// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package pprof import ( "bytes" "compress/gzip" "fmt" "internal/abi" "io" "runtime" "strconv" "strings" "time" "unsafe" ) // lostProfileEvent is the function to which lost profiling // events are attributed. // (The name shows up in the pprof graphs.) func lostProfileEvent() { lostProfileEvent() } // A profileBuilder writes a profile incrementally from a // stream of profile samples delivered by the runtime. type profileBuilder struct { start time.Time end time.Time havePeriod bool period int64 m profMap // encoding state w io.Writer zw *gzip.Writer pb protobuf strings []string stringMap map[string]int locs map[uintptr]locInfo // list of locInfo starting with the given PC. funcs map[string]int // Package path-qualified function name to Function.ID mem []memMap deck pcDeck } type memMap struct { // initialized as reading mapping start uintptr // Address at which the binary (or DLL) is loaded into memory. end uintptr // The limit of the address range occupied by this mapping. offset uint64 // Offset in the binary that corresponds to the first mapped address. file string // The object this entry is loaded from. buildID string // A string that uniquely identifies a particular program version with high probability. funcs symbolizeFlag fake bool // map entry was faked; /proc/self/maps wasn't available } // symbolizeFlag keeps track of symbolization result. // // 0 : no symbol lookup was performed // 1<<0 (lookupTried) : symbol lookup was performed // 1<<1 (lookupFailed): symbol lookup was performed but failed type symbolizeFlag uint8 const ( lookupTried symbolizeFlag = 1 << iota lookupFailed symbolizeFlag = 1 << iota ) const ( // message Profile tagProfile_SampleType = 1 // repeated ValueType tagProfile_Sample = 2 // repeated Sample tagProfile_Mapping = 3 // repeated Mapping tagProfile_Location = 4 // repeated Location tagProfile_Function = 5 // repeated Function tagProfile_StringTable = 6 // repeated string tagProfile_DropFrames = 7 // int64 (string table index) tagProfile_KeepFrames = 8 // int64 (string table index) tagProfile_TimeNanos = 9 // int64 tagProfile_DurationNanos = 10 // int64 tagProfile_PeriodType = 11 // ValueType (really optional string???) tagProfile_Period = 12 // int64 tagProfile_Comment = 13 // repeated int64 tagProfile_DefaultSampleType = 14 // int64 // message ValueType tagValueType_Type = 1 // int64 (string table index) tagValueType_Unit = 2 // int64 (string table index) // message Sample tagSample_Location = 1 // repeated uint64 tagSample_Value = 2 // repeated int64 tagSample_Label = 3 // repeated Label // message Label tagLabel_Key = 1 // int64 (string table index) tagLabel_Str = 2 // int64 (string table index) tagLabel_Num = 3 // int64 // message Mapping tagMapping_ID = 1 // uint64 tagMapping_Start = 2 // uint64 tagMapping_Limit = 3 // uint64 tagMapping_Offset = 4 // uint64 tagMapping_Filename = 5 // int64 (string table index) tagMapping_BuildID = 6 // int64 (string table index) tagMapping_HasFunctions = 7 // bool tagMapping_HasFilenames = 8 // bool tagMapping_HasLineNumbers = 9 // bool tagMapping_HasInlineFrames = 10 // bool // message Location tagLocation_ID = 1 // uint64 tagLocation_MappingID = 2 // uint64 tagLocation_Address = 3 // uint64 tagLocation_Line = 4 // repeated Line // message Line tagLine_FunctionID = 1 // uint64 tagLine_Line = 2 // int64 // message Function tagFunction_ID = 1 // uint64 tagFunction_Name = 2 // int64 (string table index) tagFunction_SystemName = 3 // int64 (string table index) tagFunction_Filename = 4 // int64 (string table index) tagFunction_StartLine = 5 // int64 ) // stringIndex adds s to the string table if not already present // and returns the index of s in the string table. func (b *profileBuilder) stringIndex(s string) int64 { id, ok := b.stringMap[s] if !ok { id = len(b.strings) b.strings = append(b.strings, s) b.stringMap[s] = id } return int64(id) } func (b *profileBuilder) flush() { const dataFlush = 4096 if b.pb.nest == 0 && len(b.pb.data) > dataFlush { b.zw.Write(b.pb.data) b.pb.data = b.pb.data[:0] } } // pbValueType encodes a ValueType message to b.pb. func (b *profileBuilder) pbValueType(tag int, typ, unit string) { start := b.pb.startMessage() b.pb.int64(tagValueType_Type, b.stringIndex(typ)) b.pb.int64(tagValueType_Unit, b.stringIndex(unit)) b.pb.endMessage(tag, start) } // pbSample encodes a Sample message to b.pb. func (b *profileBuilder) pbSample(values []int64, locs []uint64, labels func()) { start := b.pb.startMessage() b.pb.int64s(tagSample_Value, values) b.pb.uint64s(tagSample_Location, locs) if labels != nil { labels() } b.pb.endMessage(tagProfile_Sample, start) b.flush() } // pbLabel encodes a Label message to b.pb. func (b *profileBuilder) pbLabel(tag int, key, str string, num int64) { start := b.pb.startMessage() b.pb.int64Opt(tagLabel_Key, b.stringIndex(key)) b.pb.int64Opt(tagLabel_Str, b.stringIndex(str)) b.pb.int64Opt(tagLabel_Num, num) b.pb.endMessage(tag, start) } // pbLine encodes a Line message to b.pb. func (b *profileBuilder) pbLine(tag int, funcID uint64, line int64) { start := b.pb.startMessage() b.pb.uint64Opt(tagLine_FunctionID, funcID) b.pb.int64Opt(tagLine_Line, line) b.pb.endMessage(tag, start) } // pbMapping encodes a Mapping message to b.pb. func (b *profileBuilder) pbMapping(tag int, id, base, limit, offset uint64, file, buildID string, hasFuncs bool) { start := b.pb.startMessage() b.pb.uint64Opt(tagMapping_ID, id) b.pb.uint64Opt(tagMapping_Start, base) b.pb.uint64Opt(tagMapping_Limit, limit) b.pb.uint64Opt(tagMapping_Offset, offset) b.pb.int64Opt(tagMapping_Filename, b.stringIndex(file)) b.pb.int64Opt(tagMapping_BuildID, b.stringIndex(buildID)) // TODO: we set HasFunctions if all symbols from samples were symbolized (hasFuncs). // Decide what to do about HasInlineFrames and HasLineNumbers. // Also, another approach to handle the mapping entry with // incomplete symbolization results is to duplicate the mapping // entry (but with different Has* fields values) and use // different entries for symbolized locations and unsymbolized locations. if hasFuncs { b.pb.bool(tagMapping_HasFunctions, true) } b.pb.endMessage(tag, start) } func allFrames(addr uintptr) ([]runtime.Frame, symbolizeFlag) { // Expand this one address using CallersFrames so we can cache // each expansion. In general, CallersFrames takes a whole // stack, but in this case we know there will be no skips in // the stack and we have return PCs anyway. frames := runtime.CallersFrames([]uintptr{addr}) frame, more := frames.Next() if frame.Function == "runtime.goexit" { // Short-circuit if we see runtime.goexit so the loop // below doesn't allocate a useless empty location. return nil, 0 } symbolizeResult := lookupTried if frame.PC == 0 || frame.Function == "" || frame.File == "" || frame.Line == 0 { symbolizeResult |= lookupFailed } if frame.PC == 0 { // If we failed to resolve the frame, at least make up // a reasonable call PC. This mostly happens in tests. frame.PC = addr - 1 } ret := []runtime.Frame{frame} for frame.Function != "runtime.goexit" && more { frame, more = frames.Next() ret = append(ret, frame) } return ret, symbolizeResult } type locInfo struct { // location id assigned by the profileBuilder id uint64 // sequence of PCs, including the fake PCs returned by the traceback // to represent inlined functions // https://github.com/golang/go/blob/d6f2f833c93a41ec1c68e49804b8387a06b131c5/src/runtime/traceback.go#L347-L368 pcs []uintptr // firstPCFrames and firstPCSymbolizeResult hold the results of the // allFrames call for the first (leaf-most) PC this locInfo represents firstPCFrames []runtime.Frame firstPCSymbolizeResult symbolizeFlag } // newProfileBuilder returns a new profileBuilder. // CPU profiling data obtained from the runtime can be added // by calling b.addCPUData, and then the eventual profile // can be obtained by calling b.finish. func newProfileBuilder(w io.Writer) *profileBuilder { zw, _ := gzip.NewWriterLevel(w, gzip.BestSpeed) b := &profileBuilder{ w: w, zw: zw, start: time.Now(), strings: []string{""}, stringMap: map[string]int{"": 0}, locs: map[uintptr]locInfo{}, funcs: map[string]int{}, } b.readMapping() return b } // addCPUData adds the CPU profiling data to the profile. // // The data must be a whole number of records, as delivered by the runtime. // len(tags) must be equal to the number of records in data. func (b *profileBuilder) addCPUData(data []uint64, tags []unsafe.Pointer) error { if !b.havePeriod { // first record is period if len(data) < 3 { return fmt.Errorf("truncated profile") } if data[0] != 3 || data[2] == 0 { return fmt.Errorf("malformed profile") } // data[2] is sampling rate in Hz. Convert to sampling // period in nanoseconds. b.period = 1e9 / int64(data[2]) b.havePeriod = true data = data[3:] // Consume tag slot. Note that there isn't a meaningful tag // value for this record. tags = tags[1:] } // Parse CPU samples from the profile. // Each sample is 3+n uint64s: // data[0] = 3+n // data[1] = time stamp (ignored) // data[2] = count // data[3:3+n] = stack // If the count is 0 and the stack has length 1, // that's an overflow record inserted by the runtime // to indicate that stack[0] samples were lost. // Otherwise the count is usually 1, // but in a few special cases like lost non-Go samples // there can be larger counts. // Because many samples with the same stack arrive, // we want to deduplicate immediately, which we do // using the b.m profMap. for len(data) > 0 { if len(data) < 3 || data[0] > uint64(len(data)) { return fmt.Errorf("truncated profile") } if data[0] < 3 || tags != nil && len(tags) < 1 { return fmt.Errorf("malformed profile") } if len(tags) < 1 { return fmt.Errorf("mismatched profile records and tags") } count := data[2] stk := data[3:data[0]] data = data[data[0]:] tag := tags[0] tags = tags[1:] if count == 0 && len(stk) == 1 { // overflow record count = uint64(stk[0]) stk = []uint64{ // gentraceback guarantees that PCs in the // stack can be unconditionally decremented and // still be valid, so we must do the same. uint64(abi.FuncPCABIInternal(lostProfileEvent) + 1), } } b.m.lookup(stk, tag).count += int64(count) } if len(tags) != 0 { return fmt.Errorf("mismatched profile records and tags") } return nil } // build completes and returns the constructed profile. func (b *profileBuilder) build() { b.end = time.Now() b.pb.int64Opt(tagProfile_TimeNanos, b.start.UnixNano()) if b.havePeriod { // must be CPU profile b.pbValueType(tagProfile_SampleType, "samples", "count") b.pbValueType(tagProfile_SampleType, "cpu", "nanoseconds") b.pb.int64Opt(tagProfile_DurationNanos, b.end.Sub(b.start).Nanoseconds()) b.pbValueType(tagProfile_PeriodType, "cpu", "nanoseconds") b.pb.int64Opt(tagProfile_Period, b.period) } values := []int64{0, 0} var locs []uint64 for e := b.m.all; e != nil; e = e.nextAll { values[0] = e.count values[1] = e.count * b.period var labels func() if e.tag != nil { labels = func() { for k, v := range *(*labelMap)(e.tag) { b.pbLabel(tagSample_Label, k, v, 0) } } } locs = b.appendLocsForStack(locs[:0], e.stk) b.pbSample(values, locs, labels) } for i, m := range b.mem { hasFunctions := m.funcs == lookupTried // lookupTried but not lookupFailed b.pbMapping(tagProfile_Mapping, uint64(i+1), uint64(m.start), uint64(m.end), m.offset, m.file, m.buildID, hasFunctions) } // TODO: Anything for tagProfile_DropFrames? // TODO: Anything for tagProfile_KeepFrames? b.pb.strings(tagProfile_StringTable, b.strings) b.zw.Write(b.pb.data) b.zw.Close() } // appendLocsForStack appends the location IDs for the given stack trace to the given // location ID slice, locs. The addresses in the stack are return PCs or 1 + the PC of // an inline marker as the runtime traceback function returns. // // It may return an empty slice even if locs is non-empty, for example if locs consists // solely of runtime.goexit. We still count these empty stacks in profiles in order to // get the right cumulative sample count. // // It may emit to b.pb, so there must be no message encoding in progress. func (b *profileBuilder) appendLocsForStack(locs []uint64, stk []uintptr) (newLocs []uint64) { b.deck.reset() // The last frame might be truncated. Recover lost inline frames. origStk := stk stk = runtime_expandFinalInlineFrame(stk) for len(stk) > 0 { addr := stk[0] if l, ok := b.locs[addr]; ok { // When generating code for an inlined function, the compiler adds // NOP instructions to the outermost function as a placeholder for // each layer of inlining. When the runtime generates tracebacks for // stacks that include inlined functions, it uses the addresses of // those NOPs as "fake" PCs on the stack as if they were regular // function call sites. But if a profiling signal arrives while the // CPU is executing one of those NOPs, its PC will show up as a leaf // in the profile with its own Location entry. So, always check // whether addr is a "fake" PC in the context of the current call // stack by trying to add it to the inlining deck before assuming // that the deck is complete. if len(b.deck.pcs) > 0 { if added := b.deck.tryAdd(addr, l.firstPCFrames, l.firstPCSymbolizeResult); added { stk = stk[1:] continue } } // first record the location if there is any pending accumulated info. if id := b.emitLocation(); id > 0 { locs = append(locs, id) } // then, record the cached location. locs = append(locs, l.id) // Skip the matching pcs. // // Even if stk was truncated due to the stack depth // limit, expandFinalInlineFrame above has already // fixed the truncation, ensuring it is long enough. if len(l.pcs) > len(stk) { panic(fmt.Sprintf("stack too short to match cached location; stk = %#x, l.pcs = %#x, original stk = %#x", stk, l.pcs, origStk)) } stk = stk[len(l.pcs):] continue } frames, symbolizeResult := allFrames(addr) if len(frames) == 0 { // runtime.goexit. if id := b.emitLocation(); id > 0 { locs = append(locs, id) } stk = stk[1:] continue } if added := b.deck.tryAdd(addr, frames, symbolizeResult); added { stk = stk[1:] continue } // add failed because this addr is not inlined with the // existing PCs in the deck. Flush the deck and retry handling // this pc. if id := b.emitLocation(); id > 0 { locs = append(locs, id) } // check cache again - previous emitLocation added a new entry if l, ok := b.locs[addr]; ok { locs = append(locs, l.id) stk = stk[len(l.pcs):] // skip the matching pcs. } else { b.deck.tryAdd(addr, frames, symbolizeResult) // must succeed. stk = stk[1:] } } if id := b.emitLocation(); id > 0 { // emit remaining location. locs = append(locs, id) } return locs } // Here's an example of how Go 1.17 writes out inlined functions, compiled for // linux/amd64. The disassembly of main.main shows two levels of inlining: main // calls b, b calls a, a does some work. // // inline.go:9 0x4553ec 90 NOPL // func main() { b(v) } // inline.go:6 0x4553ed 90 NOPL // func b(v *int) { a(v) } // inline.go:5 0x4553ee 48c7002a000000 MOVQ $0x2a, 0(AX) // func a(v *int) { *v = 42 } // // If a profiling signal arrives while executing the MOVQ at 0x4553ee (for line // 5), the runtime will report the stack as the MOVQ frame being called by the // NOPL at 0x4553ed (for line 6) being called by the NOPL at 0x4553ec (for line // 9). // // The role of pcDeck is to collapse those three frames back into a single // location at 0x4553ee, with file/line/function symbolization info representing // the three layers of calls. It does that via sequential calls to pcDeck.tryAdd // starting with the leaf-most address. The fourth call to pcDeck.tryAdd will be // for the caller of main.main. Because main.main was not inlined in its caller, // the deck will reject the addition, and the fourth PC on the stack will get // its own location. // pcDeck is a helper to detect a sequence of inlined functions from // a stack trace returned by the runtime. // // The stack traces returned by runtime's trackback functions are fully // expanded (at least for Go functions) and include the fake pcs representing // inlined functions. The profile proto expects the inlined functions to be // encoded in one Location message. // https://github.com/google/pprof/blob/5e965273ee43930341d897407202dd5e10e952cb/proto/profile.proto#L177-L184 // // Runtime does not directly expose whether a frame is for an inlined function // and looking up debug info is not ideal, so we use a heuristic to filter // the fake pcs and restore the inlined and entry functions. Inlined functions // have the following properties: // // Frame's Func is nil (note: also true for non-Go functions), and // Frame's Entry matches its entry function frame's Entry (note: could also be true for recursive calls and non-Go functions), and // Frame's Name does not match its entry function frame's name (note: inlined functions cannot be directly recursive). // // As reading and processing the pcs in a stack trace one by one (from leaf to the root), // we use pcDeck to temporarily hold the observed pcs and their expanded frames // until we observe the entry function frame. type pcDeck struct { pcs []uintptr frames []runtime.Frame symbolizeResult symbolizeFlag // firstPCFrames indicates the number of frames associated with the first // (leaf-most) PC in the deck firstPCFrames int // firstPCSymbolizeResult holds the results of the allFrames call for the // first (leaf-most) PC in the deck firstPCSymbolizeResult symbolizeFlag } func (d *pcDeck) reset() { d.pcs = d.pcs[:0] d.frames = d.frames[:0] d.symbolizeResult = 0 d.firstPCFrames = 0 d.firstPCSymbolizeResult = 0 } // tryAdd tries to add the pc and Frames expanded from it (most likely one, // since the stack trace is already fully expanded) and the symbolizeResult // to the deck. If it fails the caller needs to flush the deck and retry. func (d *pcDeck) tryAdd(pc uintptr, frames []runtime.Frame, symbolizeResult symbolizeFlag) (success bool) { if existing := len(d.frames); existing > 0 { // 'd.frames' are all expanded from one 'pc' and represent all // inlined functions so we check only the last one. newFrame := frames[0] last := d.frames[existing-1] if last.Func != nil { // the last frame can't be inlined. Flush. return false } if last.Entry == 0 || newFrame.Entry == 0 { // Possibly not a Go function. Don't try to merge. return false } if last.Entry != newFrame.Entry { // newFrame is for a different function. return false } if runtime_FrameSymbolName(&last) == runtime_FrameSymbolName(&newFrame) { // maybe recursion. return false } } d.pcs = append(d.pcs, pc) d.frames = append(d.frames, frames...) d.symbolizeResult |= symbolizeResult if len(d.pcs) == 1 { d.firstPCFrames = len(d.frames) d.firstPCSymbolizeResult = symbolizeResult } return true } // emitLocation emits the new location and function information recorded in the deck // and returns the location ID encoded in the profile protobuf. // It emits to b.pb, so there must be no message encoding in progress. // It resets the deck. func (b *profileBuilder) emitLocation() uint64 { if len(b.deck.pcs) == 0 { return 0 } defer b.deck.reset() addr := b.deck.pcs[0] firstFrame := b.deck.frames[0] // We can't write out functions while in the middle of the // Location message, so record new functions we encounter and // write them out after the Location. type newFunc struct { id uint64 name, file string startLine int64 } newFuncs := make([]newFunc, 0, 8) id := uint64(len(b.locs)) + 1 b.locs[addr] = locInfo{ id: id, pcs: append([]uintptr{}, b.deck.pcs...), firstPCSymbolizeResult: b.deck.firstPCSymbolizeResult, firstPCFrames: append([]runtime.Frame{}, b.deck.frames[:b.deck.firstPCFrames]...), } start := b.pb.startMessage() b.pb.uint64Opt(tagLocation_ID, id) b.pb.uint64Opt(tagLocation_Address, uint64(firstFrame.PC)) for _, frame := range b.deck.frames { // Write out each line in frame expansion. funcName := runtime_FrameSymbolName(&frame) funcID := uint64(b.funcs[funcName]) if funcID == 0 { funcID = uint64(len(b.funcs)) + 1 b.funcs[funcName] = int(funcID) newFuncs = append(newFuncs, newFunc{ id: funcID, name: funcName, file: frame.File, startLine: int64(runtime_FrameStartLine(&frame)), }) } b.pbLine(tagLocation_Line, funcID, int64(frame.Line)) } for i := range b.mem { if b.mem[i].start <= addr && addr < b.mem[i].end || b.mem[i].fake { b.pb.uint64Opt(tagLocation_MappingID, uint64(i+1)) m := b.mem[i] m.funcs |= b.deck.symbolizeResult b.mem[i] = m break } } b.pb.endMessage(tagProfile_Location, start) // Write out functions we found during frame expansion. for _, fn := range newFuncs { start := b.pb.startMessage() b.pb.uint64Opt(tagFunction_ID, fn.id) b.pb.int64Opt(tagFunction_Name, b.stringIndex(fn.name)) b.pb.int64Opt(tagFunction_SystemName, b.stringIndex(fn.name)) b.pb.int64Opt(tagFunction_Filename, b.stringIndex(fn.file)) b.pb.int64Opt(tagFunction_StartLine, fn.startLine) b.pb.endMessage(tagProfile_Function, start) } b.flush() return id } var space = []byte(" ") var newline = []byte("\n") func parseProcSelfMaps(data []byte, addMapping func(lo, hi, offset uint64, file, buildID string)) { // $ cat /proc/self/maps // 00400000-0040b000 r-xp 00000000 fc:01 787766 /bin/cat // 0060a000-0060b000 r--p 0000a000 fc:01 787766 /bin/cat // 0060b000-0060c000 rw-p 0000b000 fc:01 787766 /bin/cat // 014ab000-014cc000 rw-p 00000000 00:00 0 [heap] // 7f7d76af8000-7f7d7797c000 r--p 00000000 fc:01 1318064 /usr/lib/locale/locale-archive // 7f7d7797c000-7f7d77b36000 r-xp 00000000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so // 7f7d77b36000-7f7d77d36000 ---p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so // 7f7d77d36000-7f7d77d3a000 r--p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so // 7f7d77d3a000-7f7d77d3c000 rw-p 001be000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so // 7f7d77d3c000-7f7d77d41000 rw-p 00000000 00:00 0 // 7f7d77d41000-7f7d77d64000 r-xp 00000000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so // 7f7d77f3f000-7f7d77f42000 rw-p 00000000 00:00 0 // 7f7d77f61000-7f7d77f63000 rw-p 00000000 00:00 0 // 7f7d77f63000-7f7d77f64000 r--p 00022000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so // 7f7d77f64000-7f7d77f65000 rw-p 00023000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so // 7f7d77f65000-7f7d77f66000 rw-p 00000000 00:00 0 // 7ffc342a2000-7ffc342c3000 rw-p 00000000 00:00 0 [stack] // 7ffc34343000-7ffc34345000 r-xp 00000000 00:00 0 [vdso] // ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] var line []byte // next removes and returns the next field in the line. // It also removes from line any spaces following the field. next := func() []byte { var f []byte f, line, _ = bytes.Cut(line, space) line = bytes.TrimLeft(line, " ") return f } for len(data) > 0 { line, data, _ = bytes.Cut(data, newline) addr := next() loStr, hiStr, ok := strings.Cut(string(addr), "-") if !ok { continue } lo, err := strconv.ParseUint(loStr, 16, 64) if err != nil { continue } hi, err := strconv.ParseUint(hiStr, 16, 64) if err != nil { continue } perm := next() if len(perm) < 4 || perm[2] != 'x' { // Only interested in executable mappings. continue } offset, err := strconv.ParseUint(string(next()), 16, 64) if err != nil { continue } next() // dev inode := next() // inode if line == nil { continue } file := string(line) // Trim deleted file marker. deletedStr := " (deleted)" deletedLen := len(deletedStr) if len(file) >= deletedLen && file[len(file)-deletedLen:] == deletedStr { file = file[:len(file)-deletedLen] } if len(inode) == 1 && inode[0] == '0' && file == "" { // Huge-page text mappings list the initial fragment of // mapped but unpopulated memory as being inode 0. // Don't report that part. // But [vdso] and [vsyscall] are inode 0, so let non-empty file names through. continue } // TODO: pprof's remapMappingIDs makes one adjustment: // 1. If there is an /anon_hugepage mapping first and it is // consecutive to a next mapping, drop the /anon_hugepage. // There's no indication why this is needed. // Let's try not doing this and see what breaks. // If we do need it, it would go here, before we // enter the mappings into b.mem in the first place. buildID, _ := elfBuildID(file) addMapping(lo, hi, offset, file, buildID) } } func (b *profileBuilder) addMapping(lo, hi, offset uint64, file, buildID string) { b.addMappingEntry(lo, hi, offset, file, buildID, false) } func (b *profileBuilder) addMappingEntry(lo, hi, offset uint64, file, buildID string, fake bool) { b.mem = append(b.mem, memMap{ start: uintptr(lo), end: uintptr(hi), offset: offset, file: file, buildID: buildID, fake: fake, }) }