// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build unix // When cross-compiling with clang to linux/armv5, atomics are emulated // and cause a compiler warning. This results in a build failure since // cgo uses -Werror. See #65290. #pragma GCC diagnostic ignored "-Wpragmas" #pragma GCC diagnostic ignored "-Wunknown-warning-option" #pragma GCC diagnostic ignored "-Watomic-alignment" #include #include #include #include #include // strerror #include #include "libcgo.h" #include "libcgo_unix.h" static pthread_cond_t runtime_init_cond = PTHREAD_COND_INITIALIZER; static pthread_mutex_t runtime_init_mu = PTHREAD_MUTEX_INITIALIZER; static int runtime_init_done; // pthread_g is a pthread specific key, for storing the g that binded to the C thread. // The registered pthread_key_destructor will dropm, when the pthread-specified value g is not NULL, // while a C thread is exiting. static pthread_key_t pthread_g; static void pthread_key_destructor(void* g); uintptr_t x_cgo_pthread_key_created; void (*x_crosscall2_ptr)(void (*fn)(void *), void *, int, size_t); // The context function, used when tracing back C calls into Go. static void (*cgo_context_function)(struct context_arg*); void x_cgo_sys_thread_create(void* (*func)(void*), void* arg) { pthread_attr_t attr; pthread_t p; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); int err = _cgo_try_pthread_create(&p, &attr, func, arg); if (err != 0) { fprintf(stderr, "pthread_create failed: %s", strerror(err)); abort(); } } uintptr_t _cgo_wait_runtime_init_done(void) { void (*pfn)(struct context_arg*); pfn = __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME); int done = 2; if (__atomic_load_n(&runtime_init_done, __ATOMIC_CONSUME) != done) { pthread_mutex_lock(&runtime_init_mu); while (__atomic_load_n(&runtime_init_done, __ATOMIC_CONSUME) == 0) { pthread_cond_wait(&runtime_init_cond, &runtime_init_mu); } // The key and x_cgo_pthread_key_created are for the whole program, // whereas the specific and destructor is per thread. if (x_cgo_pthread_key_created == 0 && pthread_key_create(&pthread_g, pthread_key_destructor) == 0) { x_cgo_pthread_key_created = 1; } // TODO(iant): For the case of a new C thread calling into Go, such // as when using -buildmode=c-archive, we know that Go runtime // initialization is complete but we do not know that all Go init // functions have been run. We should not fetch cgo_context_function // until they have been, because that is where a call to // SetCgoTraceback is likely to occur. We are going to wait for Go // initialization to be complete anyhow, later, by waiting for // main_init_done to be closed in cgocallbackg1. We should wait here // instead. See also issue #15943. pfn = __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME); __atomic_store_n(&runtime_init_done, done, __ATOMIC_RELEASE); pthread_mutex_unlock(&runtime_init_mu); } if (pfn != nil) { struct context_arg arg; arg.Context = 0; (*pfn)(&arg); return arg.Context; } return 0; } // _cgo_set_stacklo sets g->stacklo based on the stack size. // This is common code called from x_cgo_init, which is itself // called by rt0_go in the runtime package. void _cgo_set_stacklo(G *g, uintptr *pbounds) { uintptr bounds[2]; // pbounds can be passed in by the caller; see gcc_linux_amd64.c. if (pbounds == NULL) { pbounds = &bounds[0]; } x_cgo_getstackbound(pbounds); g->stacklo = *pbounds; // Sanity check the results now, rather than getting a // morestack on g0 crash. if (g->stacklo >= g->stackhi) { fprintf(stderr, "runtime/cgo: bad stack bounds: lo=%p hi=%p\n", (void*)(g->stacklo), (void*)(g->stackhi)); abort(); } } // Store the g into a thread-specific value associated with the pthread key pthread_g. // And pthread_key_destructor will dropm when the thread is exiting. void x_cgo_bindm(void* g) { // We assume this will always succeed, otherwise, there might be extra M leaking, // when a C thread exits after a cgo call. // We only invoke this function once per thread in runtime.needAndBindM, // and the next calls just reuse the bound m. pthread_setspecific(pthread_g, g); } void x_cgo_notify_runtime_init_done(void* dummy __attribute__ ((unused))) { pthread_mutex_lock(&runtime_init_mu); __atomic_store_n(&runtime_init_done, 1, __ATOMIC_RELEASE); pthread_cond_broadcast(&runtime_init_cond); pthread_mutex_unlock(&runtime_init_mu); } // Sets the context function to call to record the traceback context // when calling a Go function from C code. Called from runtime.SetCgoTraceback. void x_cgo_set_context_function(void (*context)(struct context_arg*)) { __atomic_store_n(&cgo_context_function, context, __ATOMIC_RELEASE); } // Gets the context function. void (*(_cgo_get_context_function(void)))(struct context_arg*) { return __atomic_load_n(&cgo_context_function, __ATOMIC_CONSUME); } // _cgo_try_pthread_create retries pthread_create if it fails with // EAGAIN. int _cgo_try_pthread_create(pthread_t* thread, const pthread_attr_t* attr, void* (*pfn)(void*), void* arg) { int tries; int err; struct timespec ts; for (tries = 0; tries < 20; tries++) { err = pthread_create(thread, attr, pfn, arg); if (err == 0) { return 0; } if (err != EAGAIN) { return err; } ts.tv_sec = 0; ts.tv_nsec = (tries + 1) * 1000 * 1000; // Milliseconds. nanosleep(&ts, nil); } return EAGAIN; } static void pthread_key_destructor(void* g) { if (x_crosscall2_ptr != NULL) { // fn == NULL means dropm. // We restore g by using the stored g, before dropm in runtime.cgocallback, // since the g stored in the TLS by Go might be cleared in some platforms, // before this destructor invoked. x_crosscall2_ptr(NULL, g, 0, 0); } }