// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package time provides functionality for measuring and displaying time. // // The calendrical calculations always assume a Gregorian calendar, with // no leap seconds. // // # Monotonic Clocks // // Operating systems provide both a “wall clock,” which is subject to // changes for clock synchronization, and a “monotonic clock,” which is // not. The general rule is that the wall clock is for telling time and // the monotonic clock is for measuring time. Rather than split the API, // in this package the Time returned by [time.Now] contains both a wall // clock reading and a monotonic clock reading; later time-telling // operations use the wall clock reading, but later time-measuring // operations, specifically comparisons and subtractions, use the // monotonic clock reading. // // For example, this code always computes a positive elapsed time of // approximately 20 milliseconds, even if the wall clock is changed during // the operation being timed: // // start := time.Now() // ... operation that takes 20 milliseconds ... // t := time.Now() // elapsed := t.Sub(start) // // Other idioms, such as [time.Since](start), [time.Until](deadline), and // time.Now().Before(deadline), are similarly robust against wall clock // resets. // // The rest of this section gives the precise details of how operations // use monotonic clocks, but understanding those details is not required // to use this package. // // The Time returned by time.Now contains a monotonic clock reading. // If Time t has a monotonic clock reading, t.Add adds the same duration to // both the wall clock and monotonic clock readings to compute the result. // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time // computations, they always strip any monotonic clock reading from their results. // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation // of the wall time, they also strip any monotonic clock reading from their results. // The canonical way to strip a monotonic clock reading is to use t = t.Round(0). // // If Times t and u both contain monotonic clock readings, the operations // t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out // using the monotonic clock readings alone, ignoring the wall clock // readings. If either t or u contains no monotonic clock reading, these // operations fall back to using the wall clock readings. // // On some systems the monotonic clock will stop if the computer goes to sleep. // On such a system, t.Sub(u) may not accurately reflect the actual // time that passed between t and u. The same applies to other functions and // methods that subtract times, such as [Since], [Until], [Time.Before], [Time.After], // [Time.Add], [Time.Equal] and [Time.Compare]. In some cases, you may need to strip // the monotonic clock to get accurate results. // // Because the monotonic clock reading has no meaning outside // the current process, the serialized forms generated by t.GobEncode, // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic // clock reading, and t.Format provides no format for it. Similarly, the // constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix], // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary. // t.UnmarshalJSON, and t.UnmarshalText always create times with // no monotonic clock reading. // // The monotonic clock reading exists only in [Time] values. It is not // a part of [Duration] values or the Unix times returned by t.Unix and // friends. // // Note that the Go == operator compares not just the time instant but // also the [Location] and the monotonic clock reading. See the // documentation for the Time type for a discussion of equality // testing for Time values. // // For debugging, the result of t.String does include the monotonic // clock reading if present. If t != u because of different monotonic clock readings, // that difference will be visible when printing t.String() and u.String(). // // # Timer Resolution // // [Timer] resolution varies depending on the Go runtime, the operating system // and the underlying hardware. // On Unix, the resolution is ~1ms. // On Windows version 1803 and newer, the resolution is ~0.5ms. // On older Windows versions, the default resolution is ~16ms, but // a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod]. package time import ( "errors" "math/bits" _ "unsafe" // for go:linkname ) // A Time represents an instant in time with nanosecond precision. // // Programs using times should typically store and pass them as values, // not pointers. That is, time variables and struct fields should be of // type [time.Time], not *time.Time. // // A Time value can be used by multiple goroutines simultaneously except // that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and // [Time.UnmarshalText] are not concurrency-safe. // // Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods. // The [Time.Sub] method subtracts two instants, producing a [Duration]. // The [Time.Add] method adds a Time and a Duration, producing a Time. // // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. // As this time is unlikely to come up in practice, the [Time.IsZero] method gives // a simple way of detecting a time that has not been initialized explicitly. // // Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a // Time with a specific Location. Changing the Location of a Time value with // these methods does not change the actual instant it represents, only the time // zone in which to interpret it. // // Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary], [Time.AppendBinary], // [Time.MarshalJSON], [Time.MarshalText] and [Time.AppendText] methods store the [Time.Location]'s offset, // but not the location name. They therefore lose information about Daylight Saving Time. // // In addition to the required “wall clock” reading, a Time may contain an optional // reading of the current process's monotonic clock, to provide additional precision // for comparison or subtraction. // See the “Monotonic Clocks” section in the package documentation for details. // // Note that the Go == operator compares not just the time instant but also the // Location and the monotonic clock reading. Therefore, Time values should not // be used as map or database keys without first guaranteeing that the // identical Location has been set for all values, which can be achieved // through use of the UTC or Local method, and that the monotonic clock reading // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u) // to t == u, since t.Equal uses the most accurate comparison available and // correctly handles the case when only one of its arguments has a monotonic // clock reading. type Time struct { // wall and ext encode the wall time seconds, wall time nanoseconds, // and optional monotonic clock reading in nanoseconds. // // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic), // a 33-bit seconds field, and a 30-bit wall time nanoseconds field. // The nanoseconds field is in the range [0, 999999999]. // If the hasMonotonic bit is 0, then the 33-bit field must be zero // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext. // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit // unsigned wall seconds since Jan 1 year 1885, and ext holds a // signed 64-bit monotonic clock reading, nanoseconds since process start. wall uint64 ext int64 // loc specifies the Location that should be used to // determine the minute, hour, month, day, and year // that correspond to this Time. // The nil location means UTC. // All UTC times are represented with loc==nil, never loc==&utcLoc. loc *Location } const ( hasMonotonic = 1 << 63 maxWall = wallToInternal + (1<<33 - 1) // year 2157 minWall = wallToInternal // year 1885 nsecMask = 1<<30 - 1 nsecShift = 30 ) // These helpers for manipulating the wall and monotonic clock readings // take pointer receivers, even when they don't modify the time, // to make them cheaper to call. // nsec returns the time's nanoseconds. func (t *Time) nsec() int32 { return int32(t.wall & nsecMask) } // sec returns the time's seconds since Jan 1 year 1. func (t *Time) sec() int64 { if t.wall&hasMonotonic != 0 { return wallToInternal + int64(t.wall<<1>>(nsecShift+1)) } return t.ext } // unixSec returns the time's seconds since Jan 1 1970 (Unix time). func (t *Time) unixSec() int64 { return t.sec() + internalToUnix } // addSec adds d seconds to the time. func (t *Time) addSec(d int64) { if t.wall&hasMonotonic != 0 { sec := int64(t.wall << 1 >> (nsecShift + 1)) dsec := sec + d if 0 <= dsec && dsec <= 1<<33-1 { t.wall = t.wall&nsecMask | uint64(dsec)< t.ext) == (d > 0) { t.ext = sum } else if d > 0 { t.ext = 1<<63 - 1 } else { t.ext = -(1<<63 - 1) } } // setLoc sets the location associated with the time. func (t *Time) setLoc(loc *Location) { if loc == &utcLoc { loc = nil } t.stripMono() t.loc = loc } // stripMono strips the monotonic clock reading in t. func (t *Time) stripMono() { if t.wall&hasMonotonic != 0 { t.ext = t.sec() t.wall &= nsecMask } } // setMono sets the monotonic clock reading in t. // If t cannot hold a monotonic clock reading, // because its wall time is too large, // setMono is a no-op. func (t *Time) setMono(m int64) { if t.wall&hasMonotonic == 0 { sec := t.ext if sec < minWall || maxWall < sec { return } t.wall |= hasMonotonic | uint64(sec-minWall)< u.ext } ts := t.sec() us := u.sec() return ts > us || ts == us && t.nsec() > u.nsec() } // Before reports whether the time instant t is before u. func (t Time) Before(u Time) bool { if t.wall&u.wall&hasMonotonic != 0 { return t.ext < u.ext } ts := t.sec() us := u.sec() return ts < us || ts == us && t.nsec() < u.nsec() } // Compare compares the time instant t with u. If t is before u, it returns -1; // if t is after u, it returns +1; if they're the same, it returns 0. func (t Time) Compare(u Time) int { var tc, uc int64 if t.wall&u.wall&hasMonotonic != 0 { tc, uc = t.ext, u.ext } else { tc, uc = t.sec(), u.sec() if tc == uc { tc, uc = int64(t.nsec()), int64(u.nsec()) } } switch { case tc < uc: return -1 case tc > uc: return +1 } return 0 } // Equal reports whether t and u represent the same time instant. // Two times can be equal even if they are in different locations. // For example, 6:00 +0200 and 4:00 UTC are Equal. // See the documentation on the Time type for the pitfalls of using == with // Time values; most code should use Equal instead. func (t Time) Equal(u Time) bool { if t.wall&u.wall&hasMonotonic != 0 { return t.ext == u.ext } return t.sec() == u.sec() && t.nsec() == u.nsec() } // A Month specifies a month of the year (January = 1, ...). type Month int const ( January Month = 1 + iota February March April May June July August September October November December ) // String returns the English name of the month ("January", "February", ...). func (m Month) String() string { if January <= m && m <= December { return longMonthNames[m-1] } buf := make([]byte, 20) n := fmtInt(buf, uint64(m)) return "%!Month(" + string(buf[n:]) + ")" } // A Weekday specifies a day of the week (Sunday = 0, ...). type Weekday int const ( Sunday Weekday = iota Monday Tuesday Wednesday Thursday Friday Saturday ) // String returns the English name of the day ("Sunday", "Monday", ...). func (d Weekday) String() string { if Sunday <= d && d <= Saturday { return longDayNames[d] } buf := make([]byte, 20) n := fmtInt(buf, uint64(d)) return "%!Weekday(" + string(buf[n:]) + ")" } // Computations on Times // // The zero value for a Time is defined to be // January 1, year 1, 00:00:00.000000000 UTC // which (1) looks like a zero, or as close as you can get in a date // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a // non-negative year even in time zones west of UTC, unlike 1-1-0 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. // // The zero Time value does not force a specific epoch for the time // representation. For example, to use the Unix epoch internally, we // could define that to distinguish a zero value from Jan 1 1970, that // time would be represented by sec=-1, nsec=1e9. However, it does // suggest a representation, namely using 1-1-1 00:00:00 UTC as the // epoch, and that's what we do. // // The Add and Sub computations are oblivious to the choice of epoch. // // The presentation computations - year, month, minute, and so on - all // rely heavily on division and modulus by positive constants. For // calendrical calculations we want these divisions to round down, even // for negative values, so that the remainder is always positive, but // Go's division (like most hardware division instructions) rounds to // zero. We can still do those computations and then adjust the result // for a negative numerator, but it's annoying to write the adjustment // over and over. Instead, we can change to a different epoch so long // ago that all the times we care about will be positive, and then round // to zero and round down coincide. These presentation routines already // have to add the zone offset, so adding the translation to the // alternate epoch is cheap. For example, having a non-negative time t // means that we can write // // sec = t % 60 // // instead of // // sec = t % 60 // if sec < 0 { // sec += 60 // } // // everywhere. // // The calendar runs on an exact 400 year cycle: a 400-year calendar // printed for 1970-2369 will apply as well to 2370-2769. Even the days // of the week match up. It simplifies date computations to choose the // cycle boundaries so that the exceptional years are always delayed as // long as possible: March 1, year 0 is such a day: // the first leap day (Feb 29) is four years minus one day away, // the first multiple-of-4 year without a Feb 29 is 100 years minus one day away, // and the first multiple-of-100 year with a Feb 29 is 400 years minus one day away. // March 1 year Y for any Y = 0 mod 400 is also such a day. // // Finally, it's convenient if the delta between the Unix epoch and // long-ago epoch is representable by an int64 constant. // // These three considerations—choose an epoch as early as possible, that // starts on March 1 of a year equal to 0 mod 400, and that is no more than // 2⁶³ seconds earlier than 1970—bring us to the year -292277022400. // We refer to this moment as the absolute zero instant, and to times // measured as a uint64 seconds since this year as absolute times. // // Times measured as an int64 seconds since the year 1—the representation // used for Time's sec field—are called internal times. // // Times measured as an int64 seconds since the year 1970 are called Unix // times. // // It is tempting to just use the year 1 as the absolute epoch, defining // that the routines are only valid for years >= 1. However, the // routines would then be invalid when displaying the epoch in time zones // west of UTC, since it is year 0. It doesn't seem tenable to say that // printing the zero time correctly isn't supported in half the time // zones. By comparison, it's reasonable to mishandle some times in // the year -292277022400. // // All this is opaque to clients of the API and can be changed if a // better implementation presents itself. // // The date calculations are implemented using the following clever math from // Cassio Neri and Lorenz Schneider, “Euclidean affine functions and their // application to calendar algorithms,” SP&E 2023. https://doi.org/10.1002/spe.3172 // // Define a “calendrical division” (f, f°, f*) to be a triple of functions converting // one time unit into a whole number of larger units and the remainder and back. // For example, in a calendar with no leap years, (d/365, d%365, y*365) is the // calendrical division for days into years: // // (f) year := days/365 // (f°) yday := days%365 // (f*) days := year*365 (+ yday) // // Note that f* is usually the “easy” function to write: it's the // calendrical multiplication that inverts the more complex division. // // Neri and Schneider prove that when f* takes the form // // f*(n) = (a n + b) / c // // using integer division rounding down with a ≥ c > 0, // which they call a Euclidean affine function or EAF, then: // // f(n) = (c n + c - b - 1) / a // f°(n) = (c n + c - b - 1) % a / c // // This gives a fairly direct calculation for any calendrical division for which // we can write the calendrical multiplication in EAF form. // Because the epoch has been shifted to March 1, all the calendrical // multiplications turn out to be possible to write in EAF form. // When a date is broken into [century, cyear, amonth, mday], // with century, cyear, and mday 0-based, // and amonth 3-based (March = 3, ..., January = 13, February = 14), // the calendrical multiplications written in EAF form are: // // yday = (153 (amonth-3) + 2) / 5 = (153 amonth - 457) / 5 // cday = 365 cyear + cyear/4 = 1461 cyear / 4 // centurydays = 36524 century + century/4 = 146097 century / 4 // days = centurydays + cday + yday + mday. // // We can only handle one periodic cycle per equation, so the year // calculation must be split into [century, cyear], handling both the // 100-year cycle and the 400-year cycle. // // The yday calculation is not obvious but derives from the fact // that the March through January calendar repeats the 5-month // 153-day cycle 31, 30, 31, 30, 31 (we don't care about February // because yday only ever count the days _before_ February 1, // since February is the last month). // // Using the rule for deriving f and f° from f*, these multiplications // convert to these divisions: // // century := (4 days + 3) / 146097 // cdays := (4 days + 3) % 146097 / 4 // cyear := (4 cdays + 3) / 1461 // ayday := (4 cdays + 3) % 1461 / 4 // amonth := (5 ayday + 461) / 153 // mday := (5 ayday + 461) % 153 / 5 // // The a in ayday and amonth stands for absolute (March 1-based) // to distinguish from the standard yday (January 1-based). // // After computing these, we can translate from the March 1 calendar // to the standard January 1 calendar with branch-free math assuming a // branch-free conversion from bool to int 0 or 1, denoted int(b) here: // // isJanFeb := int(yday >= marchThruDecember) // month := amonth - isJanFeb*12 // year := century*100 + cyear + isJanFeb // isLeap := int(cyear%4 == 0) & (int(cyear != 0) | int(century%4 == 0)) // day := 1 + mday // yday := 1 + ayday + 31 + 28 + isLeap&^isJanFeb - 365*isJanFeb // // isLeap is the standard leap-year rule, but the split year form // makes the divisions all reduce to binary masking. // Note that day and yday are 1-based, in contrast to mday and ayday. // To keep the various units separate, we define integer types // for each. These are never stored in interfaces nor allocated, // so their type information does not appear in Go binaries. const ( secondsPerMinute = 60 secondsPerHour = 60 * secondsPerMinute secondsPerDay = 24 * secondsPerHour secondsPerWeek = 7 * secondsPerDay daysPer400Years = 365*400 + 97 // Days from March 1 through end of year marchThruDecember = 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31 // absoluteYears is the number of years we subtract from internal time to get absolute time. // This value must be 0 mod 400, and it defines the “absolute zero instant” // mentioned in the “Computations on Times” comment above: March 1, -absoluteYears. // Dates before the absolute epoch will not compute correctly, // but otherwise the value can be changed as needed. absoluteYears = 292277022400 // The year of the zero Time. // Assumed by the unixToInternal computation below. internalYear = 1 // Offsets to convert between internal and absolute or Unix times. absoluteToInternal int64 = -(absoluteYears*365.2425 + marchThruDecember) * secondsPerDay internalToAbsolute = -absoluteToInternal unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay internalToUnix int64 = -unixToInternal absoluteToUnix = absoluteToInternal + internalToUnix unixToAbsolute = unixToInternal + internalToAbsolute wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay ) // An absSeconds counts the number of seconds since the absolute zero instant. type absSeconds uint64 // An absDays counts the number of days since the absolute zero instant. type absDays uint64 // An absCentury counts the number of centuries since the absolute zero instant. type absCentury uint64 // An absCyear counts the number of years since the start of a century. type absCyear int // An absYday counts the number of days since the start of a year. // Note that absolute years start on March 1. type absYday int // An absMonth counts the number of months since the start of a year. // absMonth=0 denotes March. type absMonth int // An absLeap is a single bit (0 or 1) denoting whether a given year is a leap year. type absLeap int // An absJanFeb is a single bit (0 or 1) denoting whether a given day falls in January or February. // That is a special case because the absolute years start in March (unlike normal calendar years). type absJanFeb int // dateToAbsDays takes a standard year/month/day and returns the // number of days from the absolute epoch to that day. // The days argument can be out of range and in particular can be negative. func dateToAbsDays(year int64, month Month, day int) absDays { // See “Computations on Times” comment above. amonth := uint32(month) janFeb := uint32(0) if amonth < 3 { janFeb = 1 } amonth += 12 * janFeb y := uint64(year) - uint64(janFeb) + absoluteYears // For amonth is in the range [3,14], we want: // // ayday := (153*amonth - 457) / 5 // // (See the “Computations on Times” comment above // as well as Neri and Schneider, section 7.) // // That is equivalent to: // // ayday := (979*amonth - 2919) >> 5 // // and the latter form uses a couple fewer instructions, // so use it, saving a few cycles. // See Neri and Schneider, section 8.3 // for more about this optimization. // // (Note that there is no saved division, because the compiler // implements / 5 without division in all cases.) ayday := (979*amonth - 2919) >> 5 century := y / 100 cyear := uint32(y % 100) cday := 1461 * cyear / 4 centurydays := 146097 * century / 4 return absDays(centurydays + uint64(int64(cday+ayday)+int64(day)-1)) } // days converts absolute seconds to absolute days. func (abs absSeconds) days() absDays { return absDays(abs / secondsPerDay) } // split splits days into century, cyear, ayday. func (days absDays) split() (century absCentury, cyear absCyear, ayday absYday) { // See “Computations on Times” comment above. d := 4*uint64(days) + 3 century = absCentury(d / 146097) // This should be // cday := uint32(d % 146097) / 4 // cd := 4*cday + 3 // which is to say // cday := uint32(d % 146097) >> 2 // cd := cday<<2 + 3 // but of course (x>>2<<2)+3 == x|3, // so do that instead. cd := uint32(d%146097) | 3 // For cdays in the range [0,146097] (100 years), we want: // // cyear := (4 cdays + 3) / 1461 // yday := (4 cdays + 3) % 1461 / 4 // // (See the “Computations on Times” comment above // as well as Neri and Schneider, section 7.) // // That is equivalent to: // // cyear := (2939745 cdays) >> 32 // yday := (2939745 cdays) & 0xFFFFFFFF / 2939745 / 4 // // so do that instead, saving a few cycles. // See Neri and Schneider, section 8.3 // for more about this optimization. hi, lo := bits.Mul32(2939745, uint32(cd)) cyear = absCyear(hi) ayday = absYday(lo / 2939745 / 4) return } // split splits ayday into absolute month and standard (1-based) day-in-month. func (ayday absYday) split() (m absMonth, mday int) { // See “Computations on Times” comment above. // // For yday in the range [0,366], // // amonth := (5 yday + 461) / 153 // mday := (5 yday + 461) % 153 / 5 // // is equivalent to: // // amonth = (2141 yday + 197913) >> 16 // mday = (2141 yday + 197913) & 0xFFFF / 2141 // // so do that instead, saving a few cycles. // See Neri and Schneider, section 8.3. d := 2141*uint32(ayday) + 197913 return absMonth(d >> 16), 1 + int((d&0xFFFF)/2141) } // janFeb returns 1 if the March 1-based ayday is in January or February, 0 otherwise. func (ayday absYday) janFeb() absJanFeb { // See “Computations on Times” comment above. jf := absJanFeb(0) if ayday >= marchThruDecember { jf = 1 } return jf } // month returns the standard Month for (m, janFeb) func (m absMonth) month(janFeb absJanFeb) Month { // See “Computations on Times” comment above. return Month(m) - Month(janFeb)*12 } // leap returns 1 if (century, cyear) is a leap year, 0 otherwise. func (century absCentury) leap(cyear absCyear) absLeap { // See “Computations on Times” comment above. y4ok := 0 if cyear%4 == 0 { y4ok = 1 } y100ok := 0 if cyear != 0 { y100ok = 1 } y400ok := 0 if century%4 == 0 { y400ok = 1 } return absLeap(y4ok & (y100ok | y400ok)) } // year returns the standard year for (century, cyear, janFeb). func (century absCentury) year(cyear absCyear, janFeb absJanFeb) int { // See “Computations on Times” comment above. return int(uint64(century)*100-absoluteYears) + int(cyear) + int(janFeb) } // yday returns the standard 1-based yday for (ayday, janFeb, leap). func (ayday absYday) yday(janFeb absJanFeb, leap absLeap) int { // See “Computations on Times” comment above. return int(ayday) + (1 + 31 + 28) + int(leap)&^int(janFeb) - 365*int(janFeb) } // date converts days into standard year, month, day. func (days absDays) date() (year int, month Month, day int) { century, cyear, ayday := days.split() amonth, day := ayday.split() janFeb := ayday.janFeb() year = century.year(cyear, janFeb) month = amonth.month(janFeb) return } // yearYday converts days into the standard year and 1-based yday. func (days absDays) yearYday() (year, yday int) { century, cyear, ayday := days.split() janFeb := ayday.janFeb() year = century.year(cyear, janFeb) yday = ayday.yday(janFeb, century.leap(cyear)) return } // absSec returns the time t as an absolute seconds, adjusted by the zone offset. // It is called when computing a presentation property like Month or Hour. // We'd rather call it abs, but there are linknames to abs that make that problematic. // See timeAbs below. func (t Time) absSec() absSeconds { l := t.loc // Avoid function calls when possible. if l == nil || l == &localLoc { l = l.get() } sec := t.unixSec() if l != &utcLoc { if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { sec += int64(l.cacheZone.offset) } else { _, offset, _, _, _ := l.lookup(sec) sec += int64(offset) } } return absSeconds(sec + (unixToInternal + internalToAbsolute)) } // locabs is a combination of the Zone and abs methods, // extracting both return values from a single zone lookup. func (t Time) locabs() (name string, offset int, abs absSeconds) { l := t.loc if l == nil || l == &localLoc { l = l.get() } // Avoid function call if we hit the local time cache. sec := t.unixSec() if l != &utcLoc { if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { name = l.cacheZone.name offset = l.cacheZone.offset } else { name, offset, _, _, _ = l.lookup(sec) } sec += int64(offset) } else { name = "UTC" } abs = absSeconds(sec + (unixToInternal + internalToAbsolute)) return } // Date returns the year, month, and day in which t occurs. func (t Time) Date() (year int, month Month, day int) { return t.absSec().days().date() } // Year returns the year in which t occurs. func (t Time) Year() int { century, cyear, ayday := t.absSec().days().split() janFeb := ayday.janFeb() return century.year(cyear, janFeb) } // Month returns the month of the year specified by t. func (t Time) Month() Month { _, _, ayday := t.absSec().days().split() amonth, _ := ayday.split() return amonth.month(ayday.janFeb()) } // Day returns the day of the month specified by t. func (t Time) Day() int { _, _, ayday := t.absSec().days().split() _, day := ayday.split() return day } // Weekday returns the day of the week specified by t. func (t Time) Weekday() Weekday { return t.absSec().days().weekday() } // weekday returns the day of the week specified by days. func (days absDays) weekday() Weekday { // March 1 of the absolute year, like March 1 of 2000, was a Wednesday. return Weekday((uint64(days) + uint64(Wednesday)) % 7) } // ISOWeek returns the ISO 8601 year and week number in which t occurs. // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 // of year n+1. func (t Time) ISOWeek() (year, week int) { // According to the rule that the first calendar week of a calendar year is // the week including the first Thursday of that year, and that the last one is // the week immediately preceding the first calendar week of the next calendar year. // See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details. // weeks start with Monday // Monday Tuesday Wednesday Thursday Friday Saturday Sunday // 1 2 3 4 5 6 7 // +3 +2 +1 0 -1 -2 -3 // the offset to Thursday days := t.absSec().days() thu := days + absDays(Thursday-((days-1).weekday()+1)) year, yday := thu.yearYday() return year, (yday-1)/7 + 1 } // Clock returns the hour, minute, and second within the day specified by t. func (t Time) Clock() (hour, min, sec int) { return t.absSec().clock() } // clock returns the hour, minute, and second within the day specified by abs. func (abs absSeconds) clock() (hour, min, sec int) { sec = int(abs % secondsPerDay) hour = sec / secondsPerHour sec -= hour * secondsPerHour min = sec / secondsPerMinute sec -= min * secondsPerMinute return } // Hour returns the hour within the day specified by t, in the range [0, 23]. func (t Time) Hour() int { return int(t.absSec()%secondsPerDay) / secondsPerHour } // Minute returns the minute offset within the hour specified by t, in the range [0, 59]. func (t Time) Minute() int { return int(t.absSec()%secondsPerHour) / secondsPerMinute } // Second returns the second offset within the minute specified by t, in the range [0, 59]. func (t Time) Second() int { return int(t.absSec() % secondsPerMinute) } // Nanosecond returns the nanosecond offset within the second specified by t, // in the range [0, 999999999]. func (t Time) Nanosecond() int { return int(t.nsec()) } // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, // and [1,366] in leap years. func (t Time) YearDay() int { _, yday := t.absSec().days().yearYday() return yday } // A Duration represents the elapsed time between two instants // as an int64 nanosecond count. The representation limits the // largest representable duration to approximately 290 years. type Duration int64 const ( minDuration Duration = -1 << 63 maxDuration Duration = 1<<63 - 1 ) // Common durations. There is no definition for units of Day or larger // to avoid confusion across daylight savings time zone transitions. // // To count the number of units in a [Duration], divide: // // second := time.Second // fmt.Print(int64(second/time.Millisecond)) // prints 1000 // // To convert an integer number of units to a Duration, multiply: // // seconds := 10 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s const ( Nanosecond Duration = 1 Microsecond = 1000 * Nanosecond Millisecond = 1000 * Microsecond Second = 1000 * Millisecond Minute = 60 * Second Hour = 60 * Minute ) // String returns a string representing the duration in the form "72h3m0.5s". // Leading zero units are omitted. As a special case, durations less than one // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure // that the leading digit is non-zero. The zero duration formats as 0s. func (d Duration) String() string { // This is inlinable to take advantage of "function outlining". // Thus, the caller can decide whether a string must be heap allocated. var arr [32]byte n := d.format(&arr) return string(arr[n:]) } // format formats the representation of d into the end of buf and // returns the offset of the first character. func (d Duration) format(buf *[32]byte) int { // Largest time is 2540400h10m10.000000000s w := len(buf) u := uint64(d) neg := d < 0 if neg { u = -u } if u < uint64(Second) { // Special case: if duration is smaller than a second, // use smaller units, like 1.2ms var prec int w-- buf[w] = 's' w-- switch { case u == 0: buf[w] = '0' return w case u < uint64(Microsecond): // print nanoseconds prec = 0 buf[w] = 'n' case u < uint64(Millisecond): // print microseconds prec = 3 // U+00B5 'µ' micro sign == 0xC2 0xB5 w-- // Need room for two bytes. copy(buf[w:], "µ") default: // print milliseconds prec = 6 buf[w] = 'm' } w, u = fmtFrac(buf[:w], u, prec) w = fmtInt(buf[:w], u) } else { w-- buf[w] = 's' w, u = fmtFrac(buf[:w], u, 9) // u is now integer seconds w = fmtInt(buf[:w], u%60) u /= 60 // u is now integer minutes if u > 0 { w-- buf[w] = 'm' w = fmtInt(buf[:w], u%60) u /= 60 // u is now integer hours // Stop at hours because days can be different lengths. if u > 0 { w-- buf[w] = 'h' w = fmtInt(buf[:w], u) } } } if neg { w-- buf[w] = '-' } return w } // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the // tail of buf, omitting trailing zeros. It omits the decimal // point too when the fraction is 0. It returns the index where the // output bytes begin and the value v/10**prec. func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { // Omit trailing zeros up to and including decimal point. w := len(buf) print := false for i := 0; i < prec; i++ { digit := v % 10 print = print || digit != 0 if print { w-- buf[w] = byte(digit) + '0' } v /= 10 } if print { w-- buf[w] = '.' } return w, v } // fmtInt formats v into the tail of buf. // It returns the index where the output begins. func fmtInt(buf []byte, v uint64) int { w := len(buf) if v == 0 { w-- buf[w] = '0' } else { for v > 0 { w-- buf[w] = byte(v%10) + '0' v /= 10 } } return w } // Nanoseconds returns the duration as an integer nanosecond count. func (d Duration) Nanoseconds() int64 { return int64(d) } // Microseconds returns the duration as an integer microsecond count. func (d Duration) Microseconds() int64 { return int64(d) / 1e3 } // Milliseconds returns the duration as an integer millisecond count. func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 } // These methods return float64 because the dominant // use case is for printing a floating point number like 1.5s, and // a truncation to integer would make them not useful in those cases. // Splitting the integer and fraction ourselves guarantees that // converting the returned float64 to an integer rounds the same // way that a pure integer conversion would have, even in cases // where, say, float64(d.Nanoseconds())/1e9 would have rounded // differently. // Seconds returns the duration as a floating point number of seconds. func (d Duration) Seconds() float64 { sec := d / Second nsec := d % Second return float64(sec) + float64(nsec)/1e9 } // Minutes returns the duration as a floating point number of minutes. func (d Duration) Minutes() float64 { min := d / Minute nsec := d % Minute return float64(min) + float64(nsec)/(60*1e9) } // Hours returns the duration as a floating point number of hours. func (d Duration) Hours() float64 { hour := d / Hour nsec := d % Hour return float64(hour) + float64(nsec)/(60*60*1e9) } // Truncate returns the result of rounding d toward zero to a multiple of m. // If m <= 0, Truncate returns d unchanged. func (d Duration) Truncate(m Duration) Duration { if m <= 0 { return d } return d - d%m } // lessThanHalf reports whether x+x < y but avoids overflow, // assuming x and y are both positive (Duration is signed). func lessThanHalf(x, y Duration) bool { return uint64(x)+uint64(x) < uint64(y) } // Round returns the result of rounding d to the nearest multiple of m. // The rounding behavior for halfway values is to round away from zero. // If the result exceeds the maximum (or minimum) // value that can be stored in a [Duration], // Round returns the maximum (or minimum) duration. // If m <= 0, Round returns d unchanged. func (d Duration) Round(m Duration) Duration { if m <= 0 { return d } r := d % m if d < 0 { r = -r if lessThanHalf(r, m) { return d + r } if d1 := d - m + r; d1 < d { return d1 } return minDuration // overflow } if lessThanHalf(r, m) { return d - r } if d1 := d + m - r; d1 > d { return d1 } return maxDuration // overflow } // Abs returns the absolute value of d. // As a special case, Duration([math.MinInt64]) is converted to Duration([math.MaxInt64]), // reducing its magnitude by 1 nanosecond. func (d Duration) Abs() Duration { switch { case d >= 0: return d case d == minDuration: return maxDuration default: return -d } } // Add returns the time t+d. func (t Time) Add(d Duration) Time { dsec := int64(d / 1e9) nsec := t.nsec() + int32(d%1e9) if nsec >= 1e9 { dsec++ nsec -= 1e9 } else if nsec < 0 { dsec-- nsec += 1e9 } t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec t.addSec(dsec) if t.wall&hasMonotonic != 0 { te := t.ext + int64(d) if d < 0 && te > t.ext || d > 0 && te < t.ext { // Monotonic clock reading now out of range; degrade to wall-only. t.stripMono() } else { t.ext = te } } return t } // Sub returns the duration t-u. If the result exceeds the maximum (or minimum) // value that can be stored in a [Duration], the maximum (or minimum) duration // will be returned. // To compute t-d for a duration d, use t.Add(-d). func (t Time) Sub(u Time) Duration { if t.wall&u.wall&hasMonotonic != 0 { return subMono(t.ext, u.ext) } d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec()) // Check for overflow or underflow. switch { case u.Add(d).Equal(t): return d // d is correct case t.Before(u): return minDuration // t - u is negative out of range default: return maxDuration // t - u is positive out of range } } func subMono(t, u int64) Duration { d := Duration(t - u) if d < 0 && t > u { return maxDuration // t - u is positive out of range } if d > 0 && t < u { return minDuration // t - u is negative out of range } return d } // Since returns the time elapsed since t. // It is shorthand for time.Now().Sub(t). func Since(t Time) Duration { if t.wall&hasMonotonic != 0 { // Common case optimization: if t has monotonic time, then Sub will use only it. return subMono(runtimeNano()-startNano, t.ext) } return Now().Sub(t) } // Until returns the duration until t. // It is shorthand for t.Sub(time.Now()). func Until(t Time) Duration { if t.wall&hasMonotonic != 0 { // Common case optimization: if t has monotonic time, then Sub will use only it. return subMono(t.ext, runtimeNano()-startNano) } return t.Sub(Now()) } // AddDate returns the time corresponding to adding the // given number of years, months, and days to t. // For example, AddDate(-1, 2, 3) applied to January 1, 2011 // returns March 4, 2010. // // Note that dates are fundamentally coupled to timezones, and calendrical // periods like days don't have fixed durations. AddDate uses the Location of // the Time value to determine these durations. That means that the same // AddDate arguments can produce a different shift in absolute time depending on // the base Time value and its Location. For example, AddDate(0, 0, 1) applied // to 12:00 on March 27 always returns 12:00 on March 28. At some locations and // in some years this is a 24 hour shift. In others it's a 23 hour shift due to // daylight savings time transitions. // // AddDate normalizes its result in the same way that Date does, // so, for example, adding one month to October 31 yields // December 1, the normalized form for November 31. func (t Time) AddDate(years int, months int, days int) Time { year, month, day := t.Date() hour, min, sec := t.Clock() return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location()) } // daysBefore returns the number of days in a non-leap year before month m. // daysBefore(December+1) returns 365. func daysBefore(m Month) int { adj := 0 if m >= March { adj = -2 } // With the -2 adjustment after February, // we need to compute the running sum of: // 0 31 30 31 30 31 30 31 31 30 31 30 31 // which is: // 0 31 61 92 122 153 183 214 245 275 306 336 367 // This is almost exactly 367/12×(m-1) except for the // occasonal off-by-one suggesting there may be an // integer approximation of the form (a×m + b)/c. // A brute force search over small a, b, c finds that // (214×m - 211) / 7 computes the function perfectly. return (214*int(m)-211)/7 + adj } func daysIn(m Month, year int) int { if m == February { if isLeap(year) { return 29 } return 28 } // With the special case of February eliminated, the pattern is // 31 30 31 30 31 30 31 31 30 31 30 31 // Adding m&1 produces the basic alternation; // adding (m>>3)&1 inverts the alternation starting in August. return 30 + int((m+m>>3)&1) } // Provided by package runtime. func now() (sec int64, nsec int32, mono int64) // runtimeNano returns the current value of the runtime clock in nanoseconds. // //go:linkname runtimeNano runtime.nanotime func runtimeNano() int64 // Monotonic times are reported as offsets from startNano. // We initialize startNano to runtimeNano() - 1 so that on systems where // monotonic time resolution is fairly low (e.g. Windows 2008 // which appears to have a default resolution of 15ms), // we avoid ever reporting a monotonic time of 0. // (Callers may want to use 0 as "time not set".) var startNano int64 = runtimeNano() - 1 // x/tools uses a linkname of time.Now in its tests. No harm done. //go:linkname Now // Now returns the current local time. func Now() Time { sec, nsec, mono := now() mono -= startNano sec += unixToInternal - minWall if uint64(sec)>>33 != 0 { // Seconds field overflowed the 33 bits available when // storing a monotonic time. This will be true after // March 16, 2157. return Time{uint64(nsec), sec + minWall, Local} } return Time{hasMonotonic | uint64(sec)< 32767 { return b, errors.New("Time.MarshalBinary: unexpected zone offset") } offsetMin = int16(offset) } sec := t.sec() nsec := t.nsec() b = append(b, version, // byte 0 : version byte(sec>>56), // bytes 1-8: seconds byte(sec>>48), byte(sec>>40), byte(sec>>32), byte(sec>>24), byte(sec>>16), byte(sec>>8), byte(sec), byte(nsec>>24), // bytes 9-12: nanoseconds byte(nsec>>16), byte(nsec>>8), byte(nsec), byte(offsetMin>>8), // bytes 13-14: zone offset in minutes byte(offsetMin), ) if version == timeBinaryVersionV2 { b = append(b, byte(offsetSec)) } return b, nil } // MarshalBinary implements the [encoding.BinaryMarshaler] interface. func (t Time) MarshalBinary() ([]byte, error) { b, err := t.AppendBinary(make([]byte, 0, 16)) if err != nil { return nil, err } return b, nil } // UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface. func (t *Time) UnmarshalBinary(data []byte) error { buf := data if len(buf) == 0 { return errors.New("Time.UnmarshalBinary: no data") } version := buf[0] if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 { return errors.New("Time.UnmarshalBinary: unsupported version") } wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2 if version == timeBinaryVersionV2 { wantLen++ } if len(buf) != wantLen { return errors.New("Time.UnmarshalBinary: invalid length") } buf = buf[1:] sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 buf = buf[8:] nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24 buf = buf[4:] offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 if version == timeBinaryVersionV2 { offset += int(buf[2]) } *t = Time{} t.wall = uint64(nsec) t.ext = sec if offset == -1*60 { t.setLoc(&utcLoc) } else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff { t.setLoc(Local) } else { t.setLoc(FixedZone("", offset)) } return nil } // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. // The same semantics will be provided by the generic MarshalBinary, MarshalText, // UnmarshalBinary, UnmarshalText. // GobEncode implements the gob.GobEncoder interface. func (t Time) GobEncode() ([]byte, error) { return t.MarshalBinary() } // GobDecode implements the gob.GobDecoder interface. func (t *Time) GobDecode(data []byte) error { return t.UnmarshalBinary(data) } // MarshalJSON implements the [encoding/json.Marshaler] interface. // The time is a quoted string in the RFC 3339 format with sub-second precision. // If the timestamp cannot be represented as valid RFC 3339 // (e.g., the year is out of range), then an error is reported. func (t Time) MarshalJSON() ([]byte, error) { b := make([]byte, 0, len(RFC3339Nano)+len(`""`)) b = append(b, '"') b, err := t.appendStrictRFC3339(b) b = append(b, '"') if err != nil { return nil, errors.New("Time.MarshalJSON: " + err.Error()) } return b, nil } // UnmarshalJSON implements the [encoding/json.Unmarshaler] interface. // The time must be a quoted string in the RFC 3339 format. func (t *Time) UnmarshalJSON(data []byte) error { if string(data) == "null" { return nil } // TODO(https://go.dev/issue/47353): Properly unescape a JSON string. if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' { return errors.New("Time.UnmarshalJSON: input is not a JSON string") } data = data[len(`"`) : len(data)-len(`"`)] var err error *t, err = parseStrictRFC3339(data) return err } func (t Time) appendTo(b []byte, errPrefix string) ([]byte, error) { b, err := t.appendStrictRFC3339(b) if err != nil { return nil, errors.New(errPrefix + err.Error()) } return b, nil } // AppendText implements the [encoding.TextAppender] interface. // The time is formatted in RFC 3339 format with sub-second precision. // If the timestamp cannot be represented as valid RFC 3339 // (e.g., the year is out of range), then an error is returned. func (t Time) AppendText(b []byte) ([]byte, error) { return t.appendTo(b, "Time.AppendText: ") } // MarshalText implements the [encoding.TextMarshaler] interface. The output // matches that of calling the [Time.AppendText] method. // // See [Time.AppendText] for more information. func (t Time) MarshalText() ([]byte, error) { return t.appendTo(make([]byte, 0, len(RFC3339Nano)), "Time.MarshalText: ") } // UnmarshalText implements the [encoding.TextUnmarshaler] interface. // The time must be in the RFC 3339 format. func (t *Time) UnmarshalText(data []byte) error { var err error *t, err = parseStrictRFC3339(data) return err } // Unix returns the local Time corresponding to the given Unix time, // sec seconds and nsec nanoseconds since January 1, 1970 UTC. // It is valid to pass nsec outside the range [0, 999999999]. // Not all sec values have a corresponding time value. One such // value is 1<<63-1 (the largest int64 value). func Unix(sec int64, nsec int64) Time { if nsec < 0 || nsec >= 1e9 { n := nsec / 1e9 sec += n nsec -= n * 1e9 if nsec < 0 { nsec += 1e9 sec-- } } return unixTime(sec, int32(nsec)) } // UnixMilli returns the local Time corresponding to the given Unix time, // msec milliseconds since January 1, 1970 UTC. func UnixMilli(msec int64) Time { return Unix(msec/1e3, (msec%1e3)*1e6) } // UnixMicro returns the local Time corresponding to the given Unix time, // usec microseconds since January 1, 1970 UTC. func UnixMicro(usec int64) Time { return Unix(usec/1e6, (usec%1e6)*1e3) } // IsDST reports whether the time in the configured location is in Daylight Savings Time. func (t Time) IsDST() bool { _, _, _, _, isDST := t.loc.lookup(t.Unix()) return isDST } func isLeap(year int) bool { // year%4 == 0 && (year%100 != 0 || year%400 == 0) // Bottom 2 bits must be clear. // For multiples of 25, bottom 4 bits must be clear. // Thanks to Cassio Neri for this trick. mask := 0xf if year%25 != 0 { mask = 3 } return year&mask == 0 } // norm returns nhi, nlo such that // // hi * base + lo == nhi * base + nlo // 0 <= nlo < base func norm(hi, lo, base int) (nhi, nlo int) { if lo < 0 { n := (-lo-1)/base + 1 hi -= n lo += n * base } if lo >= base { n := lo / base hi += n lo -= n * base } return hi, lo } // Date returns the Time corresponding to // // yyyy-mm-dd hh:mm:ss + nsec nanoseconds // // in the appropriate zone for that time in the given location. // // The month, day, hour, min, sec, and nsec values may be outside // their usual ranges and will be normalized during the conversion. // For example, October 32 converts to November 1. // // A daylight savings time transition skips or repeats times. // For example, in the United States, March 13, 2011 2:15am never occurred, // while November 6, 2011 1:15am occurred twice. In such cases, the // choice of time zone, and therefore the time, is not well-defined. // Date returns a time that is correct in one of the two zones involved // in the transition, but it does not guarantee which. // // Date panics if loc is nil. func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { if loc == nil { panic("time: missing Location in call to Date") } // Normalize month, overflowing into year. m := int(month) - 1 year, m = norm(year, m, 12) month = Month(m) + 1 // Normalize nsec, sec, min, hour, overflowing into day. sec, nsec = norm(sec, nsec, 1e9) min, sec = norm(min, sec, 60) hour, min = norm(hour, min, 60) day, hour = norm(day, hour, 24) // Convert to absolute time and then Unix time. unix := int64(dateToAbsDays(int64(year), month, day))*secondsPerDay + int64(hour*secondsPerHour+min*secondsPerMinute+sec) + absoluteToUnix // Look for zone offset for expected time, so we can adjust to UTC. // The lookup function expects UTC, so first we pass unix in the // hope that it will not be too close to a zone transition, // and then adjust if it is. _, offset, start, end, _ := loc.lookup(unix) if offset != 0 { utc := unix - int64(offset) // If utc is valid for the time zone we found, then we have the right offset. // If not, we get the correct offset by looking up utc in the location. if utc < start || utc >= end { _, offset, _, _, _ = loc.lookup(utc) } unix -= int64(offset) } t := unixTime(unix, int32(nsec)) t.setLoc(loc) return t } // Truncate returns the result of rounding t down to a multiple of d (since the zero time). // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged. // // Truncate operates on the time as an absolute duration since the // zero time; it does not operate on the presentation form of the // time. Thus, Truncate(Hour) may return a time with a non-zero // minute, depending on the time's Location. func (t Time) Truncate(d Duration) Time { t.stripMono() if d <= 0 { return t } _, r := div(t, d) return t.Add(-r) } // Round returns the result of rounding t to the nearest multiple of d (since the zero time). // The rounding behavior for halfway values is to round up. // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged. // // Round operates on the time as an absolute duration since the // zero time; it does not operate on the presentation form of the // time. Thus, Round(Hour) may return a time with a non-zero // minute, depending on the time's Location. func (t Time) Round(d Duration) Time { t.stripMono() if d <= 0 { return t } _, r := div(t, d) if lessThanHalf(r, d) { return t.Add(-r) } return t.Add(d - r) } // div divides t by d and returns the quotient parity and remainder. // We don't use the quotient parity anymore (round half up instead of round to even) // but it's still here in case we change our minds. func div(t Time, d Duration) (qmod2 int, r Duration) { neg := false nsec := t.nsec() sec := t.sec() if sec < 0 { // Operate on absolute value. neg = true sec = -sec nsec = -nsec if nsec < 0 { nsec += 1e9 sec-- // sec >= 1 before the -- so safe } } switch { // Special case: 2d divides 1 second. case d < Second && Second%(d+d) == 0: qmod2 = int(nsec/int32(d)) & 1 r = Duration(nsec % int32(d)) // Special case: d is a multiple of 1 second. case d%Second == 0: d1 := int64(d / Second) qmod2 = int(sec/d1) & 1 r = Duration(sec%d1)*Second + Duration(nsec) // General case. // This could be faster if more cleverness were applied, // but it's really only here to avoid special case restrictions in the API. // No one will care about these cases. default: // Compute nanoseconds as 128-bit number. sec := uint64(sec) tmp := (sec >> 32) * 1e9 u1 := tmp >> 32 u0 := tmp << 32 tmp = (sec & 0xFFFFFFFF) * 1e9 u0x, u0 := u0, u0+tmp if u0 < u0x { u1++ } u0x, u0 = u0, u0+uint64(nsec) if u0 < u0x { u1++ } // Compute remainder by subtracting r<>63 != 1 { d1 <<= 1 } d0 := uint64(0) for { qmod2 = 0 if u1 > d1 || u1 == d1 && u0 >= d0 { // subtract qmod2 = 1 u0x, u0 = u0, u0-d0 if u0 > u0x { u1-- } u1 -= d1 } if d1 == 0 && d0 == uint64(d) { break } d0 >>= 1 d0 |= (d1 & 1) << 63 d1 >>= 1 } r = Duration(u0) } if neg && r != 0 { // If input was negative and not an exact multiple of d, we computed q, r such that // q*d + r = -t // But the right answers are given by -(q-1), d-r: // q*d + r = -t // -q*d - r = t // -(q-1)*d + (d - r) = t qmod2 ^= 1 r = d - r } return } // Regrettable Linkname Compatibility // // timeAbs, absDate, and absClock mimic old internal details, no longer used. // Widely used packages linknamed these to get “faster” time routines. // Notable members of the hall of shame include: // - gitee.com/quant1x/gox // - github.com/phuslu/log // // phuslu hard-coded 'Unix time + 9223372028715321600' [sic] // as the input to absDate and absClock, using the old Jan 1-based // absolute times. // quant1x linknamed the time.Time.abs method and passed the // result of that method to absDate and absClock. // // Keeping both of these working forces us to provide these three // routines here, operating on the old Jan 1-based epoch instead // of the new March 1-based epoch. And the fact that time.Time.abs // was linknamed means that we have to call the current abs method // something different (time.Time.absSec, defined above) to make it // possible to provide this simulation of the old routines here. // // None of this code is linked into the binary if not referenced by // these linkname-happy packages. In particular, despite its name, // time.Time.abs does not appear in the time.Time method table. // // Do not remove these routines or their linknames, or change the // type signature or meaning of arguments. //go:linkname legacyTimeTimeAbs time.Time.abs func legacyTimeTimeAbs(t Time) uint64 { return uint64(t.absSec() - marchThruDecember*secondsPerDay) } //go:linkname legacyAbsClock time.absClock func legacyAbsClock(abs uint64) (hour, min, sec int) { return absSeconds(abs + marchThruDecember*secondsPerDay).clock() } //go:linkname legacyAbsDate time.absDate func legacyAbsDate(abs uint64, full bool) (year int, month Month, day int, yday int) { d := absSeconds(abs + marchThruDecember*secondsPerDay).days() year, month, day = d.date() _, yday = d.yearYday() yday-- // yearYday is 1-based, old API was 0-based return }