top // of the stack. MOVV R30, 8(R3) MOVV 24(R3), R30 MOVV R30, 16(R3) MOVV $8, R19 BREAK JMP restore good: // Registers are saved and it's safe to make a call. // Open up a call frame, moving the stack if necessary. // // Once the frame is allocated, this will set R19 to 0 and // invoke BREAK. The debugger should write the argument // frame for the call at SP+8, set up argument registers, // set the LR as the signal PC + 4, set the PC to the function // to call, set R29 to point to the closure (if a closure call), // and resume execution. // // If the function returns, this will set R19 to 1 and invoke // BREAK. The debugger can then inspect any return value saved // on the stack at SP+8 and in registers. To resume execution, // the debugger should restore the LR from (SP). // // If the function panics, this will set R19 to 2 and invoke BREAK. // The interface{} value of the panic will be at SP+8. The debugger // can inspect the panic value and resume execution again. #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ MOVV $MAXSIZE, R27; \ BLT R27, R30, 5(PC); \ MOVV $NAME(SB), R28; \ MOVV R28, 8(R3); \ CALL runtime·debugCallWrap(SB); \ JMP restore MOVV 264(R3), R30 // the argument frame size DEBUG_CALL_DISPATCH(debugCall32<>, 32) DEBUG_CALL_DISPATCH(debugCall64<>, 64) DEBUG_CALL_DISPATCH(debugCall128<>, 128) DEBUG_CALL_DISPATCH(debugCall256<>, 256) DEBUG_CALL_DISPATCH(debugCall512<>, 512) DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) // The frame size is too large. Report the error. MOVV $debugCallFrameTooLarge<>(SB), R30 MOVV R30, 8(R3) MOVV $20, R30 MOVV R30, 16(R3) // length of debugCallFrameTooLarge string MOVV $8, R19 BREAK JMP restore restore: // Calls and failures resume here. // // Set R19 to 16 and invoke BREAK. The debugger should restore // all registers except for PC and SP and resume execution. MOVV $16, R19 BREAK // We must not modify flags after this point. // Restore pointer-containing registers, which may have been // modified from the debugger's copy by stack copying. MOVV (4*8)(R3), R2 MOVV (5*8)(R3), R4 MOVV (6*8)(R3), R5 MOVV (7*8)(R3), R6 MOVV (8*8)(R3), R7 MOVV (9*8)(R3), R8 MOVV (10*8)(R3), R9 MOVV (11*8)(R3), R10 MOVV (12*8)(R3), R11 MOVV (13*8)(R3), R12 MOVV (14*8)(R3), R13 MOVV (15*8)(R3), R14 MOVV (16*8)(R3), R15 MOVV (17*8)(R3), R16 MOVV (18*8)(R3), R17 MOVV (19*8)(R3), R18 MOVV (20*8)(R3), R19 MOVV (21*8)(R3), R20 MOVV (22*8)(R3), R21 MOVV (23*8)(R3), g MOVV (24*8)(R3), R23 MOVV (25*8)(R3), R24 MOVV (26*8)(R3), R25 MOVV (27*8)(R3), R26 MOVV (28*8)(R3), R27 MOVV (29*8)(R3), R28 MOVV (30*8)(R3), R29 MOVV (31*8)(R3), R30 MOVV (32*8)(R3), R31 MOVV 0(R3), R30 ADDV $280, R3 // Add 8 more bytes, see saveSigContext MOVV -8(R3), R1 JMP (R30) // runtime.debugCallCheck assumes that functions defined with the // DEBUG_CALL_FN macro are safe points to inject calls. #define DEBUG_CALL_FN(NAME,MAXSIZE) \ TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ NO_LOCAL_POINTERS; \ MOVV $0, R19; \ BREAK; \ MOVV $1, R19; \ BREAK; \ RET DEBUG_CALL_FN(debugCall32<>, 32) DEBUG_CALL_FN(debugCall64<>, 64) DEBUG_CALL_FN(debugCall128<>, 128) DEBUG_CALL_FN(debugCall256<>, 256) DEBUG_CALL_FN(debugCall512<>, 512) DEBUG_CALL_FN(debugCall1024<>, 1024) DEBUG_CALL_FN(debugCall2048<>, 2048) DEBUG_CALL_FN(debugCall4096<>, 4096) DEBUG_CALL_FN(debugCall8192<>, 8192) DEBUG_CALL_FN(debugCall16384<>, 16384) DEBUG_CALL_FN(debugCall32768<>, 32768) DEBUG_CALL_FN(debugCall65536<>, 65536) // func debugCallPanicked(val interface{}) TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 // Copy the panic value to the top of stack at SP+8. MOVV val_type+0(FP), R30 MOVV R30, 8(R3) MOVV val_data+8(FP), R30 MOVV R30, 16(R3) MOVV $2, R19 BREAK RET // Note: these functions use a special calling convention to save generated code space. // Arguments are passed in registers, but the space for those arguments are allocated // in the caller's stack frame. These stubs write the args into that stack space and // then tail call to the corresponding runtime handler. // The tail call makes these stubs disappear in backtraces. TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicIndex(SB) TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicIndexU(SB) TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSliceAlen(SB) TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSliceAlenU(SB) TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSliceAcap(SB) TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSliceAcapU(SB) TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicSliceB(SB) TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicSliceBU(SB) TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 MOVV R23, R4 MOVV R24, R5 JMP runtime·goPanicSlice3Alen(SB) TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 MOVV R23, R4 MOVV R24, R5 JMP runtime·goPanicSlice3AlenU(SB) TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 MOVV R23, R4 MOVV R24, R5 JMP runtime·goPanicSlice3Acap(SB) TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 MOVV R23, R4 MOVV R24, R5 JMP runtime·goPanicSlice3AcapU(SB) TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSlice3B(SB) TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 MOVV R21, R4 MOVV R23, R5 JMP runtime·goPanicSlice3BU(SB) TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicSlice3C(SB) TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 MOVV R20, R4 MOVV R21, R5 JMP runtime·goPanicSlice3CU(SB) TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-16 MOVV R23, R4 MOVV R24, R5 JMP runtime·goPanicSliceConvert(SB)