Source file src/cmd/internal/obj/link.go

     1  // Derived from Inferno utils/6l/l.h and related files.
     2  // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/l.h
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package obj
    32  
    33  import (
    34  	"bufio"
    35  	"bytes"
    36  	"cmd/internal/dwarf"
    37  	"cmd/internal/goobj"
    38  	"cmd/internal/objabi"
    39  	"cmd/internal/src"
    40  	"cmd/internal/sys"
    41  	"encoding/binary"
    42  	"fmt"
    43  	"internal/abi"
    44  	"sync"
    45  	"sync/atomic"
    46  )
    47  
    48  // An Addr is an argument to an instruction.
    49  // The general forms and their encodings are:
    50  //
    51  //	sym±offset(symkind)(reg)(index*scale)
    52  //		Memory reference at address &sym(symkind) + offset + reg + index*scale.
    53  //		Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted.
    54  //		If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg).
    55  //		To force a parsing as index*scale, write (index*1).
    56  //		Encoding:
    57  //			type = TYPE_MEM
    58  //			name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE)
    59  //			sym = sym
    60  //			offset = ±offset
    61  //			reg = reg (REG_*)
    62  //			index = index (REG_*)
    63  //			scale = scale (1, 2, 4, 8)
    64  //
    65  //	$<mem>
    66  //		Effective address of memory reference <mem>, defined above.
    67  //		Encoding: same as memory reference, but type = TYPE_ADDR.
    68  //
    69  //	$<±integer value>
    70  //		This is a special case of $<mem>, in which only ±offset is present.
    71  //		It has a separate type for easy recognition.
    72  //		Encoding:
    73  //			type = TYPE_CONST
    74  //			offset = ±integer value
    75  //
    76  //	*<mem>
    77  //		Indirect reference through memory reference <mem>, defined above.
    78  //		Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function
    79  //		pointer stored in the data word sym(SB), not a function named sym(SB).
    80  //		Encoding: same as above, but type = TYPE_INDIR.
    81  //
    82  //	$*$<mem>
    83  //		No longer used.
    84  //		On machines with actual SB registers, $*$<mem> forced the
    85  //		instruction encoding to use a full 32-bit constant, never a
    86  //		reference relative to SB.
    87  //
    88  //	$<floating point literal>
    89  //		Floating point constant value.
    90  //		Encoding:
    91  //			type = TYPE_FCONST
    92  //			val = floating point value
    93  //
    94  //	$<string literal, up to 8 chars>
    95  //		String literal value (raw bytes used for DATA instruction).
    96  //		Encoding:
    97  //			type = TYPE_SCONST
    98  //			val = string
    99  //
   100  //	<symbolic constant name>
   101  //		Special symbolic constants for ARM64, such as conditional flags, tlbi_op and so on.
   102  //		Encoding:
   103  //			type = TYPE_SPECIAL
   104  //			offset = The constant value corresponding to this symbol
   105  //
   106  //	<register name>
   107  //		Any register: integer, floating point, control, segment, and so on.
   108  //		If looking for specific register kind, must check type and reg value range.
   109  //		Encoding:
   110  //			type = TYPE_REG
   111  //			reg = reg (REG_*)
   112  //
   113  //	x(PC)
   114  //		Encoding:
   115  //			type = TYPE_BRANCH
   116  //			val = Prog* reference OR ELSE offset = target pc (branch takes priority)
   117  //
   118  //	$±x-±y
   119  //		Final argument to TEXT, specifying local frame size x and argument size y.
   120  //		In this form, x and y are integer literals only, not arbitrary expressions.
   121  //		This avoids parsing ambiguities due to the use of - as a separator.
   122  //		The ± are optional.
   123  //		If the final argument to TEXT omits the -±y, the encoding should still
   124  //		use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown.
   125  //		Encoding:
   126  //			type = TYPE_TEXTSIZE
   127  //			offset = x
   128  //			val = int32(y)
   129  //
   130  //	reg<<shift, reg>>shift, reg->shift, reg@>shift
   131  //		Shifted register value, for ARM and ARM64.
   132  //		In this form, reg must be a register and shift can be a register or an integer constant.
   133  //		Encoding:
   134  //			type = TYPE_SHIFT
   135  //		On ARM:
   136  //			offset = (reg&15) | shifttype<<5 | count
   137  //			shifttype = 0, 1, 2, 3 for <<, >>, ->, @>
   138  //			count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant.
   139  //		On ARM64:
   140  //			offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10
   141  //			shifttype = 0, 1, 2 for <<, >>, ->
   142  //
   143  //	(reg, reg)
   144  //		A destination register pair. When used as the last argument of an instruction,
   145  //		this form makes clear that both registers are destinations.
   146  //		Encoding:
   147  //			type = TYPE_REGREG
   148  //			reg = first register
   149  //			offset = second register
   150  //
   151  //	[reg, reg, reg-reg]
   152  //		Register list for ARM, ARM64, 386/AMD64.
   153  //		Encoding:
   154  //			type = TYPE_REGLIST
   155  //		On ARM:
   156  //			offset = bit mask of registers in list; R0 is low bit.
   157  //		On ARM64:
   158  //			offset = register count (Q:size) | arrangement (opcode) | first register
   159  //		On 386/AMD64:
   160  //			reg = range low register
   161  //			offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange)
   162  //
   163  //	reg, reg
   164  //		Register pair for ARM.
   165  //		TYPE_REGREG2
   166  //
   167  //	(reg+reg)
   168  //		Register pair for PPC64.
   169  //		Encoding:
   170  //			type = TYPE_MEM
   171  //			reg = first register
   172  //			index = second register
   173  //			scale = 1
   174  //
   175  //	reg.[US]XT[BHWX]
   176  //		Register extension for ARM64
   177  //		Encoding:
   178  //			type = TYPE_REG
   179  //			reg = REG_[US]XT[BHWX] + register + shift amount
   180  //			offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10)
   181  //
   182  //	reg.<T>
   183  //		Register arrangement for ARM64 and Loong64 SIMD register
   184  //		e.g.:
   185  //			On ARM64: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16
   186  //			On Loong64: X1.B32, X1.H16, X1.W8, X2.V4, X1.Q1, V1.B16, V1.H8, V1.W4, V1.V2
   187  //		Encoding:
   188  //			type = TYPE_REG
   189  //			reg = REG_ARNG + register + arrangement
   190  //
   191  //	reg.<T>[index]
   192  //		Register element for ARM64 and Loong64
   193  //		Encoding:
   194  //			type = TYPE_REG
   195  //			reg = REG_ELEM + register + arrangement
   196  //			index = element index
   197  
   198  type Addr struct {
   199  	Reg    int16
   200  	Index  int16
   201  	Scale  int16 // Sometimes holds a register.
   202  	Type   AddrType
   203  	Name   AddrName
   204  	Class  int8
   205  	Offset int64
   206  	Sym    *LSym
   207  
   208  	// argument value:
   209  	//	for TYPE_SCONST, a string
   210  	//	for TYPE_FCONST, a float64
   211  	//	for TYPE_BRANCH, a *Prog (optional)
   212  	//	for TYPE_TEXTSIZE, an int32 (optional)
   213  	Val interface{}
   214  }
   215  
   216  type AddrName int8
   217  
   218  const (
   219  	NAME_NONE AddrName = iota
   220  	NAME_EXTERN
   221  	NAME_STATIC
   222  	NAME_AUTO
   223  	NAME_PARAM
   224  	// A reference to name@GOT(SB) is a reference to the entry in the global offset
   225  	// table for 'name'.
   226  	NAME_GOTREF
   227  	// Indicates that this is a reference to a TOC anchor.
   228  	NAME_TOCREF
   229  )
   230  
   231  //go:generate stringer -type AddrType
   232  
   233  type AddrType uint8
   234  
   235  const (
   236  	TYPE_NONE AddrType = iota
   237  	TYPE_BRANCH
   238  	TYPE_TEXTSIZE
   239  	TYPE_MEM
   240  	TYPE_CONST
   241  	TYPE_FCONST
   242  	TYPE_SCONST
   243  	TYPE_REG
   244  	TYPE_ADDR
   245  	TYPE_SHIFT
   246  	TYPE_REGREG
   247  	TYPE_REGREG2
   248  	TYPE_INDIR
   249  	TYPE_REGLIST
   250  	TYPE_SPECIAL
   251  )
   252  
   253  func (a *Addr) Target() *Prog {
   254  	if a.Type == TYPE_BRANCH && a.Val != nil {
   255  		return a.Val.(*Prog)
   256  	}
   257  	return nil
   258  }
   259  func (a *Addr) SetTarget(t *Prog) {
   260  	if a.Type != TYPE_BRANCH {
   261  		panic("setting branch target when type is not TYPE_BRANCH")
   262  	}
   263  	a.Val = t
   264  }
   265  
   266  func (a *Addr) SetConst(v int64) {
   267  	a.Sym = nil
   268  	a.Type = TYPE_CONST
   269  	a.Offset = v
   270  }
   271  
   272  // Prog describes a single machine instruction.
   273  //
   274  // The general instruction form is:
   275  //
   276  //	(1) As.Scond From [, ...RestArgs], To
   277  //	(2) As.Scond From, Reg [, ...RestArgs], To, RegTo2
   278  //
   279  // where As is an opcode and the others are arguments:
   280  // From, Reg are sources, and To, RegTo2 are destinations.
   281  // RestArgs can hold additional sources and destinations.
   282  // Usually, not all arguments are present.
   283  // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2.
   284  // The Scond field holds additional condition bits for systems (like arm)
   285  // that have generalized conditional execution.
   286  // (2) form is present for compatibility with older code,
   287  // to avoid too much changes in a single swing.
   288  // (1) scheme is enough to express any kind of operand combination.
   289  //
   290  // Jump instructions use the To.Val field to point to the target *Prog,
   291  // which must be in the same linked list as the jump instruction.
   292  //
   293  // The Progs for a given function are arranged in a list linked through the Link field.
   294  //
   295  // Each Prog is charged to a specific source line in the debug information,
   296  // specified by Pos.Line().
   297  // Every Prog has a Ctxt field that defines its context.
   298  // For performance reasons, Progs are usually bulk allocated, cached, and reused;
   299  // those bulk allocators should always be used, rather than new(Prog).
   300  //
   301  // The other fields not yet mentioned are for use by the back ends and should
   302  // be left zeroed by creators of Prog lists.
   303  type Prog struct {
   304  	Ctxt     *Link     // linker context
   305  	Link     *Prog     // next Prog in linked list
   306  	From     Addr      // first source operand
   307  	RestArgs []AddrPos // can pack any operands that not fit into {Prog.From, Prog.To}, same kinds of operands are saved in order
   308  	To       Addr      // destination operand (second is RegTo2 below)
   309  	Pool     *Prog     // constant pool entry, for arm,arm64 back ends
   310  	Forwd    *Prog     // for x86 back end
   311  	Rel      *Prog     // for x86, arm back ends
   312  	Pc       int64     // for back ends or assembler: virtual or actual program counter, depending on phase
   313  	Pos      src.XPos  // source position of this instruction
   314  	Spadj    int32     // effect of instruction on stack pointer (increment or decrement amount)
   315  	As       As        // assembler opcode
   316  	Reg      int16     // 2nd source operand
   317  	RegTo2   int16     // 2nd destination operand
   318  	Mark     uint16    // bitmask of arch-specific items
   319  	Optab    uint16    // arch-specific opcode index
   320  	Scond    uint8     // bits that describe instruction suffixes (e.g. ARM conditions, RISCV Rounding Mode)
   321  	Back     uint8     // for x86 back end: backwards branch state
   322  	Ft       uint8     // for x86 back end: type index of Prog.From
   323  	Tt       uint8     // for x86 back end: type index of Prog.To
   324  	Isize    uint8     // for x86 back end: size of the instruction in bytes
   325  }
   326  
   327  // AddrPos indicates whether the operand is the source or the destination.
   328  type AddrPos struct {
   329  	Addr
   330  	Pos OperandPos
   331  }
   332  
   333  type OperandPos int8
   334  
   335  const (
   336  	Source OperandPos = iota
   337  	Destination
   338  )
   339  
   340  // From3Type returns p.GetFrom3().Type, or TYPE_NONE when
   341  // p.GetFrom3() returns nil.
   342  func (p *Prog) From3Type() AddrType {
   343  	from3 := p.GetFrom3()
   344  	if from3 == nil {
   345  		return TYPE_NONE
   346  	}
   347  	return from3.Type
   348  }
   349  
   350  // GetFrom3 returns second source operand (the first is Prog.From).
   351  // The same kinds of operands are saved in order so GetFrom3 actually
   352  // return the first source operand in p.RestArgs.
   353  // In combination with Prog.From and Prog.To it makes common 3 operand
   354  // case easier to use.
   355  func (p *Prog) GetFrom3() *Addr {
   356  	for i := range p.RestArgs {
   357  		if p.RestArgs[i].Pos == Source {
   358  			return &p.RestArgs[i].Addr
   359  		}
   360  	}
   361  	return nil
   362  }
   363  
   364  // AddRestSource assigns []Args{{a, Source}} to p.RestArgs.
   365  func (p *Prog) AddRestSource(a Addr) {
   366  	p.RestArgs = append(p.RestArgs, AddrPos{a, Source})
   367  }
   368  
   369  // AddRestSourceReg calls p.AddRestSource with a register Addr containing reg.
   370  func (p *Prog) AddRestSourceReg(reg int16) {
   371  	p.AddRestSource(Addr{Type: TYPE_REG, Reg: reg})
   372  }
   373  
   374  // AddRestSourceConst calls p.AddRestSource with a const Addr containing off.
   375  func (p *Prog) AddRestSourceConst(off int64) {
   376  	p.AddRestSource(Addr{Type: TYPE_CONST, Offset: off})
   377  }
   378  
   379  // AddRestDest assigns []Args{{a, Destination}} to p.RestArgs when the second destination
   380  // operand does not fit into prog.RegTo2.
   381  func (p *Prog) AddRestDest(a Addr) {
   382  	p.RestArgs = append(p.RestArgs, AddrPos{a, Destination})
   383  }
   384  
   385  // GetTo2 returns the second destination operand.
   386  // The same kinds of operands are saved in order so GetTo2 actually
   387  // return the first destination operand in Prog.RestArgs[]
   388  func (p *Prog) GetTo2() *Addr {
   389  	for i := range p.RestArgs {
   390  		if p.RestArgs[i].Pos == Destination {
   391  			return &p.RestArgs[i].Addr
   392  		}
   393  	}
   394  	return nil
   395  }
   396  
   397  // AddRestSourceArgs assigns more than one source operands to p.RestArgs.
   398  func (p *Prog) AddRestSourceArgs(args []Addr) {
   399  	for i := range args {
   400  		p.RestArgs = append(p.RestArgs, AddrPos{args[i], Source})
   401  	}
   402  }
   403  
   404  // An As denotes an assembler opcode.
   405  // There are some portable opcodes, declared here in package obj,
   406  // that are common to all architectures.
   407  // However, the majority of opcodes are arch-specific
   408  // and are declared in their respective architecture's subpackage.
   409  type As int16
   410  
   411  // These are the portable opcodes.
   412  const (
   413  	AXXX As = iota
   414  	ACALL
   415  	ADUFFCOPY
   416  	ADUFFZERO
   417  	AEND
   418  	AFUNCDATA
   419  	AJMP
   420  	ANOP
   421  	APCALIGN
   422  	APCALIGNMAX // currently x86, amd64 and arm64
   423  	APCDATA
   424  	ARET
   425  	AGETCALLERPC
   426  	ATEXT
   427  	AUNDEF
   428  	A_ARCHSPECIFIC
   429  )
   430  
   431  // Each architecture is allotted a distinct subspace of opcode values
   432  // for declaring its arch-specific opcodes.
   433  // Within this subspace, the first arch-specific opcode should be
   434  // at offset A_ARCHSPECIFIC.
   435  //
   436  // Subspaces are aligned to a power of two so opcodes can be masked
   437  // with AMask and used as compact array indices.
   438  const (
   439  	ABase386 = (1 + iota) << 11
   440  	ABaseARM
   441  	ABaseAMD64
   442  	ABasePPC64
   443  	ABaseARM64
   444  	ABaseMIPS
   445  	ABaseLoong64
   446  	ABaseRISCV
   447  	ABaseS390X
   448  	ABaseWasm
   449  
   450  	AllowedOpCodes = 1 << 11            // The number of opcodes available for any given architecture.
   451  	AMask          = AllowedOpCodes - 1 // AND with this to use the opcode as an array index.
   452  )
   453  
   454  // An LSym is the sort of symbol that is written to an object file.
   455  // It represents Go symbols in a flat pkg+"."+name namespace.
   456  type LSym struct {
   457  	Name string
   458  	Type objabi.SymKind
   459  	Attribute
   460  
   461  	Size   int64
   462  	Gotype *LSym
   463  	P      []byte
   464  	R      []Reloc
   465  
   466  	Extra *interface{} // *FuncInfo, *VarInfo, *FileInfo, or *TypeInfo, if present
   467  
   468  	Pkg    string
   469  	PkgIdx int32
   470  	SymIdx int32
   471  }
   472  
   473  // A FuncInfo contains extra fields for STEXT symbols.
   474  type FuncInfo struct {
   475  	Args      int32
   476  	Locals    int32
   477  	Align     int32
   478  	FuncID    abi.FuncID
   479  	FuncFlag  abi.FuncFlag
   480  	StartLine int32
   481  	Text      *Prog
   482  	Autot     map[*LSym]struct{}
   483  	Pcln      Pcln
   484  	InlMarks  []InlMark
   485  	spills    []RegSpill
   486  
   487  	dwarfInfoSym       *LSym
   488  	dwarfLocSym        *LSym
   489  	dwarfRangesSym     *LSym
   490  	dwarfAbsFnSym      *LSym
   491  	dwarfDebugLinesSym *LSym
   492  
   493  	GCArgs             *LSym
   494  	GCLocals           *LSym
   495  	StackObjects       *LSym
   496  	OpenCodedDeferInfo *LSym
   497  	ArgInfo            *LSym // argument info for traceback
   498  	ArgLiveInfo        *LSym // argument liveness info for traceback
   499  	WrapInfo           *LSym // for wrapper, info of wrapped function
   500  	JumpTables         []JumpTable
   501  
   502  	FuncInfoSym *LSym
   503  
   504  	WasmImport *WasmImport
   505  	WasmExport *WasmExport
   506  
   507  	sehUnwindInfoSym *LSym
   508  }
   509  
   510  // JumpTable represents a table used for implementing multi-way
   511  // computed branching, used typically for implementing switches.
   512  // Sym is the table itself, and Targets is a list of target
   513  // instructions to go to for the computed branch index.
   514  type JumpTable struct {
   515  	Sym     *LSym
   516  	Targets []*Prog
   517  }
   518  
   519  // NewFuncInfo allocates and returns a FuncInfo for LSym.
   520  func (s *LSym) NewFuncInfo() *FuncInfo {
   521  	if s.Extra != nil {
   522  		panic(fmt.Sprintf("invalid use of LSym - NewFuncInfo with Extra of type %T", *s.Extra))
   523  	}
   524  	f := new(FuncInfo)
   525  	s.Extra = new(interface{})
   526  	*s.Extra = f
   527  	return f
   528  }
   529  
   530  // Func returns the *FuncInfo associated with s, or else nil.
   531  func (s *LSym) Func() *FuncInfo {
   532  	if s.Extra == nil {
   533  		return nil
   534  	}
   535  	f, _ := (*s.Extra).(*FuncInfo)
   536  	return f
   537  }
   538  
   539  type VarInfo struct {
   540  	dwarfInfoSym *LSym
   541  }
   542  
   543  // NewVarInfo allocates and returns a VarInfo for LSym.
   544  func (s *LSym) NewVarInfo() *VarInfo {
   545  	if s.Extra != nil {
   546  		panic(fmt.Sprintf("invalid use of LSym - NewVarInfo with Extra of type %T", *s.Extra))
   547  	}
   548  	f := new(VarInfo)
   549  	s.Extra = new(interface{})
   550  	*s.Extra = f
   551  	return f
   552  }
   553  
   554  // VarInfo returns the *VarInfo associated with s, or else nil.
   555  func (s *LSym) VarInfo() *VarInfo {
   556  	if s.Extra == nil {
   557  		return nil
   558  	}
   559  	f, _ := (*s.Extra).(*VarInfo)
   560  	return f
   561  }
   562  
   563  // A FileInfo contains extra fields for SDATA symbols backed by files.
   564  // (If LSym.Extra is a *FileInfo, LSym.P == nil.)
   565  type FileInfo struct {
   566  	Name string // name of file to read into object file
   567  	Size int64  // length of file
   568  }
   569  
   570  // NewFileInfo allocates and returns a FileInfo for LSym.
   571  func (s *LSym) NewFileInfo() *FileInfo {
   572  	if s.Extra != nil {
   573  		panic(fmt.Sprintf("invalid use of LSym - NewFileInfo with Extra of type %T", *s.Extra))
   574  	}
   575  	f := new(FileInfo)
   576  	s.Extra = new(interface{})
   577  	*s.Extra = f
   578  	return f
   579  }
   580  
   581  // File returns the *FileInfo associated with s, or else nil.
   582  func (s *LSym) File() *FileInfo {
   583  	if s.Extra == nil {
   584  		return nil
   585  	}
   586  	f, _ := (*s.Extra).(*FileInfo)
   587  	return f
   588  }
   589  
   590  // A TypeInfo contains information for a symbol
   591  // that contains a runtime._type.
   592  type TypeInfo struct {
   593  	Type interface{} // a *cmd/compile/internal/types.Type
   594  }
   595  
   596  func (s *LSym) NewTypeInfo() *TypeInfo {
   597  	if s.Extra != nil {
   598  		panic(fmt.Sprintf("invalid use of LSym - NewTypeInfo with Extra of type %T", *s.Extra))
   599  	}
   600  	t := new(TypeInfo)
   601  	s.Extra = new(interface{})
   602  	*s.Extra = t
   603  	return t
   604  }
   605  
   606  // WasmImport represents a WebAssembly (WASM) imported function with
   607  // parameters and results translated into WASM types based on the Go function
   608  // declaration.
   609  type WasmImport struct {
   610  	// Module holds the WASM module name specified by the //go:wasmimport
   611  	// directive.
   612  	Module string
   613  	// Name holds the WASM imported function name specified by the
   614  	// //go:wasmimport directive.
   615  	Name string
   616  
   617  	WasmFuncType // type of the imported function
   618  
   619  	// aux symbol to pass metadata to the linker, serialization of
   620  	// the fields above.
   621  	AuxSym *LSym
   622  }
   623  
   624  func (wi *WasmImport) CreateAuxSym() {
   625  	var b bytes.Buffer
   626  	wi.Write(&b)
   627  	p := b.Bytes()
   628  	wi.AuxSym = &LSym{
   629  		Type: objabi.SDATA, // doesn't really matter
   630  		P:    append([]byte(nil), p...),
   631  		Size: int64(len(p)),
   632  	}
   633  }
   634  
   635  func (wi *WasmImport) Write(w *bytes.Buffer) {
   636  	var b [8]byte
   637  	writeUint32 := func(x uint32) {
   638  		binary.LittleEndian.PutUint32(b[:], x)
   639  		w.Write(b[:4])
   640  	}
   641  	writeString := func(s string) {
   642  		writeUint32(uint32(len(s)))
   643  		w.WriteString(s)
   644  	}
   645  	writeString(wi.Module)
   646  	writeString(wi.Name)
   647  	wi.WasmFuncType.Write(w)
   648  }
   649  
   650  func (wi *WasmImport) Read(b []byte) {
   651  	readUint32 := func() uint32 {
   652  		x := binary.LittleEndian.Uint32(b)
   653  		b = b[4:]
   654  		return x
   655  	}
   656  	readString := func() string {
   657  		n := readUint32()
   658  		s := string(b[:n])
   659  		b = b[n:]
   660  		return s
   661  	}
   662  	wi.Module = readString()
   663  	wi.Name = readString()
   664  	wi.WasmFuncType.Read(b)
   665  }
   666  
   667  // WasmFuncType represents a WebAssembly (WASM) function type with
   668  // parameters and results translated into WASM types based on the Go function
   669  // declaration.
   670  type WasmFuncType struct {
   671  	// Params holds the function parameter fields.
   672  	Params []WasmField
   673  	// Results holds the function result fields.
   674  	Results []WasmField
   675  }
   676  
   677  func (ft *WasmFuncType) Write(w *bytes.Buffer) {
   678  	var b [8]byte
   679  	writeByte := func(x byte) {
   680  		w.WriteByte(x)
   681  	}
   682  	writeUint32 := func(x uint32) {
   683  		binary.LittleEndian.PutUint32(b[:], x)
   684  		w.Write(b[:4])
   685  	}
   686  	writeInt64 := func(x int64) {
   687  		binary.LittleEndian.PutUint64(b[:], uint64(x))
   688  		w.Write(b[:])
   689  	}
   690  	writeUint32(uint32(len(ft.Params)))
   691  	for _, f := range ft.Params {
   692  		writeByte(byte(f.Type))
   693  		writeInt64(f.Offset)
   694  	}
   695  	writeUint32(uint32(len(ft.Results)))
   696  	for _, f := range ft.Results {
   697  		writeByte(byte(f.Type))
   698  		writeInt64(f.Offset)
   699  	}
   700  }
   701  
   702  func (ft *WasmFuncType) Read(b []byte) {
   703  	readByte := func() byte {
   704  		x := b[0]
   705  		b = b[1:]
   706  		return x
   707  	}
   708  	readUint32 := func() uint32 {
   709  		x := binary.LittleEndian.Uint32(b)
   710  		b = b[4:]
   711  		return x
   712  	}
   713  	readInt64 := func() int64 {
   714  		x := binary.LittleEndian.Uint64(b)
   715  		b = b[8:]
   716  		return int64(x)
   717  	}
   718  	ft.Params = make([]WasmField, readUint32())
   719  	for i := range ft.Params {
   720  		ft.Params[i].Type = WasmFieldType(readByte())
   721  		ft.Params[i].Offset = int64(readInt64())
   722  	}
   723  	ft.Results = make([]WasmField, readUint32())
   724  	for i := range ft.Results {
   725  		ft.Results[i].Type = WasmFieldType(readByte())
   726  		ft.Results[i].Offset = int64(readInt64())
   727  	}
   728  }
   729  
   730  // WasmExport represents a WebAssembly (WASM) exported function with
   731  // parameters and results translated into WASM types based on the Go function
   732  // declaration.
   733  type WasmExport struct {
   734  	WasmFuncType
   735  
   736  	WrappedSym *LSym // the wrapped Go function
   737  	AuxSym     *LSym // aux symbol to pass metadata to the linker
   738  }
   739  
   740  func (we *WasmExport) CreateAuxSym() {
   741  	var b bytes.Buffer
   742  	we.WasmFuncType.Write(&b)
   743  	p := b.Bytes()
   744  	we.AuxSym = &LSym{
   745  		Type: objabi.SDATA, // doesn't really matter
   746  		P:    append([]byte(nil), p...),
   747  		Size: int64(len(p)),
   748  	}
   749  }
   750  
   751  type WasmField struct {
   752  	Type WasmFieldType
   753  	// Offset holds the frame-pointer-relative locations for Go's stack-based
   754  	// ABI. This is used by the src/cmd/internal/wasm package to map WASM
   755  	// import parameters to the Go stack in a wrapper function.
   756  	Offset int64
   757  }
   758  
   759  type WasmFieldType byte
   760  
   761  const (
   762  	WasmI32 WasmFieldType = iota
   763  	WasmI64
   764  	WasmF32
   765  	WasmF64
   766  	WasmPtr
   767  
   768  	// bool is not really a wasm type, but we allow it on wasmimport/wasmexport
   769  	// function parameters/results. 32-bit on Wasm side, 8-bit on Go side.
   770  	WasmBool
   771  )
   772  
   773  type InlMark struct {
   774  	// When unwinding from an instruction in an inlined body, mark
   775  	// where we should unwind to.
   776  	// id records the global inlining id of the inlined body.
   777  	// p records the location of an instruction in the parent (inliner) frame.
   778  	p  *Prog
   779  	id int32
   780  }
   781  
   782  // Mark p as the instruction to set as the pc when
   783  // "unwinding" the inlining global frame id. Usually it should be
   784  // instruction with a file:line at the callsite, and occur
   785  // just before the body of the inlined function.
   786  func (fi *FuncInfo) AddInlMark(p *Prog, id int32) {
   787  	fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id})
   788  }
   789  
   790  // AddSpill appends a spill record to the list for FuncInfo fi
   791  func (fi *FuncInfo) AddSpill(s RegSpill) {
   792  	fi.spills = append(fi.spills, s)
   793  }
   794  
   795  // Record the type symbol for an auto variable so that the linker
   796  // an emit DWARF type information for the type.
   797  func (fi *FuncInfo) RecordAutoType(gotype *LSym) {
   798  	if fi.Autot == nil {
   799  		fi.Autot = make(map[*LSym]struct{})
   800  	}
   801  	fi.Autot[gotype] = struct{}{}
   802  }
   803  
   804  //go:generate stringer -type ABI
   805  
   806  // ABI is the calling convention of a text symbol.
   807  type ABI uint8
   808  
   809  const (
   810  	// ABI0 is the stable stack-based ABI. It's important that the
   811  	// value of this is "0": we can't distinguish between
   812  	// references to data and ABI0 text symbols in assembly code,
   813  	// and hence this doesn't distinguish between symbols without
   814  	// an ABI and text symbols with ABI0.
   815  	ABI0 ABI = iota
   816  
   817  	// ABIInternal is the internal ABI that may change between Go
   818  	// versions. All Go functions use the internal ABI and the
   819  	// compiler generates wrappers for calls to and from other
   820  	// ABIs.
   821  	ABIInternal
   822  
   823  	ABICount
   824  )
   825  
   826  // ParseABI converts from a string representation in 'abistr' to the
   827  // corresponding ABI value. Second return value is TRUE if the
   828  // abi string is recognized, FALSE otherwise.
   829  func ParseABI(abistr string) (ABI, bool) {
   830  	switch abistr {
   831  	default:
   832  		return ABI0, false
   833  	case "ABI0":
   834  		return ABI0, true
   835  	case "ABIInternal":
   836  		return ABIInternal, true
   837  	}
   838  }
   839  
   840  // ABISet is a bit set of ABI values.
   841  type ABISet uint8
   842  
   843  const (
   844  	// ABISetCallable is the set of all ABIs any function could
   845  	// potentially be called using.
   846  	ABISetCallable ABISet = (1 << ABI0) | (1 << ABIInternal)
   847  )
   848  
   849  // Ensure ABISet is big enough to hold all ABIs.
   850  var _ ABISet = 1 << (ABICount - 1)
   851  
   852  func ABISetOf(abi ABI) ABISet {
   853  	return 1 << abi
   854  }
   855  
   856  func (a *ABISet) Set(abi ABI, value bool) {
   857  	if value {
   858  		*a |= 1 << abi
   859  	} else {
   860  		*a &^= 1 << abi
   861  	}
   862  }
   863  
   864  func (a *ABISet) Get(abi ABI) bool {
   865  	return (*a>>abi)&1 != 0
   866  }
   867  
   868  func (a ABISet) String() string {
   869  	s := "{"
   870  	for i := ABI(0); a != 0; i++ {
   871  		if a&(1<<i) != 0 {
   872  			if s != "{" {
   873  				s += ","
   874  			}
   875  			s += i.String()
   876  			a &^= 1 << i
   877  		}
   878  	}
   879  	return s + "}"
   880  }
   881  
   882  // Attribute is a set of symbol attributes.
   883  type Attribute uint32
   884  
   885  const (
   886  	AttrDuplicateOK Attribute = 1 << iota
   887  	AttrCFunc
   888  	AttrNoSplit
   889  	AttrLeaf
   890  	AttrWrapper
   891  	AttrNeedCtxt
   892  	AttrNoFrame
   893  	AttrOnList
   894  	AttrStatic
   895  
   896  	// MakeTypelink means that the type should have an entry in the typelink table.
   897  	AttrMakeTypelink
   898  
   899  	// ReflectMethod means the function may call reflect.Type.Method or
   900  	// reflect.Type.MethodByName. Matching is imprecise (as reflect.Type
   901  	// can be used through a custom interface), so ReflectMethod may be
   902  	// set in some cases when the reflect package is not called.
   903  	//
   904  	// Used by the linker to determine what methods can be pruned.
   905  	AttrReflectMethod
   906  
   907  	// Local means make the symbol local even when compiling Go code to reference Go
   908  	// symbols in other shared libraries, as in this mode symbols are global by
   909  	// default. "local" here means in the sense of the dynamic linker, i.e. not
   910  	// visible outside of the module (shared library or executable) that contains its
   911  	// definition. (When not compiling to support Go shared libraries, all symbols are
   912  	// local in this sense unless there is a cgo_export_* directive).
   913  	AttrLocal
   914  
   915  	// For function symbols; indicates that the specified function was the
   916  	// target of an inline during compilation
   917  	AttrWasInlined
   918  
   919  	// Indexed indicates this symbol has been assigned with an index (when using the
   920  	// new object file format).
   921  	AttrIndexed
   922  
   923  	// Only applied on type descriptor symbols, UsedInIface indicates this type is
   924  	// converted to an interface.
   925  	//
   926  	// Used by the linker to determine what methods can be pruned.
   927  	AttrUsedInIface
   928  
   929  	// ContentAddressable indicates this is a content-addressable symbol.
   930  	AttrContentAddressable
   931  
   932  	// ABI wrapper is set for compiler-generated text symbols that
   933  	// convert between ABI0 and ABIInternal calling conventions.
   934  	AttrABIWrapper
   935  
   936  	// IsPcdata indicates this is a pcdata symbol.
   937  	AttrPcdata
   938  
   939  	// PkgInit indicates this is a compiler-generated package init func.
   940  	AttrPkgInit
   941  
   942  	// Linkname indicates this is a go:linkname'd symbol.
   943  	AttrLinkname
   944  
   945  	// attrABIBase is the value at which the ABI is encoded in
   946  	// Attribute. This must be last; all bits after this are
   947  	// assumed to be an ABI value.
   948  	//
   949  	// MUST BE LAST since all bits above this comprise the ABI.
   950  	attrABIBase
   951  )
   952  
   953  func (a *Attribute) load() Attribute { return Attribute(atomic.LoadUint32((*uint32)(a))) }
   954  
   955  func (a *Attribute) DuplicateOK() bool        { return a.load()&AttrDuplicateOK != 0 }
   956  func (a *Attribute) MakeTypelink() bool       { return a.load()&AttrMakeTypelink != 0 }
   957  func (a *Attribute) CFunc() bool              { return a.load()&AttrCFunc != 0 }
   958  func (a *Attribute) NoSplit() bool            { return a.load()&AttrNoSplit != 0 }
   959  func (a *Attribute) Leaf() bool               { return a.load()&AttrLeaf != 0 }
   960  func (a *Attribute) OnList() bool             { return a.load()&AttrOnList != 0 }
   961  func (a *Attribute) ReflectMethod() bool      { return a.load()&AttrReflectMethod != 0 }
   962  func (a *Attribute) Local() bool              { return a.load()&AttrLocal != 0 }
   963  func (a *Attribute) Wrapper() bool            { return a.load()&AttrWrapper != 0 }
   964  func (a *Attribute) NeedCtxt() bool           { return a.load()&AttrNeedCtxt != 0 }
   965  func (a *Attribute) NoFrame() bool            { return a.load()&AttrNoFrame != 0 }
   966  func (a *Attribute) Static() bool             { return a.load()&AttrStatic != 0 }
   967  func (a *Attribute) WasInlined() bool         { return a.load()&AttrWasInlined != 0 }
   968  func (a *Attribute) Indexed() bool            { return a.load()&AttrIndexed != 0 }
   969  func (a *Attribute) UsedInIface() bool        { return a.load()&AttrUsedInIface != 0 }
   970  func (a *Attribute) ContentAddressable() bool { return a.load()&AttrContentAddressable != 0 }
   971  func (a *Attribute) ABIWrapper() bool         { return a.load()&AttrABIWrapper != 0 }
   972  func (a *Attribute) IsPcdata() bool           { return a.load()&AttrPcdata != 0 }
   973  func (a *Attribute) IsPkgInit() bool          { return a.load()&AttrPkgInit != 0 }
   974  func (a *Attribute) IsLinkname() bool         { return a.load()&AttrLinkname != 0 }
   975  
   976  func (a *Attribute) Set(flag Attribute, value bool) {
   977  	for {
   978  		v0 := a.load()
   979  		v := v0
   980  		if value {
   981  			v |= flag
   982  		} else {
   983  			v &^= flag
   984  		}
   985  		if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
   986  			break
   987  		}
   988  	}
   989  }
   990  
   991  func (a *Attribute) ABI() ABI { return ABI(a.load() / attrABIBase) }
   992  func (a *Attribute) SetABI(abi ABI) {
   993  	const mask = 1 // Only one ABI bit for now.
   994  	for {
   995  		v0 := a.load()
   996  		v := (v0 &^ (mask * attrABIBase)) | Attribute(abi)*attrABIBase
   997  		if atomic.CompareAndSwapUint32((*uint32)(a), uint32(v0), uint32(v)) {
   998  			break
   999  		}
  1000  	}
  1001  }
  1002  
  1003  var textAttrStrings = [...]struct {
  1004  	bit Attribute
  1005  	s   string
  1006  }{
  1007  	{bit: AttrDuplicateOK, s: "DUPOK"},
  1008  	{bit: AttrMakeTypelink, s: ""},
  1009  	{bit: AttrCFunc, s: "CFUNC"},
  1010  	{bit: AttrNoSplit, s: "NOSPLIT"},
  1011  	{bit: AttrLeaf, s: "LEAF"},
  1012  	{bit: AttrOnList, s: ""},
  1013  	{bit: AttrReflectMethod, s: "REFLECTMETHOD"},
  1014  	{bit: AttrLocal, s: "LOCAL"},
  1015  	{bit: AttrWrapper, s: "WRAPPER"},
  1016  	{bit: AttrNeedCtxt, s: "NEEDCTXT"},
  1017  	{bit: AttrNoFrame, s: "NOFRAME"},
  1018  	{bit: AttrStatic, s: "STATIC"},
  1019  	{bit: AttrWasInlined, s: ""},
  1020  	{bit: AttrIndexed, s: ""},
  1021  	{bit: AttrContentAddressable, s: ""},
  1022  	{bit: AttrABIWrapper, s: "ABIWRAPPER"},
  1023  	{bit: AttrPkgInit, s: "PKGINIT"},
  1024  	{bit: AttrLinkname, s: "LINKNAME"},
  1025  }
  1026  
  1027  // String formats a for printing in as part of a TEXT prog.
  1028  func (a Attribute) String() string {
  1029  	var s string
  1030  	for _, x := range textAttrStrings {
  1031  		if a&x.bit != 0 {
  1032  			if x.s != "" {
  1033  				s += x.s + "|"
  1034  			}
  1035  			a &^= x.bit
  1036  		}
  1037  	}
  1038  	switch a.ABI() {
  1039  	case ABI0:
  1040  	case ABIInternal:
  1041  		s += "ABIInternal|"
  1042  		a.SetABI(0) // Clear ABI so we don't print below.
  1043  	}
  1044  	if a != 0 {
  1045  		s += fmt.Sprintf("UnknownAttribute(%d)|", a)
  1046  	}
  1047  	// Chop off trailing |, if present.
  1048  	if len(s) > 0 {
  1049  		s = s[:len(s)-1]
  1050  	}
  1051  	return s
  1052  }
  1053  
  1054  // TextAttrString formats the symbol attributes for printing in as part of a TEXT prog.
  1055  func (s *LSym) TextAttrString() string {
  1056  	attr := s.Attribute.String()
  1057  	if s.Func().FuncFlag&abi.FuncFlagTopFrame != 0 {
  1058  		if attr != "" {
  1059  			attr += "|"
  1060  		}
  1061  		attr += "TOPFRAME"
  1062  	}
  1063  	return attr
  1064  }
  1065  
  1066  func (s *LSym) String() string {
  1067  	return s.Name
  1068  }
  1069  
  1070  // The compiler needs *LSym to be assignable to cmd/compile/internal/ssa.Sym.
  1071  func (*LSym) CanBeAnSSASym() {}
  1072  func (*LSym) CanBeAnSSAAux() {}
  1073  
  1074  type Pcln struct {
  1075  	// Aux symbols for pcln
  1076  	Pcsp      *LSym
  1077  	Pcfile    *LSym
  1078  	Pcline    *LSym
  1079  	Pcinline  *LSym
  1080  	Pcdata    []*LSym
  1081  	Funcdata  []*LSym
  1082  	UsedFiles map[goobj.CUFileIndex]struct{} // file indices used while generating pcfile
  1083  	InlTree   InlTree                        // per-function inlining tree extracted from the global tree
  1084  }
  1085  
  1086  type Reloc struct {
  1087  	Off  int32
  1088  	Siz  uint8
  1089  	Type objabi.RelocType
  1090  	Add  int64
  1091  	Sym  *LSym
  1092  }
  1093  
  1094  type Auto struct {
  1095  	Asym    *LSym
  1096  	Aoffset int32
  1097  	Name    AddrName
  1098  	Gotype  *LSym
  1099  }
  1100  
  1101  // RegSpill provides spill/fill information for a register-resident argument
  1102  // to a function.  These need spilling/filling in the safepoint/stackgrowth case.
  1103  // At the time of fill/spill, the offset must be adjusted by the architecture-dependent
  1104  // adjustment to hardware SP that occurs in a call instruction.  E.g., for AMD64,
  1105  // at Offset+8 because the return address was pushed.
  1106  type RegSpill struct {
  1107  	Addr           Addr
  1108  	Reg            int16
  1109  	Reg2           int16 // If not 0, a second register to spill at Addr+regSize. Only for some archs.
  1110  	Spill, Unspill As
  1111  }
  1112  
  1113  // A Func represents a Go function. If non-nil, it must be a *ir.Func.
  1114  type Func interface {
  1115  	Pos() src.XPos
  1116  }
  1117  
  1118  // Link holds the context for writing object code from a compiler
  1119  // to be linker input or for reading that input into the linker.
  1120  type Link struct {
  1121  	Headtype           objabi.HeadType
  1122  	Arch               *LinkArch
  1123  	Debugasm           int
  1124  	Debugvlog          bool
  1125  	Debugpcln          string
  1126  	Flag_shared        bool
  1127  	Flag_dynlink       bool
  1128  	Flag_linkshared    bool
  1129  	Flag_optimize      bool
  1130  	Flag_locationlists bool
  1131  	Flag_noRefName     bool   // do not include referenced symbol names in object file
  1132  	Retpoline          bool   // emit use of retpoline stubs for indirect jmp/call
  1133  	Flag_maymorestack  string // If not "", call this function before stack checks
  1134  	Bso                *bufio.Writer
  1135  	Pathname           string
  1136  	Pkgpath            string           // the current package's import path
  1137  	hashmu             sync.Mutex       // protects hash, funchash
  1138  	hash               map[string]*LSym // name -> sym mapping
  1139  	funchash           map[string]*LSym // name -> sym mapping for ABIInternal syms
  1140  	statichash         map[string]*LSym // name -> sym mapping for static syms
  1141  	PosTable           src.PosTable
  1142  	InlTree            InlTree // global inlining tree used by gc/inl.go
  1143  	DwFixups           *DwarfFixupTable
  1144  	Imports            []goobj.ImportedPkg
  1145  	DiagFunc           func(string, ...interface{})
  1146  	DiagFlush          func()
  1147  	DebugInfo          func(ctxt *Link, fn *LSym, info *LSym, curfn Func) ([]dwarf.Scope, dwarf.InlCalls)
  1148  	GenAbstractFunc    func(fn *LSym)
  1149  	Errors             int
  1150  
  1151  	InParallel    bool // parallel backend phase in effect
  1152  	UseBASEntries bool // use Base Address Selection Entries in location lists and PC ranges
  1153  	IsAsm         bool // is the source assembly language, which may contain surprising idioms (e.g., call tables)
  1154  	Std           bool // is standard library package
  1155  
  1156  	// state for writing objects
  1157  	Text []*LSym
  1158  	Data []*LSym
  1159  
  1160  	// Constant symbols (e.g. $i64.*) are data symbols created late
  1161  	// in the concurrent phase. To ensure a deterministic order, we
  1162  	// add them to a separate list, sort at the end, and append it
  1163  	// to Data.
  1164  	constSyms []*LSym
  1165  
  1166  	// Windows SEH symbols are also data symbols that can be created
  1167  	// concurrently.
  1168  	SEHSyms []*LSym
  1169  
  1170  	// pkgIdx maps package path to index. The index is used for
  1171  	// symbol reference in the object file.
  1172  	pkgIdx map[string]int32
  1173  
  1174  	defs         []*LSym // list of defined symbols in the current package
  1175  	hashed64defs []*LSym // list of defined short (64-bit or less) hashed (content-addressable) symbols
  1176  	hasheddefs   []*LSym // list of defined hashed (content-addressable) symbols
  1177  	nonpkgdefs   []*LSym // list of defined non-package symbols
  1178  	nonpkgrefs   []*LSym // list of referenced non-package symbols
  1179  
  1180  	Fingerprint goobj.FingerprintType // fingerprint of symbol indices, to catch index mismatch
  1181  }
  1182  
  1183  func (ctxt *Link) Diag(format string, args ...interface{}) {
  1184  	ctxt.Errors++
  1185  	ctxt.DiagFunc(format, args...)
  1186  }
  1187  
  1188  func (ctxt *Link) Logf(format string, args ...interface{}) {
  1189  	fmt.Fprintf(ctxt.Bso, format, args...)
  1190  	ctxt.Bso.Flush()
  1191  }
  1192  
  1193  // SpillRegisterArgs emits the code to spill register args into whatever
  1194  // locations the spill records specify.
  1195  func (fi *FuncInfo) SpillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
  1196  	// Spill register args.
  1197  	for _, ra := range fi.spills {
  1198  		spill := Appendp(last, pa)
  1199  		spill.As = ra.Spill
  1200  		spill.From.Type = TYPE_REG
  1201  		spill.From.Reg = ra.Reg
  1202  		if ra.Reg2 != 0 {
  1203  			spill.From.Type = TYPE_REGREG
  1204  			spill.From.Offset = int64(ra.Reg2)
  1205  		}
  1206  		spill.To = ra.Addr
  1207  		last = spill
  1208  	}
  1209  	return last
  1210  }
  1211  
  1212  // UnspillRegisterArgs emits the code to restore register args from whatever
  1213  // locations the spill records specify.
  1214  func (fi *FuncInfo) UnspillRegisterArgs(last *Prog, pa ProgAlloc) *Prog {
  1215  	// Unspill any spilled register args
  1216  	for _, ra := range fi.spills {
  1217  		unspill := Appendp(last, pa)
  1218  		unspill.As = ra.Unspill
  1219  		unspill.From = ra.Addr
  1220  		unspill.To.Type = TYPE_REG
  1221  		unspill.To.Reg = ra.Reg
  1222  		if ra.Reg2 != 0 {
  1223  			unspill.To.Type = TYPE_REGREG
  1224  			unspill.To.Offset = int64(ra.Reg2)
  1225  		}
  1226  		last = unspill
  1227  	}
  1228  	return last
  1229  }
  1230  
  1231  // LinkArch is the definition of a single architecture.
  1232  type LinkArch struct {
  1233  	*sys.Arch
  1234  	Init           func(*Link)
  1235  	ErrorCheck     func(*Link, *LSym)
  1236  	Preprocess     func(*Link, *LSym, ProgAlloc)
  1237  	Assemble       func(*Link, *LSym, ProgAlloc)
  1238  	Progedit       func(*Link, *Prog, ProgAlloc)
  1239  	SEH            func(*Link, *LSym) *LSym
  1240  	UnaryDst       map[As]bool // Instruction takes one operand, a destination.
  1241  	DWARFRegisters map[int16]int16
  1242  }
  1243  

View as plain text