Source file src/runtime/mfinal.go

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: finalizers and block profiling.
     6  
     7  package runtime
     8  
     9  import (
    10  	"internal/abi"
    11  	"internal/goarch"
    12  	"internal/runtime/atomic"
    13  	"internal/runtime/sys"
    14  	"unsafe"
    15  )
    16  
    17  // finblock is an array of finalizers to be executed. finblocks are
    18  // arranged in a linked list for the finalizer queue.
    19  //
    20  // finblock is allocated from non-GC'd memory, so any heap pointers
    21  // must be specially handled. GC currently assumes that the finalizer
    22  // queue does not grow during marking (but it can shrink).
    23  type finblock struct {
    24  	_       sys.NotInHeap
    25  	alllink *finblock
    26  	next    *finblock
    27  	cnt     uint32
    28  	_       int32
    29  	fin     [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
    30  }
    31  
    32  var fingStatus atomic.Uint32
    33  
    34  // finalizer goroutine status.
    35  const (
    36  	fingUninitialized uint32 = iota
    37  	fingCreated       uint32 = 1 << (iota - 1)
    38  	fingRunningFinalizer
    39  	fingWait
    40  	fingWake
    41  )
    42  
    43  var finlock mutex  // protects the following variables
    44  var fing *g        // goroutine that runs finalizers
    45  var finq *finblock // list of finalizers that are to be executed
    46  var finc *finblock // cache of free blocks
    47  var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte
    48  
    49  var allfin *finblock // list of all blocks
    50  
    51  // NOTE: Layout known to queuefinalizer.
    52  type finalizer struct {
    53  	fn   *funcval       // function to call (may be a heap pointer)
    54  	arg  unsafe.Pointer // ptr to object (may be a heap pointer)
    55  	nret uintptr        // bytes of return values from fn
    56  	fint *_type         // type of first argument of fn
    57  	ot   *ptrtype       // type of ptr to object (may be a heap pointer)
    58  }
    59  
    60  var finalizer1 = [...]byte{
    61  	// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
    62  	// Each byte describes 8 words.
    63  	// Need 8 Finalizers described by 5 bytes before pattern repeats:
    64  	//	ptr ptr INT ptr ptr
    65  	//	ptr ptr INT ptr ptr
    66  	//	ptr ptr INT ptr ptr
    67  	//	ptr ptr INT ptr ptr
    68  	//	ptr ptr INT ptr ptr
    69  	//	ptr ptr INT ptr ptr
    70  	//	ptr ptr INT ptr ptr
    71  	//	ptr ptr INT ptr ptr
    72  	// aka
    73  	//
    74  	//	ptr ptr INT ptr ptr ptr ptr INT
    75  	//	ptr ptr ptr ptr INT ptr ptr ptr
    76  	//	ptr INT ptr ptr ptr ptr INT ptr
    77  	//	ptr ptr ptr INT ptr ptr ptr ptr
    78  	//	INT ptr ptr ptr ptr INT ptr ptr
    79  	//
    80  	// Assumptions about Finalizer layout checked below.
    81  	1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
    82  	1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
    83  	1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
    84  	1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
    85  	0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
    86  }
    87  
    88  // lockRankMayQueueFinalizer records the lock ranking effects of a
    89  // function that may call queuefinalizer.
    90  func lockRankMayQueueFinalizer() {
    91  	lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
    92  }
    93  
    94  func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
    95  	if gcphase != _GCoff {
    96  		// Currently we assume that the finalizer queue won't
    97  		// grow during marking so we don't have to rescan it
    98  		// during mark termination. If we ever need to lift
    99  		// this assumption, we can do it by adding the
   100  		// necessary barriers to queuefinalizer (which it may
   101  		// have automatically).
   102  		throw("queuefinalizer during GC")
   103  	}
   104  
   105  	lock(&finlock)
   106  	if finq == nil || finq.cnt == uint32(len(finq.fin)) {
   107  		if finc == nil {
   108  			finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
   109  			finc.alllink = allfin
   110  			allfin = finc
   111  			if finptrmask[0] == 0 {
   112  				// Build pointer mask for Finalizer array in block.
   113  				// Check assumptions made in finalizer1 array above.
   114  				if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
   115  					unsafe.Offsetof(finalizer{}.fn) != 0 ||
   116  					unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
   117  					unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
   118  					unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
   119  					unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
   120  					throw("finalizer out of sync")
   121  				}
   122  				for i := range finptrmask {
   123  					finptrmask[i] = finalizer1[i%len(finalizer1)]
   124  				}
   125  			}
   126  		}
   127  		block := finc
   128  		finc = block.next
   129  		block.next = finq
   130  		finq = block
   131  	}
   132  	f := &finq.fin[finq.cnt]
   133  	atomic.Xadd(&finq.cnt, +1) // Sync with markroots
   134  	f.fn = fn
   135  	f.nret = nret
   136  	f.fint = fint
   137  	f.ot = ot
   138  	f.arg = p
   139  	unlock(&finlock)
   140  	fingStatus.Or(fingWake)
   141  }
   142  
   143  //go:nowritebarrier
   144  func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
   145  	for fb := allfin; fb != nil; fb = fb.alllink {
   146  		for i := uint32(0); i < fb.cnt; i++ {
   147  			f := &fb.fin[i]
   148  			callback(f.fn, f.arg, f.nret, f.fint, f.ot)
   149  		}
   150  	}
   151  }
   152  
   153  func wakefing() *g {
   154  	if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok {
   155  		return fing
   156  	}
   157  	return nil
   158  }
   159  
   160  func createfing() {
   161  	// start the finalizer goroutine exactly once
   162  	if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
   163  		go runfinq()
   164  	}
   165  }
   166  
   167  func finalizercommit(gp *g, lock unsafe.Pointer) bool {
   168  	unlock((*mutex)(lock))
   169  	// fingStatus should be modified after fing is put into a waiting state
   170  	// to avoid waking fing in running state, even if it is about to be parked.
   171  	fingStatus.Or(fingWait)
   172  	return true
   173  }
   174  
   175  // This is the goroutine that runs all of the finalizers.
   176  func runfinq() {
   177  	var (
   178  		frame    unsafe.Pointer
   179  		framecap uintptr
   180  		argRegs  int
   181  	)
   182  
   183  	gp := getg()
   184  	lock(&finlock)
   185  	fing = gp
   186  	unlock(&finlock)
   187  
   188  	for {
   189  		lock(&finlock)
   190  		fb := finq
   191  		finq = nil
   192  		if fb == nil {
   193  			gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1)
   194  			continue
   195  		}
   196  		argRegs = intArgRegs
   197  		unlock(&finlock)
   198  		if raceenabled {
   199  			racefingo()
   200  		}
   201  		for fb != nil {
   202  			for i := fb.cnt; i > 0; i-- {
   203  				f := &fb.fin[i-1]
   204  
   205  				var regs abi.RegArgs
   206  				// The args may be passed in registers or on stack. Even for
   207  				// the register case, we still need the spill slots.
   208  				// TODO: revisit if we remove spill slots.
   209  				//
   210  				// Unfortunately because we can have an arbitrary
   211  				// amount of returns and it would be complex to try and
   212  				// figure out how many of those can get passed in registers,
   213  				// just conservatively assume none of them do.
   214  				framesz := unsafe.Sizeof((any)(nil)) + f.nret
   215  				if framecap < framesz {
   216  					// The frame does not contain pointers interesting for GC,
   217  					// all not yet finalized objects are stored in finq.
   218  					// If we do not mark it as FlagNoScan,
   219  					// the last finalized object is not collected.
   220  					frame = mallocgc(framesz, nil, true)
   221  					framecap = framesz
   222  				}
   223  
   224  				if f.fint == nil {
   225  					throw("missing type in runfinq")
   226  				}
   227  				r := frame
   228  				if argRegs > 0 {
   229  					r = unsafe.Pointer(&regs.Ints)
   230  				} else {
   231  					// frame is effectively uninitialized
   232  					// memory. That means we have to clear
   233  					// it before writing to it to avoid
   234  					// confusing the write barrier.
   235  					*(*[2]uintptr)(frame) = [2]uintptr{}
   236  				}
   237  				switch f.fint.Kind_ & abi.KindMask {
   238  				case abi.Pointer:
   239  					// direct use of pointer
   240  					*(*unsafe.Pointer)(r) = f.arg
   241  				case abi.Interface:
   242  					ityp := (*interfacetype)(unsafe.Pointer(f.fint))
   243  					// set up with empty interface
   244  					(*eface)(r)._type = &f.ot.Type
   245  					(*eface)(r).data = f.arg
   246  					if len(ityp.Methods) != 0 {
   247  						// convert to interface with methods
   248  						// this conversion is guaranteed to succeed - we checked in SetFinalizer
   249  						(*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type)
   250  					}
   251  				default:
   252  					throw("bad kind in runfinq")
   253  				}
   254  				fingStatus.Or(fingRunningFinalizer)
   255  				reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), &regs)
   256  				fingStatus.And(^fingRunningFinalizer)
   257  
   258  				// Drop finalizer queue heap references
   259  				// before hiding them from markroot.
   260  				// This also ensures these will be
   261  				// clear if we reuse the finalizer.
   262  				f.fn = nil
   263  				f.arg = nil
   264  				f.ot = nil
   265  				atomic.Store(&fb.cnt, i-1)
   266  			}
   267  			next := fb.next
   268  			lock(&finlock)
   269  			fb.next = finc
   270  			finc = fb
   271  			unlock(&finlock)
   272  			fb = next
   273  		}
   274  	}
   275  }
   276  
   277  func isGoPointerWithoutSpan(p unsafe.Pointer) bool {
   278  	// 0-length objects are okay.
   279  	if p == unsafe.Pointer(&zerobase) {
   280  		return true
   281  	}
   282  
   283  	// Global initializers might be linker-allocated.
   284  	//	var Foo = &Object{}
   285  	//	func main() {
   286  	//		runtime.SetFinalizer(Foo, nil)
   287  	//	}
   288  	// The relevant segments are: noptrdata, data, bss, noptrbss.
   289  	// We cannot assume they are in any order or even contiguous,
   290  	// due to external linking.
   291  	for datap := &firstmoduledata; datap != nil; datap = datap.next {
   292  		if datap.noptrdata <= uintptr(p) && uintptr(p) < datap.enoptrdata ||
   293  			datap.data <= uintptr(p) && uintptr(p) < datap.edata ||
   294  			datap.bss <= uintptr(p) && uintptr(p) < datap.ebss ||
   295  			datap.noptrbss <= uintptr(p) && uintptr(p) < datap.enoptrbss {
   296  			return true
   297  		}
   298  	}
   299  	return false
   300  }
   301  
   302  // blockUntilEmptyFinalizerQueue blocks until either the finalizer
   303  // queue is emptied (and the finalizers have executed) or the timeout
   304  // is reached. Returns true if the finalizer queue was emptied.
   305  // This is used by the runtime and sync tests.
   306  func blockUntilEmptyFinalizerQueue(timeout int64) bool {
   307  	start := nanotime()
   308  	for nanotime()-start < timeout {
   309  		lock(&finlock)
   310  		// We know the queue has been drained when both finq is nil
   311  		// and the finalizer g has stopped executing.
   312  		empty := finq == nil
   313  		empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait
   314  		unlock(&finlock)
   315  		if empty {
   316  			return true
   317  		}
   318  		Gosched()
   319  	}
   320  	return false
   321  }
   322  
   323  // SetFinalizer sets the finalizer associated with obj to the provided
   324  // finalizer function. When the garbage collector finds an unreachable block
   325  // with an associated finalizer, it clears the association and runs
   326  // finalizer(obj) in a separate goroutine. This makes obj reachable again,
   327  // but now without an associated finalizer. Assuming that SetFinalizer
   328  // is not called again, the next time the garbage collector sees
   329  // that obj is unreachable, it will free obj.
   330  //
   331  // SetFinalizer(obj, nil) clears any finalizer associated with obj.
   332  //
   333  // The argument obj must be a pointer to an object allocated by calling
   334  // new, by taking the address of a composite literal, or by taking the
   335  // address of a local variable.
   336  // The argument finalizer must be a function that takes a single argument
   337  // to which obj's type can be assigned, and can have arbitrary ignored return
   338  // values. If either of these is not true, SetFinalizer may abort the
   339  // program.
   340  //
   341  // Finalizers are run in dependency order: if A points at B, both have
   342  // finalizers, and they are otherwise unreachable, only the finalizer
   343  // for A runs; once A is freed, the finalizer for B can run.
   344  // If a cyclic structure includes a block with a finalizer, that
   345  // cycle is not guaranteed to be garbage collected and the finalizer
   346  // is not guaranteed to run, because there is no ordering that
   347  // respects the dependencies.
   348  //
   349  // The finalizer is scheduled to run at some arbitrary time after the
   350  // program can no longer reach the object to which obj points.
   351  // There is no guarantee that finalizers will run before a program exits,
   352  // so typically they are useful only for releasing non-memory resources
   353  // associated with an object during a long-running program.
   354  // For example, an [os.File] object could use a finalizer to close the
   355  // associated operating system file descriptor when a program discards
   356  // an os.File without calling Close, but it would be a mistake
   357  // to depend on a finalizer to flush an in-memory I/O buffer such as a
   358  // [bufio.Writer], because the buffer would not be flushed at program exit.
   359  //
   360  // It is not guaranteed that a finalizer will run if the size of *obj is
   361  // zero bytes, because it may share same address with other zero-size
   362  // objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
   363  //
   364  // It is not guaranteed that a finalizer will run for objects allocated
   365  // in initializers for package-level variables. Such objects may be
   366  // linker-allocated, not heap-allocated.
   367  //
   368  // Note that because finalizers may execute arbitrarily far into the future
   369  // after an object is no longer referenced, the runtime is allowed to perform
   370  // a space-saving optimization that batches objects together in a single
   371  // allocation slot. The finalizer for an unreferenced object in such an
   372  // allocation may never run if it always exists in the same batch as a
   373  // referenced object. Typically, this batching only happens for tiny
   374  // (on the order of 16 bytes or less) and pointer-free objects.
   375  //
   376  // A finalizer may run as soon as an object becomes unreachable.
   377  // In order to use finalizers correctly, the program must ensure that
   378  // the object is reachable until it is no longer required.
   379  // Objects stored in global variables, or that can be found by tracing
   380  // pointers from a global variable, are reachable. A function argument or
   381  // receiver may become unreachable at the last point where the function
   382  // mentions it. To make an unreachable object reachable, pass the object
   383  // to a call of the [KeepAlive] function to mark the last point in the
   384  // function where the object must be reachable.
   385  //
   386  // For example, if p points to a struct, such as os.File, that contains
   387  // a file descriptor d, and p has a finalizer that closes that file
   388  // descriptor, and if the last use of p in a function is a call to
   389  // syscall.Write(p.d, buf, size), then p may be unreachable as soon as
   390  // the program enters [syscall.Write]. The finalizer may run at that moment,
   391  // closing p.d, causing syscall.Write to fail because it is writing to
   392  // a closed file descriptor (or, worse, to an entirely different
   393  // file descriptor opened by a different goroutine). To avoid this problem,
   394  // call KeepAlive(p) after the call to syscall.Write.
   395  //
   396  // A single goroutine runs all finalizers for a program, sequentially.
   397  // If a finalizer must run for a long time, it should do so by starting
   398  // a new goroutine.
   399  //
   400  // In the terminology of the Go memory model, a call
   401  // SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
   402  // However, there is no guarantee that KeepAlive(x) or any other use of x
   403  // “synchronizes before” f(x), so in general a finalizer should use a mutex
   404  // or other synchronization mechanism if it needs to access mutable state in x.
   405  // For example, consider a finalizer that inspects a mutable field in x
   406  // that is modified from time to time in the main program before x
   407  // becomes unreachable and the finalizer is invoked.
   408  // The modifications in the main program and the inspection in the finalizer
   409  // need to use appropriate synchronization, such as mutexes or atomic updates,
   410  // to avoid read-write races.
   411  func SetFinalizer(obj any, finalizer any) {
   412  	if debug.sbrk != 0 {
   413  		// debug.sbrk never frees memory, so no finalizers run
   414  		// (and we don't have the data structures to record them).
   415  		return
   416  	}
   417  	e := efaceOf(&obj)
   418  	etyp := e._type
   419  	if etyp == nil {
   420  		throw("runtime.SetFinalizer: first argument is nil")
   421  	}
   422  	if etyp.Kind_&abi.KindMask != abi.Pointer {
   423  		throw("runtime.SetFinalizer: first argument is " + toRType(etyp).string() + ", not pointer")
   424  	}
   425  	ot := (*ptrtype)(unsafe.Pointer(etyp))
   426  	if ot.Elem == nil {
   427  		throw("nil elem type!")
   428  	}
   429  
   430  	if inUserArenaChunk(uintptr(e.data)) {
   431  		// Arena-allocated objects are not eligible for finalizers.
   432  		throw("runtime.SetFinalizer: first argument was allocated into an arena")
   433  	}
   434  
   435  	// find the containing object
   436  	base, span, _ := findObject(uintptr(e.data), 0, 0)
   437  
   438  	if base == 0 {
   439  		if isGoPointerWithoutSpan(e.data) {
   440  			return
   441  		}
   442  		throw("runtime.SetFinalizer: pointer not in allocated block")
   443  	}
   444  
   445  	// Move base forward if we've got an allocation header.
   446  	if !span.spanclass.noscan() && !heapBitsInSpan(span.elemsize) && span.spanclass.sizeclass() != 0 {
   447  		base += mallocHeaderSize
   448  	}
   449  
   450  	if uintptr(e.data) != base {
   451  		// As an implementation detail we allow to set finalizers for an inner byte
   452  		// of an object if it could come from tiny alloc (see mallocgc for details).
   453  		if ot.Elem == nil || ot.Elem.Pointers() || ot.Elem.Size_ >= maxTinySize {
   454  			throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
   455  		}
   456  	}
   457  
   458  	f := efaceOf(&finalizer)
   459  	ftyp := f._type
   460  	if ftyp == nil {
   461  		// switch to system stack and remove finalizer
   462  		systemstack(func() {
   463  			removefinalizer(e.data)
   464  		})
   465  		return
   466  	}
   467  
   468  	if ftyp.Kind_&abi.KindMask != abi.Func {
   469  		throw("runtime.SetFinalizer: second argument is " + toRType(ftyp).string() + ", not a function")
   470  	}
   471  	ft := (*functype)(unsafe.Pointer(ftyp))
   472  	if ft.IsVariadic() {
   473  		throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string() + " because dotdotdot")
   474  	}
   475  	if ft.InCount != 1 {
   476  		throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
   477  	}
   478  	fint := ft.InSlice()[0]
   479  	switch {
   480  	case fint == etyp:
   481  		// ok - same type
   482  		goto okarg
   483  	case fint.Kind_&abi.KindMask == abi.Pointer:
   484  		if (fint.Uncommon() == nil || etyp.Uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).Elem == ot.Elem {
   485  			// ok - not same type, but both pointers,
   486  			// one or the other is unnamed, and same element type, so assignable.
   487  			goto okarg
   488  		}
   489  	case fint.Kind_&abi.KindMask == abi.Interface:
   490  		ityp := (*interfacetype)(unsafe.Pointer(fint))
   491  		if len(ityp.Methods) == 0 {
   492  			// ok - satisfies empty interface
   493  			goto okarg
   494  		}
   495  		if itab := assertE2I2(ityp, efaceOf(&obj)._type); itab != nil {
   496  			goto okarg
   497  		}
   498  	}
   499  	throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
   500  okarg:
   501  	// compute size needed for return parameters
   502  	nret := uintptr(0)
   503  	for _, t := range ft.OutSlice() {
   504  		nret = alignUp(nret, uintptr(t.Align_)) + t.Size_
   505  	}
   506  	nret = alignUp(nret, goarch.PtrSize)
   507  
   508  	// make sure we have a finalizer goroutine
   509  	createfing()
   510  
   511  	systemstack(func() {
   512  		if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
   513  			throw("runtime.SetFinalizer: finalizer already set")
   514  		}
   515  	})
   516  }
   517  
   518  // Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
   519  //
   520  //go:noinline
   521  
   522  // KeepAlive marks its argument as currently reachable.
   523  // This ensures that the object is not freed, and its finalizer is not run,
   524  // before the point in the program where KeepAlive is called.
   525  //
   526  // A very simplified example showing where KeepAlive is required:
   527  //
   528  //	type File struct { d int }
   529  //	d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
   530  //	// ... do something if err != nil ...
   531  //	p := &File{d}
   532  //	runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
   533  //	var buf [10]byte
   534  //	n, err := syscall.Read(p.d, buf[:])
   535  //	// Ensure p is not finalized until Read returns.
   536  //	runtime.KeepAlive(p)
   537  //	// No more uses of p after this point.
   538  //
   539  // Without the KeepAlive call, the finalizer could run at the start of
   540  // [syscall.Read], closing the file descriptor before syscall.Read makes
   541  // the actual system call.
   542  //
   543  // Note: KeepAlive should only be used to prevent finalizers from
   544  // running prematurely. In particular, when used with [unsafe.Pointer],
   545  // the rules for valid uses of unsafe.Pointer still apply.
   546  func KeepAlive(x any) {
   547  	// Introduce a use of x that the compiler can't eliminate.
   548  	// This makes sure x is alive on entry. We need x to be alive
   549  	// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
   550  	if cgoAlwaysFalse {
   551  		println(x)
   552  	}
   553  }
   554  

View as plain text