# Copyright 2010 The Go Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """GDB Pretty printers and convenience functions for Go's runtime structures. This script is loaded by GDB when it finds a .debug_gdb_scripts section in the compiled binary. The [68]l linkers emit this with a path to this file based on the path to the runtime package. """ # Known issues: # - pretty printing only works for the 'native' strings. E.g. 'type # foo string' will make foo a plain struct in the eyes of gdb, # circumventing the pretty print triggering. from __future__ import print_function import re import sys import gdb print("Loading Go Runtime support.", file=sys.stderr) #http://python3porting.com/differences.html if sys.version > '3': xrange = range # allow to manually reload while developing goobjfile = gdb.current_objfile() or gdb.objfiles()[0] goobjfile.pretty_printers = [] # G state (runtime2.go) def read_runtime_const(varname, default): try: return int(gdb.parse_and_eval(varname)) except Exception: return int(default) G_IDLE = read_runtime_const("'runtime._Gidle'", 0) G_RUNNABLE = read_runtime_const("'runtime._Grunnable'", 1) G_RUNNING = read_runtime_const("'runtime._Grunning'", 2) G_SYSCALL = read_runtime_const("'runtime._Gsyscall'", 3) G_WAITING = read_runtime_const("'runtime._Gwaiting'", 4) G_MORIBUND_UNUSED = read_runtime_const("'runtime._Gmoribund_unused'", 5) G_DEAD = read_runtime_const("'runtime._Gdead'", 6) G_ENQUEUE_UNUSED = read_runtime_const("'runtime._Genqueue_unused'", 7) G_COPYSTACK = read_runtime_const("'runtime._Gcopystack'", 8) G_SCAN = read_runtime_const("'runtime._Gscan'", 0x1000) G_SCANRUNNABLE = G_SCAN+G_RUNNABLE G_SCANRUNNING = G_SCAN+G_RUNNING G_SCANSYSCALL = G_SCAN+G_SYSCALL G_SCANWAITING = G_SCAN+G_WAITING sts = { G_IDLE: 'idle', G_RUNNABLE: 'runnable', G_RUNNING: 'running', G_SYSCALL: 'syscall', G_WAITING: 'waiting', G_MORIBUND_UNUSED: 'moribund', G_DEAD: 'dead', G_ENQUEUE_UNUSED: 'enqueue', G_COPYSTACK: 'copystack', G_SCAN: 'scan', G_SCANRUNNABLE: 'runnable+s', G_SCANRUNNING: 'running+s', G_SCANSYSCALL: 'syscall+s', G_SCANWAITING: 'waiting+s', } # # Value wrappers # class SliceValue: "Wrapper for slice values." def __init__(self, val): self.val = val @property def len(self): return int(self.val['len']) @property def cap(self): return int(self.val['cap']) def __getitem__(self, i): if i < 0 or i >= self.len: raise IndexError(i) ptr = self.val["array"] return (ptr + i).dereference() # # Pretty Printers # # The patterns for matching types are permissive because gdb 8.2 switched to matching on (we think) typedef names instead of C syntax names. class StringTypePrinter: "Pretty print Go strings." pattern = re.compile(r'^(struct string( \*)?|string)$') def __init__(self, val): self.val = val def display_hint(self): return 'string' def to_string(self): l = int(self.val['len']) return self.val['str'].string("utf-8", "ignore", l) class SliceTypePrinter: "Pretty print slices." pattern = re.compile(r'^(struct \[\]|\[\])') def __init__(self, val): self.val = val def display_hint(self): return 'array' def to_string(self): t = str(self.val.type) if (t.startswith("struct ")): return t[len("struct "):] return t def children(self): sval = SliceValue(self.val) if sval.len > sval.cap: return for idx, item in enumerate(sval): yield ('[{0}]'.format(idx), item) class MapTypePrinter: """Pretty print map[K]V types. Map-typed go variables are really pointers. dereference them in gdb to inspect their contents with this pretty printer. """ pattern = re.compile(r'^map\[.*\].*$') def __init__(self, val): self.val = val def display_hint(self): return 'map' def to_string(self): return str(self.val.type) def children(self): fields = [f.name for f in self.val.type.strip_typedefs().target().fields()] if 'buckets' in fields: yield from self.old_map_children() else: yield from self.swiss_map_children() def swiss_map_children(self): SwissMapGroupSlots = 8 # see internal/abi:SwissMapGroupSlots cnt = 0 # Yield keys and elements in group. # group is a value of type *group[K,V] def group_slots(group): ctrl = group['ctrl'] for i in xrange(SwissMapGroupSlots): c = (ctrl >> (8*i)) & 0xff if (c & 0x80) != 0: # Empty or deleted continue # Full yield str(cnt), group['slots'][i]['key'] yield str(cnt+1), group['slots'][i]['elem'] # The linker DWARF generation # (cmd/link/internal/ld.(*dwctxt).synthesizemaptypesSwiss) records # dirPtr as a **table[K,V], but it may actually be two different types: # # For "full size" maps (dirLen > 0), dirPtr is actually a pointer to # variable length array *[dirLen]*table[K,V]. In other words, dirPtr + # dirLen are a deconstructed slice []*table[K,V]. # # For "small" maps (dirLen <= 0), dirPtr is a pointer directly to a # single group *group[K,V] containing the map slots. # # N.B. array() takes an _inclusive_ upper bound. # table[K,V] table_type = self.val['dirPtr'].type.target().target() if self.val['dirLen'] <= 0: # Small map # We need to find the group type we'll cast to. Since dirPtr isn't # actually **table[K,V], we can't use the nice API of # obj['field'].type, as that actually wants to dereference obj. # Instead, search only via the type API. ptr_group_type = None for tf in table_type.fields(): if tf.name != 'groups': continue groups_type = tf.type for gf in groups_type.fields(): if gf.name != 'data': continue # *group[K,V] ptr_group_type = gf.type if ptr_group_type is None: raise TypeError("unable to find table[K,V].groups.data") # group = (*group[K,V])(dirPtr) group = self.val['dirPtr'].cast(ptr_group_type) yield from group_slots(group) return # Full size map. # *table[K,V] ptr_table_type = table_type.pointer() # [dirLen]*table[K,V] array_ptr_table_type = ptr_table_type.array(self.val['dirLen']-1) # *[dirLen]*table[K,V] ptr_array_ptr_table_type = array_ptr_table_type.pointer() # tables = (*[dirLen]*table[K,V])(dirPtr) tables = self.val['dirPtr'].cast(ptr_array_ptr_table_type) cnt = 0 for t in xrange(self.val['dirLen']): table = tables[t] table = table.dereference() groups = table['groups']['data'] length = table['groups']['lengthMask'] + 1 # The linker DWARF generation # (cmd/link/internal/ld.(*dwctxt).synthesizemaptypesSwiss) records # groups.data as a *group[K,V], but it is actually a pointer to # variable length array *[length]group[K,V]. # # N.B. array() takes an _inclusive_ upper bound. # group[K,V] group_type = groups.type.target() # [length]group[K,V] array_group_type = group_type.array(length-1) # *[length]group[K,V] ptr_array_group_type = array_group_type.pointer() # groups = (*[length]group[K,V])(groups.data) groups = groups.cast(ptr_array_group_type) groups = groups.dereference() for i in xrange(length): group = groups[i] yield from group_slots(group) def old_map_children(self): MapBucketCount = 8 # see internal/abi:OldMapBucketCount B = self.val['B'] buckets = self.val['buckets'] oldbuckets = self.val['oldbuckets'] flags = self.val['flags'] inttype = self.val['hash0'].type cnt = 0 for bucket in xrange(2 ** int(B)): bp = buckets + bucket if oldbuckets: oldbucket = bucket & (2 ** (B - 1) - 1) oldbp = oldbuckets + oldbucket oldb = oldbp.dereference() if (oldb['overflow'].cast(inttype) & 1) == 0: # old bucket not evacuated yet if bucket >= 2 ** (B - 1): continue # already did old bucket bp = oldbp while bp: b = bp.dereference() for i in xrange(MapBucketCount): if b['tophash'][i] != 0: k = b['keys'][i] v = b['values'][i] if flags & 1: k = k.dereference() if flags & 2: v = v.dereference() yield str(cnt), k yield str(cnt + 1), v cnt += 2 bp = b['overflow'] class ChanTypePrinter: """Pretty print chan[T] types. Chan-typed go variables are really pointers. dereference them in gdb to inspect their contents with this pretty printer. """ pattern = re.compile(r'^chan ') def __init__(self, val): self.val = val def display_hint(self): return 'array' def to_string(self): return str(self.val.type) def children(self): # see chan.c chanbuf(). et is the type stolen from hchan::recvq->first->elem et = [x.type for x in self.val['recvq']['first'].type.target().fields() if x.name == 'elem'][0] ptr = (self.val.address["buf"]).cast(et) for i in range(self.val["qcount"]): j = (self.val["recvx"] + i) % self.val["dataqsiz"] yield ('[{0}]'.format(i), (ptr + j).dereference()) def paramtypematch(t, pattern): return t.code == gdb.TYPE_CODE_TYPEDEF and str(t).startswith(".param") and pattern.match(str(t.target())) # # Register all the *Printer classes above. # def makematcher(klass): def matcher(val): try: if klass.pattern.match(str(val.type)): return klass(val) elif paramtypematch(val.type, klass.pattern): return klass(val.cast(val.type.target())) except Exception: pass return matcher goobjfile.pretty_printers.extend([makematcher(var) for var in vars().values() if hasattr(var, 'pattern')]) # # Utilities # def pc_to_int(pc): # python2 will not cast pc (type void*) to an int cleanly # instead python2 and python3 work with the hex string representation # of the void pointer which we can parse back into an int. # int(pc) will not work. try: # python3 / newer versions of gdb pc = int(pc) except gdb.error: # str(pc) can return things like # "0x429d6c ", so # chop at first space. pc = int(str(pc).split(None, 1)[0], 16) return pc # # For reference, this is what we're trying to do: # eface: p *(*(struct 'runtime.rtype'*)'main.e'->type_->data)->string # iface: p *(*(struct 'runtime.rtype'*)'main.s'->tab->Type->data)->string # # interface types can't be recognized by their name, instead we check # if they have the expected fields. Unfortunately the mapping of # fields to python attributes in gdb.py isn't complete: you can't test # for presence other than by trapping. def is_iface(val): try: return str(val['tab'].type) == "struct runtime.itab *" and str(val['data'].type) == "void *" except gdb.error: pass def is_eface(val): try: return str(val['_type'].type) == "struct runtime._type *" and str(val['data'].type) == "void *" except gdb.error: pass def lookup_type(name): try: return gdb.lookup_type(name) except gdb.error: pass try: return gdb.lookup_type('struct ' + name) except gdb.error: pass try: return gdb.lookup_type('struct ' + name[1:]).pointer() except gdb.error: pass def iface_commontype(obj): if is_iface(obj): go_type_ptr = obj['tab']['_type'] elif is_eface(obj): go_type_ptr = obj['_type'] else: return return go_type_ptr.cast(gdb.lookup_type("struct reflect.rtype").pointer()).dereference() def iface_dtype(obj): "Decode type of the data field of an eface or iface struct." # known issue: dtype_name decoded from runtime.rtype is "nested.Foo" # but the dwarf table lists it as "full/path/to/nested.Foo" dynamic_go_type = iface_commontype(obj) if dynamic_go_type is None: return dtype_name = dynamic_go_type['string'].dereference()['str'].string() dynamic_gdb_type = lookup_type(dtype_name) if dynamic_gdb_type is None: return type_size = int(dynamic_go_type['size']) uintptr_size = int(dynamic_go_type['size'].type.sizeof) # size is itself a uintptr if type_size > uintptr_size: dynamic_gdb_type = dynamic_gdb_type.pointer() return dynamic_gdb_type def iface_dtype_name(obj): "Decode type name of the data field of an eface or iface struct." dynamic_go_type = iface_commontype(obj) if dynamic_go_type is None: return return dynamic_go_type['string'].dereference()['str'].string() class IfacePrinter: """Pretty print interface values Casts the data field to the appropriate dynamic type.""" def __init__(self, val): self.val = val def display_hint(self): return 'string' def to_string(self): if self.val['data'] == 0: return 0x0 try: dtype = iface_dtype(self.val) except Exception: return "" if dtype is None: # trouble looking up, print something reasonable return "({typename}){data}".format( typename=iface_dtype_name(self.val), data=self.val['data']) try: return self.val['data'].cast(dtype).dereference() except Exception: pass return self.val['data'].cast(dtype) def ifacematcher(val): if is_iface(val) or is_eface(val): return IfacePrinter(val) goobjfile.pretty_printers.append(ifacematcher) # # Convenience Functions # class GoLenFunc(gdb.Function): "Length of strings, slices, maps or channels" how = ((StringTypePrinter, 'len'), (SliceTypePrinter, 'len'), (MapTypePrinter, 'used'), (ChanTypePrinter, 'qcount')) def __init__(self): gdb.Function.__init__(self, "len") def invoke(self, obj): typename = str(obj.type) for klass, fld in self.how: if klass.pattern.match(typename) or paramtypematch(obj.type, klass.pattern): if klass == MapTypePrinter: fields = [f.name for f in self.val.type.strip_typedefs().target().fields()] if 'buckets' in fields: # Old maps. fld = 'count' return obj[fld] class GoCapFunc(gdb.Function): "Capacity of slices or channels" how = ((SliceTypePrinter, 'cap'), (ChanTypePrinter, 'dataqsiz')) def __init__(self): gdb.Function.__init__(self, "cap") def invoke(self, obj): typename = str(obj.type) for klass, fld in self.how: if klass.pattern.match(typename) or paramtypematch(obj.type, klass.pattern): return obj[fld] class DTypeFunc(gdb.Function): """Cast Interface values to their dynamic type. For non-interface types this behaves as the identity operation. """ def __init__(self): gdb.Function.__init__(self, "dtype") def invoke(self, obj): try: return obj['data'].cast(iface_dtype(obj)) except gdb.error: pass return obj # # Commands # def linked_list(ptr, linkfield): while ptr: yield ptr ptr = ptr[linkfield] class GoroutinesCmd(gdb.Command): "List all goroutines." def __init__(self): gdb.Command.__init__(self, "info goroutines", gdb.COMMAND_STACK, gdb.COMPLETE_NONE) def invoke(self, _arg, _from_tty): # args = gdb.string_to_argv(arg) vp = gdb.lookup_type('void').pointer() for ptr in SliceValue(gdb.parse_and_eval("'runtime.allgs'")): if ptr['atomicstatus']['value'] == G_DEAD: continue s = ' ' if ptr['m']: s = '*' pc = ptr['sched']['pc'].cast(vp) pc = pc_to_int(pc) blk = gdb.block_for_pc(pc) status = int(ptr['atomicstatus']['value']) st = sts.get(status, "unknown(%d)" % status) print(s, ptr['goid'], "{0:8s}".format(st), blk.function) def find_goroutine(goid): """ find_goroutine attempts to find the goroutine identified by goid. It returns a tuple of gdb.Value's representing the stack pointer and program counter pointer for the goroutine. @param int goid @return tuple (gdb.Value, gdb.Value) """ vp = gdb.lookup_type('void').pointer() for ptr in SliceValue(gdb.parse_and_eval("'runtime.allgs'")): if ptr['atomicstatus']['value'] == G_DEAD: continue if ptr['goid'] == goid: break else: return None, None # Get the goroutine's saved state. pc, sp = ptr['sched']['pc'], ptr['sched']['sp'] status = ptr['atomicstatus']['value']&~G_SCAN # Goroutine is not running nor in syscall, so use the info in goroutine if status != G_RUNNING and status != G_SYSCALL: return pc.cast(vp), sp.cast(vp) # If the goroutine is in a syscall, use syscallpc/sp. pc, sp = ptr['syscallpc'], ptr['syscallsp'] if sp != 0: return pc.cast(vp), sp.cast(vp) # Otherwise, the goroutine is running, so it doesn't have # saved scheduler state. Find G's OS thread. m = ptr['m'] if m == 0: return None, None for thr in gdb.selected_inferior().threads(): if thr.ptid[1] == m['procid']: break else: return None, None # Get scheduler state from the G's OS thread state. curthr = gdb.selected_thread() try: thr.switch() pc = gdb.parse_and_eval('$pc') sp = gdb.parse_and_eval('$sp') finally: curthr.switch() return pc.cast(vp), sp.cast(vp) class GoroutineCmd(gdb.Command): """Execute gdb command in the context of goroutine . Switch PC and SP to the ones in the goroutine's G structure, execute an arbitrary gdb command, and restore PC and SP. Usage: (gdb) goroutine You could pass "all" as to apply to all goroutines. For example: (gdb) goroutine all Note that it is ill-defined to modify state in the context of a goroutine. Restrict yourself to inspecting values. """ def __init__(self): gdb.Command.__init__(self, "goroutine", gdb.COMMAND_STACK, gdb.COMPLETE_NONE) def invoke(self, arg, _from_tty): goid_str, cmd = arg.split(None, 1) goids = [] if goid_str == 'all': for ptr in SliceValue(gdb.parse_and_eval("'runtime.allgs'")): goids.append(int(ptr['goid'])) else: goids = [int(gdb.parse_and_eval(goid_str))] for goid in goids: self.invoke_per_goid(goid, cmd) def invoke_per_goid(self, goid, cmd): pc, sp = find_goroutine(goid) if not pc: print("No such goroutine: ", goid) return pc = pc_to_int(pc) save_frame = gdb.selected_frame() gdb.parse_and_eval('$save_sp = $sp') gdb.parse_and_eval('$save_pc = $pc') # In GDB, assignments to sp must be done from the # top-most frame, so select frame 0 first. gdb.execute('select-frame 0') gdb.parse_and_eval('$sp = {0}'.format(str(sp))) gdb.parse_and_eval('$pc = {0}'.format(str(pc))) try: gdb.execute(cmd) finally: # In GDB, assignments to sp must be done from the # top-most frame, so select frame 0 first. gdb.execute('select-frame 0') gdb.parse_and_eval('$pc = $save_pc') gdb.parse_and_eval('$sp = $save_sp') save_frame.select() class GoIfaceCmd(gdb.Command): "Print Static and dynamic interface types" def __init__(self): gdb.Command.__init__(self, "iface", gdb.COMMAND_DATA, gdb.COMPLETE_SYMBOL) def invoke(self, arg, _from_tty): for obj in gdb.string_to_argv(arg): try: #TODO fix quoting for qualified variable names obj = gdb.parse_and_eval(str(obj)) except Exception as e: print("Can't parse ", obj, ": ", e) continue if obj['data'] == 0: dtype = "nil" else: dtype = iface_dtype(obj) if dtype is None: print("Not an interface: ", obj.type) continue print("{0}: {1}".format(obj.type, dtype)) # TODO: print interface's methods and dynamic type's func pointers thereof. #rsc: "to find the number of entries in the itab's Fn field look at # itab.inter->numMethods # i am sure i have the names wrong but look at the interface type # and its method count" # so Itype will start with a commontype which has kind = interface # # Register all convenience functions and CLI commands # GoLenFunc() GoCapFunc() DTypeFunc() GoroutinesCmd() GoroutineCmd() GoIfaceCmd()